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Abstract

Nowadays, hybrid perovskites are highly investigated materials for their optimal
electronic and optical properties, making them semiconductors of the highest capac-
ity for their use as solar energy harvesters in a photovoltaic device, so their study is
very important. Finding their structure that defines these properties involves ardu-
ous effort and a lot of computational resources. In this thesis we studied the hybrid
perovskites of lead methylammonium (MA) halides, MAPbX3 where (X=I, Cl, Br),
for simulating their structural, optical, and electronic properties. Each perovskite
presents three structural phases which are (in order of symmetry) the orthorhombic,
tetragonal and cubic phase. For each of the phases of its respective perovskite, its
structural parameters, and optical properties such as the real and imaginary part
of the dielectric function, refractive index, reflectivity, and its absorbance spectrum
were calculated. For the electronic properties, the band structure, density of states
(DOS), and projected density of states (PDOS) are presented. The results for each
perovskite are then compared with their own phases and between the other per-
ovskites and their experimental reported results to show their optimal structure to
obtain the best properties for each of the perovskites for use as a light-absorbing
layer of a solar cell. Our computed results indicate that the cubic Iodine hybrid per-
ovskite is the best candidate for its experimental application in photovoltaic devices,
exhibiting the largest absorption peak in the visible region of the solar spectrum.
The optical and electronic properties were close to the experimental ones, and the
perovskite structure’s impact on its properties is demonstrated.
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1.1 Introduction

It is very important to take into account green energies [Gielen 2019, Ellabban 2014],
especially in recent years, where the pollution of seas, land, and air has caused havoc
around the planet due to the excessive use of non-renewable fuels [Mohamed 2019,
Stephenson 2018, Aleman-Nava 2014], technology has allowed advancements in re-
search for new devices that reduce fossil fuels dependence, devices involved in re-
newable energy, such as solar energy. It is said that, per day, more than 1.65 x
1016 watts fall on the earth’s surface by the sun [Wild 2013], an amount that if
it could be harvested, it would be possible to end the current problems of this
preamble.[Huang 2019, Zhang 2016, Xu 2015] Precisely for this reason it is neces-
sary to find suitable forms for the correct transition between modern optoelectronic
and devices of the past, especially during these years where fossils fuels lead with 80
% of the energy market [Jeon 2014b]. Therefore, in the case of devices such as solar
cells, wherein these times amorphous silicon cells are the main ones in the world mar-
ket with prices close to dollars per watt, efficiencies of 23 % and life span of around
20 years, it is necessary to find some other material with use as the active part of
the solar cell. Of course, there are many, and in these times they are considered
together with silicon, cells like CIGS [Benmir 2013], germanium [Osterthun 2021],
or mixtures of silicon with another material [Fan 2010] that shows good results,
but they have not been successful in taking the place of silicon as the material of
excellence for photovoltaic devices. Among the materials that are currently being in-
vestigated, is perovskite. Perovskite is any material that carries a certain structural
formula, every one of its members possesses the same structural formula. The first
material discovered with such a structure as calcium titanium trioxide (CaTiO3),
which was discovered by mineralist Gustav Rose in the mountains of Russia, he
then proceeded to name it perovskite, in honor of Count Lev Perovski, who first
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Figure 1.1: National Renewable Energy Laboratory solar cell comparison chart
from 1976 to modern day, perovskite solar cell evolution can be seen in its en-
tirely [National Renewable Energy Laboratory ].

characterized the material [Yusoff 2016]. The perovskite family presents great ad-
vantages, depending on the components, it’s possible to modify its properties, such
as its absorption range, band gap, absorption coefficient, etc. In addition, many
of these materials have a high emission in different ranges of the visible spectrum,
which makes them very useful for the development of instruments for optoelectronic
purposes. In this case, emerging solar cells, for example, those based on hybrid per-
ovskites, or perovskite solar cell (PSC), are made up of an organic and an inorganic
part, that have shown good results, [Liu 2013a] the most studied PSC material is
MAPbI3. The energy conversion efficiency of solar cells, which can be with a porous
structure or a flat structure, has reached over 26 % as viewed in Figure 1.1 in the
year 2020, and it is estimated that solar modules can have low prices around 0.1
dollars per watt [Cai 2017]. For this reason, perovskite solar cells can become the
photovoltaic technology of the new generation, due to their excellent properties and
low production cost. Whenever we talk about solar cells and their utility, the golden
triangle of solar cells must be taken into account, see Figure 1.2, this indicates that
a reliable solar cell must have a good balance between the cost of manufacturing,
energy production, and its stability which is defined as the average lifetime before
it begins to reduce its capacity and its performance [Meng 2018]. Hybrid perovskite
solar cells have shown themselves as great contenders against other types of cells,
because of their low cost and high performance, their only weakness lies in their
short useful life [Niu 2015] comparing it for example with silicon solar cells that
have an average lifetime of 20 years, this being a topic of high interest that is under
investigation [Lee 2014].
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Figure 1.2: We show the solar cell golden triangle connected with the cost, efficiency
and lifetime parameters.

Experimental research has made great strides on these issues, but there is another
approach we can take in the study of these materials. We can use what is referred
to as materials simulation, where simulation is defined as the production of a com-
putational model of something, where its study is the main purpose [Gomes 2019].
Some time ago, the chemistry was thought to be a discipline that developed exper-
imentally, and it was for many years. This until the 1970s when computer software
began to be used in order to explain approaching chemistry in a way that experi-
mental chemistry could never achieve. At first pharmaceutical companies promoted
computational chemistry in the search for new drugs with a positive biological effect.
Nowadays we can use these methods to obtain the optical and electronic properties
of periodic materials in a completely controlled environment, which can pave the
way for experimental development [van Mourik 2014].

Electronic structure packages are in stock that allows us to simulate compound
molecules for study. These packages are in free formats like ABINIT [Romero 2020,
Gonze 2005, Gonze 2002] and other under license ones like VASP [Kresse 1993a,
Kresse 1996], these packages present a great opportunity to study periodic systems.
QE software [Giannozzi 2009, Giannozzi 2017, Giannozzi 2020] is a free program for
the scientific community, used for the calculation of optical, structural, vibrational
properties, etc. of the materials. Its use is of great importance since it allows us
to use the DFT that is a large part of this work. On the other hand, the Vienna
Ab initio simulation package or also known as VASP by its initials, is a computer
program for modeling atomic structures of materials and its main utility is the
calculation of their electronic structure and the dynamic molecular mechanics of
materials [Kresse 1993b].

Density Functional Theory (DFT) is a highly used quantum method to cal-
culate the electronic structure of materials. [Becke 2014b] DFT is based on the
Thomas-Fermi approach, developed by Thomas and Fermi in 1927 [Thomas 1927a,
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Teller 1962]. The method allows calculations such as the electronic and molecular
density of materials. It was introduced in 1964 by Kohn and Hohenberg, focusing on
the system density [Hohenberg 1964], this is where it differs from other methods such
as the Hartree method, which is based on the wave function [Yehuda B. Band 2013].
There are hundreds of articles that use it for the above, this due to the quality of
results that we can see in these publications. For perovskite type semiconductors it
has been applied for many of its family members such as MAPbX3, in its 2D and
3D structures, the latter has great characteristics for use as optoelectronic devices.
Using DFT allows us to obtain almost every property of materials such as their
structural, electronic, optoelectronic, magnetic, and thermodynamic properties.

So much is the effect of perovskites in optoelectronics that thousands of investi-
gations have been developed by theoretical computational means, with the objective
to lead the way of experimental research progress for these materials and their ap-
plication in industry. It has also been proven that the use of computational methods
such as DFT, produces results of a good level in terms of the simulation of their
atomic structures, although there is some uncertainty in terms of the electronic ones,
so more advanced methods are used to bring the results as close as possible to those
found experimentally. [Diau 2017]

In the present work, the structural, optical, and electronic properties for the
cubic, tetragonal and orthorhombic phases of the MAPbX3 perovskites were de-
termined, using pseudopotentials approximation and plane-wave basis-DFT imple-
mented in the Quantum ESPRESSO [Giannozzi 2017, Giannozzi 2020] simulation
package which was chosen because of its number of usable pseudopotentials, high
accessibility, and open-source nature [Giannozzi 2009].

1.2 Hypothesis

The use of the DFT as a theoretical-computational basis for conducting in silico
experiments allow us to find which hybrid perovskite material MAPbX3 (X= I, Br,
Cl) has the best optical response when it is exposed to solar light.

1.3 Objectives

General objective

• To compute the optical and electronic properties of the following perovskites:
CH3NH3PbI3, CH3NH3PbBr3 and CH3NH3PbCl3 employing density func-
tional theory as it is implemented in the open-source computer software Quan-
tum ESPRESSO [Giannozzi 2009, Giannozzi 2017, Giannozzi 2020].

Specific objectives

• Installation of Quantum ESPRESSO in High Performance Computing Area
of Sonora University.
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• Comprehend Quantum ESPRESSO basics and become familiar with DFT and
its basic theory.

• Review and deduction of the radiation-matter interaction Hamiltonian whithin
A · p̂ gauge, [Cabellos 2009a] where p̂ is the quantum opertor of moment and
A is the vector potential [Cabellos 2009b].

• Review of electrical susceptibility tensor of first order (Linear optical response)
following the Ref. [Cabellos 2009a, Cabellos 2011]

• Computing the ground-state geometries for all perovskites materials and their
respective structural phase.

• Computing and obtain the electronic (Band structure, Density of states) and
optical properties (absorption, refractive index, reflectivity, etc.), for every
perovskite material. To achieve this, the imaginary part, Im[χ(−ω;ω)], and
the real part, Re[χ(−ω;ω)] of the dielectric function, are calculated within the
framework of the linear response theory and following the methodology of this
Ref. [Cabellos 2009a].

1.4 Thesis outline

• This thesis work is a theoretical study on the structural, electronic, and
optical properties of methyl ammonium lead iodide, chloride, and bromide,
CH3NH3PbX3 (X= I, Cl, Br) perovskites. The simulated results are made pos-
sible using PBE (Perdew-Burke-Ernzerhof) exchange-correlation functional
using a plane-wave basis set with density functional theory (DFT).

• Chapter 2 presents a brief introduction and useful information on hybrid per-
ovskite materials, their history and development as photovoltaic devices of the
current era, with a focus on the main perspective for their use as an absorption
layer of a solar cell, as shown reported in recent years.

• Chapter 3 recalls the theoretical aspects of this work, mainly the functional
theory of density, linear optical response, pseudopotentials, a complete de-
duction of the Light-Matter interaction Hamiltonian is presented, also, the
Quantum ESPRESSO electronic structure package is discussed.

• Chapter 4 arguments on the results calculated for each of the investigated
perovskites, their structural parameters of their cubic, tetragonal, and or-
thorhombic phase with their respective electronic properties (band gap, den-
sity of states, etc.), and optical properties (dielectric properties, absorption,
reflective index, etc.) for each structural phase. These results are presented
with a comparison between each perovskite.
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• Chapter 5 concludes this thesis, summarizing the results obtained and giving
an overview of possible future studies, in addition, all the references consulted
in this research work are presented.



Chapter 2

Organometal halide perovskites as

photovoltaic devices

Contents

2.1 Perovskite materials . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Organometal halide perovskite solar cells . . . . . . . . . . . 9

2.1 Perovskite materials

Figure 2.1: 3D structure geoemtry of Perovskite. Panel (a) shows the cubic phase
that is stable at high temperatures. Panel (b) shows the orthorhombic phase that
is stable at low temperatures. The blue-colored sphere represents the methylam-
monium, the black colored sphere represent Pb atoms, whereas, the violet-colored
sphere represent halogens atoms (I, Br, Cl) [Green 2014].

The perovskite family exhibits many different types of behaviors. This one is
very numerous, and at the moment it continues to grow. In a natural way, the first
perovskite found and detailed is CaTiO3 [Lemanov 1999, Liu 2015], this, like all
others, has an ABX3 conformation as a structure, where A is a monovalent cation,
B a metallic cation, and X, an anion. Its structure has become quite famous nowa-
days thanks to the wide arranges of applications this family of materials can have.
They have been widely used for their excellent conductive, optical, and magnetic
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properties. Since their family is very extensive, it is possible to determine some
perovskite with properties that make them useful in some fields. In Figure 2.1 we
have the ABX3 perovskite family 3D structure. Here the B cation coordinates with
six X anions forming an octahedral geometry surrounding the B cation, four of these
structures surround the A cation, where the latter coordinates with twelve X anions
forming a cuboctahedral geometry [Liu 2013b, Petrovic 2015].

On the other hand, the hybrid perovskites, or organometallic, have a structure
similar to the normal ones. The main difference is that the cation A of the structure
ABX3, is an organic cation, representative ions are methylammonium (CH3NH3 +
or MA +) and formamidinium (H2N-CH=NH2), as for B metallic cations with a
smaller radius are used (Pb, Sn, Ge), and for X, typically a halogen ion is found
(Cl, I, Br) [Diana Marcela Montoya Montoya 2016, Indari 2017, Eperon 2014].

There are three major perovskite crystal structures phases, cubic, tetragonal,
and orthorhombic. Perovskites materials tend to present these as shown in Fig-
ure 2.2, a cubic Pm-3m phase, an orthorhombic Pnma phase, and a tetragonal
I4/mcm phase. The Table B.5, show the paThe orthorhombic phase occurs when
the perovskite material is at very low temperatures. This phase tends to main-
tain its stability up to 165 K, temperatures above it begin to transform the struc-
tural symmetry from orthorhombic to a tetragonal symmetry with greater stability.
The present orthorhombic phase belongs to the Pnma group. In the case of the
tetragonal phase, it remains stable between temperatures of 165-330 K, the phase
belongs to the space group I4/mcm, over 330 K, the tetragonal phase undergoes
a transformation to a cubic phase with a space group Pm-3m of greater symme-
try [Whitfield 2016, Oku 2015]. The tetragonal phase tends to be the most used
and studied due to its high stability at room temperature. For ease of comparison,
Table B.5, shows the parameters of the three major perovskite crystal structures.
Lead methylammonium halide perovskites have shown an ability to change their

Figure 2.2: Hybrid perovskite structural phases.
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electronic properties by modifying the halogens in their structure. The latter is
possible since the area near the band gap of its electronic structure is dominated
by lead and halogen orbitals. Therefore, it is possible to modify their band gap
by substituting the B cations of their structure, modifying their performance com-
pletely. As it is possible to modify these materials in this way, it is also understood
that these perovskites manifest a wide range of electronic behaviors, such as semi-
conductor, superconducting, piezoelectric, and thermoelectric, of course depending
on the composition and specific structure of the material transforming them to an
acceptable state for their intended use.

Perovskite MAPbI3 MAPbBr3 MAPbCl3

Structural phase Cubic Cubic Cubic
Transition Temperature (K) 330 236 177
Structural phase Tetragonal Tetragonal Tetragonal
Transition Temperature (K) 161 149 ≈ 154 172
Structural phase Orthorhombic Orthorhombic Orthorhombic

Table 2.1: MAPbX3 structural phase transition temperatures [Oku 2015].

2.2 Organometal halide perovskite solar cells

Organometal halide solar cells have emerged as one of the cells with the highest
efficiency, in the short time that they have been investigated, and have presented
a greater advancement compared to other materials. These types of cells have
presented a great advantage, their flexibility, low cost, simplicity of manufacture, and
their abundance, have made them very sought after in the scientific area. [Wu 2019]
Organometal halide perovskite solar cells were introduced first by Miyasaka et al. in
the year 2009 [Kojima 2009], the first attempt used MAPbX3 (X = I, Br) as visible-
light sensitizers in dye-sensitized liquid junction type solar cells. This led to an
energy conversion efficiency (PCE) reported of 3%. by 2012 they had reached a PCE
up to 10.9% [Snaith 2012]. As of 2020, organometal halide solar cells have proved to
be capable solar cells showing PCE’s of nearly 26% as seen on the efficiencies chart
of the national renewable energy lab. [Mamedov 2011]

Solar cells with the perovskite material are commonly found with different layers
where this is the centerpiece or solar absorbance layer. The general structure of a
perovskite solar cell contains a transparent conductive oxide (TCO) material su-
perimposed on glass, a hole-transporting material (HTM), a layer of the perovskite
material, an electron-transporting material (ETM), and a metallic contact.

Perovskite solar cells can be made either planar or mesoporous in structure,
both can be created directly or inverse, depending on how the layers of the cell
are arranged. In planar solar cells, the cell layers are manufactured one on top
of the other separately, while in the mesoscopic structure, some layers, such as the
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electron-transport layer or hole-transporting layer are manufactured as a mesoporous
structure filled with perovskite material. which improves the optical and electrical
properties of perovskite. [Makableh 2019] In figure 2.3 we can see the direct and
inverse form of the planar perovskite solar cell. Aside from the pure perovskite
layer and mesoporous perovskite, both planar and mesoporous share the same com-
position regarding their structure. Normally the layer of void carrying material is

Figure 2.3: Normal and inverse structure of a planar and mesoporous solar cell.
[Makableh 2019]

added by spin coating to a TCO material, where chlorine-doped tin oxide (FTO)
and indium-doped tin oxide (ITO) are typically used. This serves to extract holes
from the perovskite material and transfer it to the electrodes. Electron transport
materials usually a metal oxide like TiO2 [Park 2015, Wu 2014], ZnO [Wu 2014] and
SnO2 [Zuo 2016] can be used for the solar cell. On the other hand, pit carrier mate-
rials such as NiOx, CuOx, CrOx, and poly (3,4-ethylenedioxythiophene) polystyrene
sulfonate (PEDOT PSS) [Wei 2017], spiro-OMeTAD [Wu 2014] are used. In the case
of the metallic contacts, the most commonly used are silver and gold [Wu 2018c].

To date, no form of commerce-related application of these materials has been
demonstrated in the photovoltaic area, so there is still a long way to go before these
materials are practical enough to be used for commercial applications around the
world. However, perovskite solar cells have shown a very promising advance, and it
is still being seen these days; These have shown properties similar to high efficiency
cells such as silicon or CdTe, so it is expected that very soon we will see these
materials being applied all over the world.
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Theoretical methods and

background
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3.1 Density Functional Theory

DFT is a quantum method utilized [Janesko 2021] to research the quantum me-
chanical structure of materials via a density approach, it is one of the most popular
methods used for the simulation of periodical systems and surface energy on molec-
ular systems. It’s a powerful tool for the calculations of the quantum state of solids,
atoms, and molecular dynamics. DFT has been used by many researchers over the
years and some of the highest cited physicians are DFT theorists, most known are
the names of Richard Smalley, Alex Becke [Becke 2014a], and most notably John
Perdew who has one of the worlds most cited articles [Perdew 1996] which of course
concerns DFT theory, as seen on google scholar [4/10/2021]. Some other meth-
ods have proven quite capable ab-initio simulation research, but while they suffer
from plenty of variables, like the calculation of many-electron wave function of a
many-atom system, requiring a vast arrange of computational resources where the
complexity of the problem at hand may render the most advanced computational
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labs useless. DFT presents a solution, as it only takes into account the electron
density of the system, reducing the number of variables to only three, the x, y, and
z, as in the position coordinates, which is a good contrast compared to, for example,
the time-dependent Schrödinger equation, where it is necessary to obtain the wave
functions associated with the state in which a system is found. The latter is ex-
tremely complex being that there is no exact analytical solution for many-electron
systems [Schrödinger 1926, Viklund 2016]

The beginning of DFT is found in the creation of Thomas Fermi’s theory, a
method designed to find the electronic structure of atoms using the ground state
density of an electron ρ(r) [Fermi 1928, Lieb 1977, Thomas 1927b]. Although the
theory showed many interesting and useful points, his work failed to stand out due
to the large number of variables that remained unsolved. Even so, in the following
years, there began to be outstanding advances on the subject with the Hohenberg
and Kohn theorems [Hohenberg 1964] in the year 1964, these being followed by
the work of Kohn and Sham [Kohn 1965] in 1965, where they made known that
in fact, the electronic density could be obtained by using the one-electron theory,
which completely and exactly determining all the ground state properties of an N-
electron system, letting us sidestep the computational difficulty required to process a
many-nucleus, many-electron wave function system, this by focusing on the electron
density instead of the many-body wave function. This being said, DFT’s main
principle tells us that the total energy of a system is a unique function of the
electron energy, it is a theory that adequately describes the properties of the ground
state of a system, Hohenberg and Kohn theorems show us that the electron density
is the most important variable in the description of a system in its ground state.
Hohenberg and Kohn proposed their first theorem, which states that ground state
energy depends solely on electron density, which means that it is a functional of
electron density. Their second theorem proved that by minimizing the energy of the
system according to the electron density, the ground state energy can be obtained
for a system [Zhou 2007, Von Barth 2004].

While DFT works as a first principles method it has a fundamental problem in
its structure, it underestimates the bandgap [YAKOVKIN 2007, Cabellos 2009a,
Hybertsen 1986, Castillo-Quevedo 2020], this is reflected in the results, showing
values with an error percentage in comparison with experimental data. DFT being a
ground state theory, meaning that providing an accurate description of the electronic
structure of a system can be difficult. For a correct DFT calculation, the quantum-
mechanical exchange and correlation of the particles or exchange-correlation (XC)
potential must be set [Burke 2012]. The exchange energy refers to the corresponding
energy exchange between two or more electrons in their positions with the same spin
orientation, and the correlation energy is the difference of the total energy of the
system and the sum of the kinetic, potential, and exchange energies. Up to now,
extensive research has been done to find some type of approximation that gives
the most chemically accurate results to obtain the XC potential. Local density
approximation (LDA) and the Generalized gradient approximation (GGA) are the
more popular and widely use approximations [Rathod 2017].
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Local density approximation (LDA) was the first approximation used to obtain
the energy of XC [Kohn 1965]. The energy density XC in LDA at a position r,
depends only on the density of particles at that point, n(r). This density dependence
must be identical to that of a homogeneous electron gas (HEG) of the same density
nHEG = n(r) and because it has been precisely calculated [Klimeš 2011]. The
exchange correlation energy is totally local in the LDA approximation [Janesko 2021]
and it ignores the effect of nearby inhomogeneity in electron density [Seminario 1995,
Argaman 2000]. The LDA for the exchange and correlation energy can be written
as

ELDA
XC [n] =

∑

n(r)εXC(n)dr (3.1)

where n is the electronic density, εXC the exchange correlation energy per particle
corresponding to the charge density n, which is a linear combination of exchange
and correlation energies. [Ramanujam 2015a]

Most extensions of LDA include a dependency on the Generalized gradient ap-
proximation (GGA) [Perdew 1986] that includes functionals such as Perdew, Becke
and Ernzerhof (PBE). GGA systematically improves the atomization or cohesion
energies of a wide range of molecules and solids and correct the severe overbind-
ing of LDA hydrogen-bonded solids. Right now, PBE-GGA is the most popular
approach, from which high-quality results are obtained [Perdew 1996]. The PBE
functional has been successfully employed in many previous calculations. In 2014
Feng et al. [Feng 2014] studied elastic properties under DFT employing PBE func-
tional are with good agreement with experimental data. Later, Liu et al. [Liu 2018]
computed electronic and thermodynamic properties in a new Cs-doped efficient
and stable perovskite solar cell employing the PBE functional with good results.
Many other works employing the PBE functional in hybrid perovskites for the
computation of the electronic and optical properties have been previously pub-
lished [Shi 2018, Hernández-Haro 2019, Mosconi 2015b, Shirayama 2016, Wu 2018b,
Mosconi 2015a, Geng 2014, Giorgi 2015, Targhi 2018, Kim 2014].

3.1.1 DFT simulation software

The popularity of the DFT cannot be denied, thousands of articles are published a
year using it, and that without number the articles that seek to improve this theory.
There is so much on this side that they have designed a multitude of software to
take advantage of the value that the DFT offers and put it at a distance from anyone
wanting to learn. Of course, using it is not something simple, and it requires a lot
of time to use correctly, a life would not be enough to try everything it can offer us.
Carrying out these studies requires a high computational base. The software must
be capable of executing this type of calculation and yield acceptable results for it
to be useful.

In this work, the Quantum Espresso software was chosen, which offers us a
great diversity of studies, it is comparable with much other software, with QE it
is possible to obtain ground-state calculations, spectroscopic properties, structural
optimization, molecular dynamics, etc. [Giannozzi 2009] However, QE is free to use
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software that makes it available to all researchers. Apart from the previous one,
among the programs that are available to perform DFT calculations, we have VASP
[Kresse 1993b], CASTEP [Clark 2005], ORCA [Neese 2012], CP2K [Kühne 2020],
GAMESS [Barca 2020], SIESTA [Soler 2002], etc.

3.1.2 Pseudopotentials

Figure 3.1: Upper panel; shows a comparison between a real-wavefunction depicted
in blue-dashed and a pseudo-wavefunction depicted in red-solid line. Notice that
large oscillations near the nucleus of the real-wavefunction. Lower panel; shows a
comparison between the real-potential of an atom depicted in blue solid-lines and
the pseudopotential depicted in red-dashed lines.

Pseudopotentials are approximations of the complex structure of the core elec-
trons of an atom nucleus for calculating energies of outershell electrons. [Heine 1970]
They replace the atomic potential of all electrons with an effective potential such
that the nucleus core states no longer exist, and the valence states are represented
by a pseudowavefunction that can be described with fewer Fourier modes, thus re-
ducing computational cost with the use of a plane wave basis. This has made it
possible to accurately calculate the properties of solids without the need for any
adjustable parameters [Ramanujam 2015b, Denteneer 1987].

With pseudopotentials it is possible to simulate material structures and estimate
their behavior under desired conditions. In DFT the use of pseudopotentials can
dramatically reduce the number of planes waves to expand a wave function, improv-
ing the calculation, making them a necessary element for all plane-wave methods.

Many methods have been proposed to calculate pseudopotentials over the years,
such as Norm-conserving pseudopotentials (NCPP) which have quickly shown that
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the potentials for transition metals and for first row elements which turn out to
be extremely hard [Bachelet 1982], Ultrasoft pseudopotentials (USP) which were
introduced by Vanderbilt [Vanderbilt 1990] in order to allow calculations to be per-
formed with the lowest possible cutoff energy for the plane-wave basis set, applying
to systems with first row elements (s- and p-) and for systems with d- or felec-
trons [Vanderbilt 1990], etc. By "hard" and "soft", we mean the degree of hardness.
A pseudopotential is considered soft when it requires a small number of Fourier
components for its accurate representation and vice versa. That is why Ultrasoft
pseudopotentials are generally characterized by a longer cut-off radius than NCPP,
the larger the cut-off radius, the faster they converge, but they become less accurate.

In Figure 3.1, We depicted the real potential of an atom in a blue dashed line,
notice it asymptotically goes to minus infinity. In the red solid line, a pseudopoten-
tial is depicted. The idea is to cut the large tail that the real potential possesses,
which makes it difficult to find the solution of the Schrödinger equation. At the top
of the figure, is depicted the wavefunction for the real potential in blue dashed line,
notice the oscillatory behavior that numerically is very hard to represent, but with
the red line, the pseudopotentials wavefunction depicted is a smooth function that
can be handled very easily.

In the following sections, we will discuss other approximations that the the-
ory of the density functional employ, in the calculations of the optical properties
investigated for our materials and the light-matter interaction.

3.1.3 K-points

The first Brillouin zone in reciprocal space (a mathematical constructed space) is
defined as a primitive cell, where it is divided into small equal parts called Brillouin
zones. [Beiser 1987] Its behavior is like that of a Bravais lattice, where it is instead
divided into Wigner-Seitz cells. The limits found in the Brillouin zones are given
by plans related to points on the reciprocal lattice. These so-called points are high
symmetry locations identified with Greek letters.

So, these high symmetry locations or K-points, are sampling points in the first
Brillouin zone of the material, this is the specific region of reciprocal-space which is
closest to the origin which is referred to as Gamma point or (0, 0, 0). By studying the
first Brillouin zone we can completely characterize a material behavior. This field has
been extensively studied and there are many works that present information on the
types of systems belonging to perovskites, the orthorhombic, tetragonal, and cubic
system have been previously reported [G. Burns 1990, Kovalev 1965, Tombe 2017],
in this work we use different K-point paths for each type of structural phase.

3.2 Light-Matter Interaction Hamiltonian

Every optical property deals with the interactions of atoms and molecules with
electromagnetic fields, because of this, it’s important to understand how light and
matter can interact with one another. For the deduction of this section, several
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Figure 3.2: Brillouin zone scheme and k-point path used of (a) a simple cubic
lattice R-Γ-X-M-Γ-X, (b) a orthorhombic lattice Γ-X-S-Y-Γ-Z-U-R-T-Z-Γ, and (c)
a tetragonal lattice Z-Γ-M-A-R-X-Γ reported by Wahyu et al. [Setyawan 2010].

books and articles [Aversa 1995] were consulted, among them, the book Time De-
pendent Quantum Mechanics and Spectroscopy was consulted [Tokmakoff 2019],
Electronic Structure: Basic Theory and Practical Methods [Martin 2004], Nonlin-
ear Optics [Boyd 2013] and many others. [Kittel 2004, Ashcroft 1976, Walls 2012,
Singh 2012, Fox 2006, He 1999].

To obtain the Hamiltonian for a charged particle in an electromagnetic field, we
start with the Lorentz force

F = q (E + vxB) (3.2)

In the Equation 3.2 F is the Lorentz force, v is the velocity of the particle. If we

put the equation in terms of the Cartesian components of the electric and magnetic
field, we have

Fx = q (Ex + vyBz − vzBy) (3.3)

Then we express the Lorentz force in terms of the total potential energy V and we

obtain

Fx = −
dV

dx
+
d

dt

(

dV

dvx

)

(3.4)

The total potential energy can be expressed as shown in the next equation

V = qφ− qv̄ · Ā (3.5)

We then write the Lagrangian in terms of the kinetic energy and the total po-
tential energy where L = T − U , so we can show that

L =
1

2
mv̄2 + qv̄ · Ā− qφ (3.6)
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The classic Hamiltonian that describes charged particles in a field is related to
the Lagrangian as show below

H = p̄ · v̄ − L = p̄ · v̄ −
1

2
mv̄2 · Ā− qφ (3.7)

Then we obtain

p̄ =
dL

dv̄
= mv̄ + qĀ (3.8)

So, we can describe v̄ as

v̄ =
1

m

(

p̄− qĀ
)

(3.9)

If we substitute equation 3.9 into equation 3.7 we get that the Hamiltonian can
be written as

H =
1

m
p̄ ·

(

p̄− qĀ
)

−
1

2m

(

p̄− qĀ
)2
−

q

m
p̄ ·

(

p̄− qĀ
)

·A+ qφ (3.10)

H =
1

2m

[

p̄− qĀ(r̄,t)

]2
+ qφ(r̄,t) (3.11)

Equation 3.11 is the classic Hamiltonian for a particle inside an electromagnetic
field [Berestetskii 2012] Obtaining equation which lets us obtain the polarization of
a singular system we can express our Hamiltonian as

Ĥ = Ĥ0 + Ĥi (3.12)

Where Ĥ is the Hamiltonian operator, Ĥ0 is the base Hamiltonian, and Ĥi is the
interaction Hamiltonian [Nastos 2005]. We then chose a gauge for the representation
of the wave, in this case, the Coulomb gauge, where ∇.A = 0 and in the absence
of charges the scalar potential equals zero, φ = 0. Taking this into account, in the
Coulomb gauge, the last term of equation 3.11 is dropped and we get

Ĥ =
P 2

2m
+ Vr (3.13)
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Where P is the momentum operator, m the mass of an electron, and vr is the
potential energy of the system. This is the Hamiltonian for a free particle. The
momentum operator can be replaced by the sum of the same operator and the force
of an electron traveling through an electric field.

P −→ P −
e

c
A (3.14)

We substitute equation 3.14 in equation 3.13 and we get

Ĥ =
1

2m

(

P −
e

c
A
)2

+ Vr (3.15)

with m the mass of the electron, P its canonical momentum, and Vr is the lo-

cal periodic crystal potential, we neglect spin-orbit terms. Here, we will derive the
Hamiltonian for the light-matter interaction, the Electric Dipole Hamiltonian which
is obtained by starting with the force experienced by a charged particle in an electro-
magnetic field, developing a classical Hamiltonian for this system. The momentum
operator can be written as:

P = −i~∇ (3.16)

Equation 3.15 then becomes

Ĥ =
1

2m

(

−i~∇−
e

c
A
)2

+ Vr (3.17)
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1

2m

(

−i~∇−
e

c
A
)(
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e

c
A
)

+ Vr (3.18)
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1

2m
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i~e

c
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i~e
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A · ∇+

e2

c2
A ·A

)

+ Vr (3.19)

Ĥ =
−~2∇2

2m
+

i~e

2mc
∇ ·A+

i~e

2mc
A · ∇+

e2

2mc2
A ·A+ Vr (3.20)

After some derivation we get that

Ĥ =
−~2∇2

2m
+

i~e

2mc
(∇ ·A+A · ∇) +

e2

2mc2
A ·A+ Vr (3.21)



3.3. The Band-Gap 19

Since we are working with the chain rule, the first term of (∇ ·A+A · ∇) is zero
because ∇.A = 0.

Ĥ =
−~2∇2

2m
+

i~e

2mc
(2A · ∇) +

e2

2mc2
A ·A+ Vr (3.22)

The base Hamiltonian can be refereed as written plus the potential energy of
the system.

Ĥ0 =
−~2∇2

2m
+ Vr (3.23)

So if we substitute in equation 3.13 we obtain:

Ĥ = Ĥ0 +
i~e

mc
(A · ∇) +

e2

2mc2
A ·A (3.24)

The weak approximation field, expressed as e2

2mc2
A · A can be taken out of the

equation, it is considered small compared to the other term. Only when a high field
strength is present, this term should be considered. In this case, the Coulomb gauge
presents us with ∇.A = 0 so the interaction energy is represented as A · P , and
equation 3.24 becomes

Ĥ = Ĥ0 −
e

mc
(A · P ) (3.25)

Ĥ = Ĥ0 + V (t) (3.26)

V (t) = −
e

mc
(A · P ) (3.27)

This results in the Light-Matter Interaction Hamiltonian sometimes called veoc-
ity gauge or v · A which describes the coupling between one electron and electro-
magnetic field this being the basis of this work.

3.3 The Band-Gap

The energy gap, or Band gap of a material [KRANE 1996] can be represented with
its band structure, a material band structure is the conformation of the material
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Figure 3.3: Band gap representation of a conductor, semiconductor and insulator
material. [Yusoff 2016]

valence and conduction bands. If these bands are not superposed with each other,
the separation between the valence and conduction bands will denote if the material
is a conductor, semiconductor or an insulator, the energy difference between the
lowest energy band of the conduction bands and the highest energy band of the
valence bands is the band gap. In figure 3.3 we can see the bang gap difference
between these material types, which directly translate with the material conductivity
capacity, If you want to work with any type of material, whatever your intention, it is
essential to know its band structure, since it gives us a large amount of information,
especially in the field of photoelectronics, since, the bang gap represents the energy
necessary to excite a valence electron to a conduction electron, a large band gap
will make a material a good insulator, and a very small one a conductor, so it is
necessary to take this type of study into account.

Figure 3.4: Silicon band structure along the high symmetry path of the BZ and
computed within the framework of DFT. The valence bands are depicted in blue-
solid line, whereas, conduction are depicted in red-solid line.
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For an atomic composition to be possible, the Pauli exclusion principle must
be satisfied. This principle states that no more than two electrons in an atom can
occupy the same state at the same point in time, so when atoms come together to
form a solid, orbitals are formed to satisfy the Pauli exclusion principle. Two orbitals
are formed for each atom in the structure, one of a higher energy level, and the other
one with a lower energy level. The more atoms we have in the solid, the finer the
orbitals become, which creates energy bands. [Askeland 2010] The atom’s electrons
of the solid, will occupy these bands, filling the lowest energy levels first, these
occupied levels of the structure, are called the valence states of the band structure,
on the other hand, the unoccupied states, are referred to as the conduction states.

In Figure 3.4, we show the band structure for a silicon crystal, we can see in
blue, the valence bands, in red, the conduction bands, and the corresponding band
gap (separation) of the structure. Silicon shows an indirect band gap, which means
that the valence band of maximum energy and the conduction band of minimum
energy are found at different K points in space, in the case where the top of the
valence and the minimum of the conduction bands are at the same point K, the
band gap of the structure is known as being direct.

3.4 Density of states

The density of states (DOS) describes the number of states available in a system for
a range of energy [Castillo-Quevedo 2020]. Its main use is to provide information on
the concentration and energy distribution of electrons within the system. Figure 3.5
shows the distribution of the material states for Silicon bulk semiconductor, where
the valence states are located below fermi level and the conduction states are located
above the fermi level. The separation between the conduction and valence states is
the band gap [Kittel 2004, Ashcroft 1976, Martin 2004]

The projected density of states (PDOS), which is differentiated from DOS, refers
to this as the density of states contributed by each atom that makes up the mate-
rial. Its importance lies in the fact that we can know the energy levels that each
component dominates and, in the case of semiconductors, the effect they have on
the material band gap.

3.5 Optical properties of perovkites

Optical properties provide information about the atomic structure and their elec-
tronic band structure define them [Sipe 2000, Onida 2002, Castillo-Quevedo 2020,
Hybertsen 1986, Cabellos 2009a] Once we have obtained the atomic structure of the
perovskites, the optical properties were computed evaluating Equation 3.29. The
optical properties of materials are defined as the response that these materials have
when interacting with passing electromagnetic fields (Light) [Sipe 2000, Meza 2019,
Anderson 2015, Sipe 1987]. Absorption, refraction, dispersion, and transmittance
are some of the possible properties. In this section of the work, there will be a
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Figure 3.5: Total Density of States (DOS) of bulk silicon computed employing
Quantum Espresso code. The Fermi energy level has shifted to the zero-energy
y-axis [Cargnoni 2000].

brief presentation of the optical properties that were obtained for our investigated
materials. It will be announced how they were obtained by means of a simple de-
scription of their respective equations and their importance for material study will
be mentioned. A complete full Quantum derivation of chi based en perturbation
theory is described in Appendix B

3.5.1 Linear Optical Response

Linear polarization of a material P provides a description of light interacting directly
with a material when low intensity radiation is contemplated, the response function
or the linear optical susceptibility χ, relates to the optical polarization to the exciting
light field E [Sipe 2000, Cabellos 2009a, Bennink 1999, Gehr 1996, Fischer 1995] as

P i(ω) = P i
s +

j=1
∑

3

χ
(1)
ij (−ω, ω)Ej(ω) +

j,l=1
∑

3

χ
(2)
ijlE

j(ω)El(ω) + Ei(ω)... (3.28)

The polarization of a material is expressed as the sum of the zero-field sponta-
neous polarization P i

s with the summation of the of the linear optical susceptibility
tensor χ [Cabellos 2009a, Sipe 2000] given in Equation 3.29, and a completly deriva-
tion is given in Appendix B

χ
(1)
ij (−ω, ω) =

e2

~ω

∑

n,m,
−→
K

fmn(
−→
K)

rinm(
−→
K)rjnm(

−→
K)

ωmn(
−→
K)− ω

=
εij(ω)− δij

4π
(3.29)
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In the Equation 3.29 n, m denote energy valence and conduction bands, respectivly,

fmn(
−→
K) is the Fermi occupation factor, Ω is the normalization volume, ωmn(

−→
K) ≡

[ωm(
−→
K)−ωn(

−→
K)] is the frequency difference, ~ωn(

−→
K) is the energy of band n at

−→
K

and −→r mn are the matrix elements of the position operator. The latter are given by
the Equations 3.30

rinm(
−→
K) =

V i
nm(

−→
K)

iωnm
;ωn 6= ωm

rinm(
−→
K) = 0, ωn = ωm

(3.30)

where V i
nm(

−→
K) = [P i

mn(
−→
K)/m], m is the free electron mass, and Pnm is the

momentum matrix element. As seen from Equation (3.3) the imaginary part εij2 (ω)
of the dielectric function, εij(ω), is obtained by

Eij
2 =

e2

~π

∑

n,m

d
−→
Kfnm(

−→
K)

V i
nm(

−→
K)V j

nm(
−→
K)

ω2
mn

δ(ω − ωmn(K)) (3.31)

Once we have the frequency defendant imaginary part (εij2 (ω)), we can use the

Kramers-Kronig relation [Toll 1956] to compute the real part employing the imagi-
nary part [Hutchings 1992, Lucarini 2005], so Kramers-Kronig gives the expression
corresponding to the frequency dependent real part εij1 (ω) of the dielectric function
εij(ω). Kramers-Kronig transform requires the frequency dependence, in a wide en-
ergy range, of εij2 to be able to obtain εij1 and the other way around [Tokmakoff 2019].
The expression obtained from the transform when applied to Equation 3.32 is

Eij
1 (ω)− 1 =

2

π
P

∫ ∞

0

ω′Eij
2 (ω′)

ω′2 − ω2
dω′ (3.32)

The real (ε1(ω)) and imaginary part (ε2(ω)) of the complex dielectric constant
is extremely important in terms of the optical properties of a material, it describes
the ability of a medium to store an electric field during polarization. The ε1(ω)
represents the capacity of the charge storage medium, and ε2(ω) shows the material
energy loss during the process, in another words, the material absorption. Once the
real part and the imaginary part of the dielectric constant have been obtained, we
can obtain the following optical properties, the refractive index (n(ω)), extinction
coefficient (k(ω)), reflectivity (R(ω)), absorption coefficient (α(ω)) and finally the
energy loss spectrum (L(ω)). Each optical property is given a brief explanation of its
use and the proper equation is presented to obtain it in the calculations [Sipe 2000,
Chimata 2010, Mamedov 2011]
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3.5.2 Refractive index

The complex refractive index is made up of its real part (n) and its imaginary part
(k), which is also known as the extinction coefficient. Light changes as it passes
through a medium, some can be lost if transmitted by extinction. Both change and
extinction can be described by the complex refractive index [Van Krevelen 2009,
Adair 1989]:

n∗ = n′ − in′′ = n− ik (3.33)

The real part of the refractive index shows us the values corresponding to the
ratio of the speed of light in a vacuum to that of a different medium of higher
density, in other words, n tells us the proportion of refraction light has when it
passes from one medium to another, if there is none, light passes without refraction.
For the case, k represents the light attenuation, or the material absorption, when
its amplitude is large, the absorption of light is stronger than in the opposite case.
The refractive index in perovskites can be observed by a Spectroscopic Ellipsometry
and Spectrophotometry techniques [Löper 2015].

To obtain the real part of the complex refractive index from ε2 and ε2 we use
the Equation 3.34

n(ω) =

(

√

ε21(ω) + ε22(ω) + ε1(ω)

2

)1/2

(3.34)

and for the extinction coefficient we employs the Equation 3.35

k(ω) =

(

√

ε21(ω) + ε22(ω)− ε1(ω)
2

)1/2

(3.35)

Interesting, the absorption coefficient is related to the imaginary part of the index of
refraction, also called the extinction coefficient [Geist 1990] and in a previous work
was observed for silicon [Geist 1990].

3.5.3 Reflectivity

The reflectivity of the material is described as the light quantity that is reflected
from the material in relation to the amount of light in contact with the material
surface. The object reflectance depends on the intensity of the light that comes in
contact with it. The wavelength of light, the material type, and its composition also
has a certain degree of impact on the total reflectivity. [Fox 2001, Green 1982]

The reflectivity depends on the real and imaginary part of the complex refractive
index, as seen on the following Equation 3.36

R(ω) =
(n− 1)2 + k2

(n+ 1)2 + k2
(3.36)
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3.5.4 Absorption coefficient

The absorption coefficient (α) determines how far can light of a particular wave-
length can penetrate a material before being absorbed by it [Geist 1990]. A higher
absorption coefficient means that the material has a higher capacity to absorb pho-
tons, while a lower α, the light will be poorly absorbed. In semiconductors, α plays a
major role in their description since light with wavelength below the forbidden band
gap does not have enough energy to excite an electron to the conduction band from
the top of the valence bands. If a material is thin enough, and with a low absorp-
tion coefficient, it will behave like a transparent material [Akkus 2007, Tran 1999,
Hecht 2017].

In the Equation 3.37 we can see, how (α) is related to the optical constants.

α(ω) = 2
ω

c
k(ω) (3.37)

3.5.5 Energy-loss spectrum

Electron energy-loss spectrum or (EEL spectrum) refers to the energy-loss function
−Imε−1(ω) which is the response of a solid to an external electromagnetic per-
turbation of electron momentum transfer and energy loss [Keast 2005, Che 2008].
Examination of the low loss region of EELS spectra can provide invaluable local-
ized information for unraveling electronic properties through analysis of spectral
characteristics related to the dielectric response of the material [Sun 2016a].

The low-energy part of an EEL spectrum provides information similar to that
provided by optical spectroscopy, which contains valuable information about the
structure of the band and, in particular, about the dielectric properties of a material.
This is especially relevant when an electron gains enough energy to traverse the
energy band gap and a transition occurs from the top of the valence band to the
bottom of the conduction band. This band gap transition should be the lowest
energy transition in the low loss EEL spectrum, characteristic of the band structure
of the material if it is undoped and flawless [Eljarrat 2016].

The EEL spectrum can be easily obtained with the use of the given Equation 3.38

− Imε−1(ω) = ε2(ω)

ε22(ω) + ε21(ω)
(3.38)

In this chapter, a review of DFT beginnings and current standing has been made,
denoting its importance in modern investigations and research. We analyzed the
optical properties and their importance in the study of materials, focusing mostly
on the real and imaginary parts of the complex dielectric constant and related
properties. Also, a total deduction of the matter interaction Hamiltonian was made,
which describes how light interacts with a sample. The results obtained in this work
and a comparison with experimental results are presented below in order to show
the efficacy of computational methods.
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In this chapter of this thesis, we computed the structural properties, electronic
properties, and optical properties obtained for the perovskites of lead methylammo-
nium iodide lead methylammonium chloride, and lead methylammonium bromide, in
their respective cubic structural phase, tetragonal phase, and orthorhombic phases
will be presented. Their results will be compared with those of other structural
phases and between perovskites.

All the calculated structural, electronic, and optical properties for all perovskite
structural phases were calculated using Quantum Espresso v.6.0 open-source com-
puter code with the help of some implemented third party packages mentioned in
the subsequent descriptions. The functional PBE was used to obtain the Exchange-
correlation energy and all K-points grids were generated according to the Monkhorst-
Pack scheme. For the calculations related to the optics of the materials, the k-point
grid was obtained using the K point generation package, kpoints.x. These were
added in the (SCF ) input section, for the self-consistent run. For the band struc-
ture calculations, a manually specified high symmetry K-point grid was performed
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and added in the input of the non-self-consistent run. Quantum Espresso was in-
stalled and used in the High-Performance Computing Area (ACARUS for its initials
in Spanish) in the department of mathematics of the Universidad de Sonora.

4.1 Structural properties

Figure 4.1: 3D structure of cubic MAPbI3 (a), MAPbCl3 (b), MAPbBr3 (c). The
violet, the green, and the copper color spheres represent the Bromide, Chloride,
Iodide, respectively, while the big-sized gray spheres represent the lead atoms. The
blue and light grey spheres represent the carbon and nitrogen atoms respectively,
while the small white ones are the hydrogen bonded to each atom.

Here we will see the structural parameters obtained for each of the phases, these
are found in the following tables, each table referring to the three perovskites in their
respective structural phase. The parameters of the cubic cell are found in table (4.1),
those of the tetragonal cell in table (4.2), and, in the case of the orthorhombic phase,
in the table (4.3). Our structures were assigned to the space groups with number
221 (Pm-3m) for the case of cubic cells, 140 (I4/mcm) for tetragonal cells, and 62
(Pnam) for orthorhombic cells. Also, we present three-dimensional stick and ball
representation of our chosen perovskites in all their structural phases. They are
presented in JMOL colors (CPK color scheme) and were captured and visualized
with the software VESTA (Visualization for Electronic and Structural Analysis) 3D
visualization program for structural models. The energy optimization method is
used to calculate the lowest energy configuration of atoms in molecules or crystals.
Typically, it uses the Broyden-Fletcher Goldfarb-Shanno algorithm (BFGS). The
optimization method determines the equilibrium position of the atoms minimizing
the total energy while reducing the atomic forces known as the Hellmann-Feynman
forces [Dominikowska 2016]. The unit cell volume is considered in the optimization
scheme, and the structural optimization energy was done by optimizing the crystal
lattice constants.
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4.1.1 Cubic perovskites

In this section, the geometric properties of the respective cubic perovskites are
presented. The band structure, the total state density, and the projected state
density were obtained, this using the Quantum Espresso programs of bands.x, dos.x
and projwfc.x, respectively.

In this study, we assume that the cubic perovskite crystal structure exists at
high-temperature [Suzuki 2019]. The procedure of initial optimization is as follows:
Initially, we propose smaller lattice constants than the expected optimized ones, for
this case was 5.5 Å, and computed the total energy with the constraints of do not
move the lattice constant, however relaxing the atoms. A grid was made with the
lattice constant which variated between 5.5 to 6.5 Å depending on which perovskite
structure was being computed.

We then made an iteration that obtained the new total energy of the system
until all points on the grid were tested, obtaining the lowest energy for each point
and choosing the lowest energy point. This is a fast screening procedure that lets
us obtain the lattice constant which produces the lowest energy.

Once we had the lowest energy point, we refined the results by re-optimizing the
structure (vc-relax), allowing QE software the variation of the lattice constants, in
the stage of the optimization scheme, the size of the wavefunction, and the number
of K- points were tested, optimizing the structure while finding a balance between
precision and the computational time used.

Figure 4.1a shows the unit cell of the optimized cubic cell of perovskite. The
optimized lattice parameters are 6.28 Å ,5.92 Å ,5.68 Å for MAPbI3, MAPbBr3,
and MAPbCl3, respectively, this is in good agreement with previous theoretical
works [Li 2016], results were approximately 1.6% smaller than reported experimental
ones [Oku 2015]. We employed the Perdew-Burke-Ernzerhof exchange-correlation
functional because PBE obtained results reasonably agree with experimental val-
ues [Matsushita 2011]. In contrast, hybrid functionals increase the computational
cost by one order of magnitude.

The lattice constants for the cubic structures are shown in the first row of the
Table 4.1.1.

Cubic perovskite a (Å) Unit-cell volume (Å3) Exp a (Å)

MAPbI3 6.288 248.67 6.391 [Oku 2015]

MAPbBr3 5.920 207.47 5.933 [Oku 2015]

MAPbCl3 5.680 183.25 5.666 [Oku 2015]

Table 4.1: Calculated structural parameters for the cubic perovskite phases. Ex-
perimental parameters are shown for reference. For cubic structural phase: a=b=c.
Cubic perovskite parameters. The table also shows a comparison of experimental
parameters for each cubic cell.
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The perovskites form the symmetrical cubic structure shown in Figure 4.1 if the
relative covalent radii of the constituents atoms meet a restricted criteria range; they
are going to be more symmetrical structures. [Kieslich 2014, Green 2015]. Figure 4.1
(a) shows the less distorted geometry with the iodide atoms, which have a covalent
radius of 1.14 Å , whereas the Pb atom has a covalent radius of 1.47 Å; the relation
between both atoms is 0.77; (b) shows the relation between Cl and Pb, which is
0.67; in contrast, the relation Pb and Br atoms is 0.90.

Figure 4.2: 3D structure of tetragonal MAPbI3 (a), MAPbCl3 (b), MAPbBr3 (c).
The violet, the green, and the copper color spheres represent the Bromide, Chloride,
Iodide, respectively, while the big-sized gray spheres represent the lead atoms. The
blue and light grey spheres represent the carbon and nitrogen atoms respectively,
while the small white ones are the hydrogen bonded to each atom.

The tolerance factor can be expressed as a function of covalent radii of A, B,
and X site ions, given by the Equation 4.1

t =
1√
2

(RA +RX)

(RB +RX)
(4.1)

Our results show that the larger the relation between atoms, the smaller is the
distortion. The covalent radius of atoms I, Br, and Cl are directly correlated with
the volume of the cell, this can be seen in Table 4.1.1, The second row shows the
unit cell volumes for MAPbI3, MAPbBr3, and MAPbCl3 perovskites with 249 Å3,
208 Å3, and 183 Å3, respectively. So strictly speaking, in order to maintain a high-
symmetry cubic structure, a tolerance factor t of 1 should be defined. Where RA,
RB, and RX are the covalent radii of the corresponding ions. The larger is the
deviation from the ideal value t, the larger distorted the crystal would be, and its
corresponding symmetry would be lowered. Therefore, to satisfy the ideal tolerance
factor, the A-site ion must be much larger than the B-site ion. In the case of
halide perovskites, in general, a large Pb or Sn atom occupies the B site; hence
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the cation at the A-site must be extremely large. At finite temperature, the cubic
structure may exist when t lies between 0.67 and 1, and smaller t (for example t <
0.90) could result in a tetragonal structure with lower symmetry or orthorhombic
crystal structure. On the other hand, a larger t (> 1), could threaten the perovskite
structure. It is important to mention that DFT calculations computed at zero
temperature have revealed that the orthorhombic is the most stable structure and
the cubic one is the least stable since it is very difficult to satisfy the ideal condition
t = 1. However, transitions between those crystal structures often occur in most
perovskites at defined temperatures.

4.1.2 Tetragonal perovskites

Figure 4.2 a show the three dimensional unit cell of the optimized tetragonal per-
ovskites. Following this, in Table 4.2 we can find the optimized lattice parame-
ters for the tetragonal structural phase for all three perovskites. For MAPbI3 the
tetragonal structure lattice parameters are found in the first row, and they are a
= 8.695 Å and c = 12.834 Å with a unit cell volume of 6500 Å3, MAPbBr3, in
the second row, has the lattice parameters a = 8.032 Å and c = 11.864 Å with
a unit cell volume of 5165.54 Å3, and MAPbCl3, at the last row, has the lat-
tice parameters a = 7.709 Å and c = 11.380 Å with the smallest cell volume of
4554.11 Å3. The optimized lattice constant show good agreement with the experi-
mental data [Oku 2015, Mosconi 2016].

Tetragonal a (Å) c (Å) Volume (Å3) Exp. (Å)

MAPbI3 8.695 12.834 6548.60 a=8.800 c=12.685 [Oku 2015]

MAPbBr3 8.032 11.864 5165.54 a=8.320 c=11.830 [Mosconi 2016]

MAPbCl3 7.709 11.380 4554.11 a=8.020 c=11.260 [Mosconi 2016]

Table 4.2: Calculated lattice constants of tetragonal phase parameters with their
experimental parameters reference for each perovskite. For the tetragonal structural
parameters: a=b 6=c.

The Figure 4.2 shows a top view of the unit cell for perovskite with bromine (c),
it is interesting to highlight the orientation of the methylammonium molecules in
the cell, this behavior is present in all three tetragonal perovskites, for this case of a
tetragonal cell, the methylammonium seems to take a cross arrangement when seen
in that plane view.

4.1.3 Orthorhombic perovskites

Figure 4.3 a shows the unit cell of the optimized orthorhombic perovskites and the
orthorhombic optimized lattice parameters can be found in Table 4.3. Orthorhombic
structure shows that for its lattice parameters For MAPbI3 the tetragonal structure
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Figure 4.3: 3D structure of orthorhombic MAPbI3 (a), MAPbCl3 (b), MAPbBr3
(c). The violet, the green, and the copper color spheres represent the Bromide,
Chloride, Iodide, respectively, while the big-sized gray spheres represent the lead
atoms. The blue and light grey spheres represent the carbon and nitrogen atoms
respectively, while the small white ones are the hydrogen bonded to each atom.

lattice parameters are a = 8.354 Å, b = 9.043 Å, and c = 12.661 Åwith a unit
cell volume of 6455.20 Å3, MAPbBr3, has the lattice parameters a = 7.673 Å, b =
8.448 Å, and c = 11.692 Åwith a cell volume of 5114.90 Å3, and MAPbCl3, at the last
row, has the lattice parameters a = 7.303 Å, b = 8.200 Å, and and c = 11.174 Åwith
a cell volume of 4516.35 Å3. Again showing that obtained parameters are closely
related to the experimental parameters [Oku 2015, Mashiyama 2006, Wang 2016].

Orthorhombic a (Å) b (Å) c(Å) Volume (Å3) Exp. (Å)

MAPbI3 8.354 9.043 12.661 6455.20 a=8.836, b=8.555, c=12.580

MAPbBr3 7.673 8.448 11.692 5114.90 a=7.976, b=8.565, c=11.841

MAPbCl3 7.303 8.200 11.174 4516.35 a=7.549, b=7.835, c=11.062

Table 4.3: Computed lattice constants of orthorhombic phase parameters with their
experimental parameters reference for each perovskite. For the orthorhombic struc-
tural parameters: a 6=b 6=c.

All the computations of the lattice constant for the nine perovskites show good
agreement with the experimental data. As we mentioned earlier, temperature plays
a decisive role in the geometrical structure. The DFT calculations are typically
conducted at zero temperature from the theoretical perspective, whereas experi-
ments are performed at non-zero temperatures. Despite that, the computed lattice
constant are in excellent agreement with the observed lattice constants.
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We can observe in Figure 4.3, in the case of the bromine cell (c), which shows
a top view, the molecules are aligned in the same plane, showing different behavior
from the crossed alignment that was observed in the tetragonal cells.
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4.2 Electronic properties

In this section, the electronic properties of the respective perovskites are presented.
The band structure, the total density of states (DOS), and the projected density
of states (PDOS) density were computed using the Quantum Espresso programs of
bands.x, dos.x and projwfc.x respectively.

In the last decade, hybrid organic-inorganic perovskites have attracted a lot of
attention as the main active material in solar cells, due mainly two factors: the
hybrid organic-inorganic perovskites have demonstrated strong light absorption and
low-cost fabrication process [Burschka 2013, Huang 2021, Wu 2018a, Jeon 2014a,
Lee 2012, Eswaramoorthy 2020] Furthermore, the hybrid methylammonium lead io-
dide perovskite exhibit high carrier mobility, and excellent carrier diffusion lengths
larger than 1 µm [Stranks 2013, Herz 2017, Xing 2013], characteristics essentials for
the development of electronic devices.

In previous theoretical work, Motta et al. [Motta 2015] employing the Boltzmann
theory for diffusive transport in the relaxation time approximation, reported the mo-
bility of electrons in the range 5-10 cm2 V−1s−1, which are in good agreement with
recent experiments where the relaxation time observed is about 1 ps [Motta 2015].
The mobility of electrons for Silicon is 331 cm2/Vs [Uprety 2019]. Additionally, and
most importantly, the bulk perovskite methylammonium lead iodide has reached
an efficiency larger than 22% [Yang 2017]. Due to these interesting properties,
perovskites could become competitive to silicon-based solar cells. But, we have to
point out that perovskites have a major drawback related to the chemical stabil-
ity of methylammonium; thermodynamic considerations indicate that degradation
under H2O is highly favored [Senocrate 2019], albeit in principle preventable by en-
capsulation. The mentioned above is a big challenge that must be solved. Once
this is solved, the perovskites, as we mentioned earlier, could become competitive
to silicon-based solar cells.

To improve the efficiency of the perovskite solar material, it is necessary and
mandatory to study and understand its electronic properties. However, there are
few experimental works on the determination of band structure in hybrid organic-
inorganic perovskites. A clear and deep understanding of the band structure is
critical to understand solar light absorption and the charge carrier transport, among
other properties in the perovskite materials.

Theoretical computations provide a first estimate of the band structure, previ-
ous studies compute the band structure of several perovskites employing advanced
approximations as GW [Tao 2017, Filip 2018]. However, when we compute the band
structure, we should pay special attention to the effective mass [Yang 2018, Yu 2016]
because this determines the band flatness, the electronic localization, and the charge
mobility inside the material [Castillo-Quevedo 2020]. Moreover, the band flatness
is related to superconductivity [Castillo-Quevedo 2020]. In the next section, we
present and discuss the electronic structure and PDOS for the perovskites.



4.3. Bandstructure: Cubic MAPbX3 (X=I, Br, Cl) 35

4.3 Bandstructure: Cubic MAPbX3 (X=I, Br, Cl)

Figure 4.4: The upper panel shows the band structure of the primitive cell for cubic
MAPbI3 along with the high-symmetry directions (HSD) on the Brillouin zone (BZ)
R-Γ-X-M-Γ-X. The middle panel shows the computed band structure along the
same HSD on BZ, employing the primitive cell for a cubic MAPbBr3, and the lower
panel shows the computed band structure along the same HSD on BZ, employing
the primitive cell for the cubic MAPbCl.3. The blue-solid lines correspond to the
valence bands and the red-solid lines correspond to the conduction bands. We show
the band structure without an applied scissors correction.
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In our calculations of the band structure, DOS and PDOS, we have used the DFT
methodology as implemented in Quantum Espresso code, particularly with the codes
of bands.x, dos.x and projwfc.x respectively.

We show in Figure 4.4 the band structure for the Cubic MAPbI3 (upper panel),
MAPbBr3 (middle panel) , and MAPbCl3 (lower panel), computed along high-
symmetry directions in the BZ, from R to X, passing to the center of the BZ, Γ,
with the coordinates beign for: R [0.5,0.5,0.5], Γ [0,0,0], X [0,0.5,0], M [0.5,0.5,0],
Γ[0,0,0], and X [0,0.5,0] in units of 2π/a where Â¨aÂ¨, is the lattice constants shown
in Table 4.1.1.

The lowest direct Kohn-Sham band gap obtained belongs to the structure MAPbI3,
it was 1.47 eV at R point, MAPbBr3 presented a bang gap of 1.95 eV at R point,
whereas, for MAPbCl3 structure is 2.36 eV. According to Ahmed et al. [Ahmed 2014]
for the MAPbI3 structure, the bandgap observed is 1.6 eV, while MAPbBr3 and
MAPbCl3 have a bang gap of 2.24 and 2.97 eV respectively [Leguy 2016]. For
MAPbI3 observed value is 8% smaller than our computed value. In these calcula-
tions, the bandgap is underestimated by 0.14 eV compared with the experimental
value of 1.6 eV; hence the scissors correction is 0.14 eV. To correct the bandgap
that DFT underestimated, we applied a scissor correction of 0.14 eV to the con-
duction bands, which shifted them to the experimental value. For the other two
cases a scissors correction of 0.29 eV for cubic MAPbBr3 and 0.61 eV for MAPbCl3
was applied. Remarkably, the largest Kohn-Sham band gap is correlated with the
structure that has the most electronegative atom, the Chlorine atom in the unit cell
MAPbCl3. Furthermore, the band gaps of the structures MAPbBr3 and MAPbI3,
follow the same trend.

In Figure 4.4 the valence bands are depicted in blue-solid lines, whereas the con-
duction bands are depicted in red-solid lines. In the upper panel, we can see that the
top valence bands of the MAPbI3 system tend to be the flattest. A direct compari-
son of with the top valence bands of the MAPbBr3 and MAPbCl3 systems shown in
the middle and lower panels, respectively, indicate that the most flats valence bands
belong to the MAPbI3 system that also is correlated to the low electronegative atom.

Flat electronic bands produce a "pointy" density of states and are related to
the superconductivity; we also have that the velocity of the electrons is related to
the derivative of the band structure against the wavevector, hence the flatter the
bands are, the lower the velocity of the hole or electron. Analysis of results in more
detail leads to interesting observations: the MAPbI3 has the lowest hole velocity
based on the observation of the valence bands, and that is correlated with the
electronegativity of the atom, more electronegative is the atom, a larger dispersion
in the band structure. The above-mentioned is one of the most important results
found in my thesis. In Figure 4.4 the valence bands are depicted in blue-solid lines,
a bunch of them are located in a range of 0 to -4 eV for the MAPbI3 system, in
contrast for the case of the MAPbBr3 and MAPbCl3 systems, the range increase is
from 0 to -5 eV. Regarding the conduction bands depicted in red-solid lines, there is
a large dispersion around the R and M high symmetry K-points, and some of them
are located in the energy range of 0 to 4 eV.
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4.4 Bandstructure: Tetragonal MAPbX3 (X=I, Br, Cl)

Figure 4.5: The upper panel shows the band structure of the tetragonal primitive
cell MAPbI3 along with the HSD on the BZ Z-Γ-M-A-R-X-Γ. The middle panel
shows the computed band structure along the same HSD on BZ, employing the
primitive cell for a tetragonal MAPbBr3, and the lower panel shows the computed
band structure along the same HSD on BZ, employing the primitive cell for the
tetragonal MAPbCl3. The blue-solid lines correspond to the valence bands and the
red-solid lines correspond to the conduction bands. We show the band structure
without an applied scissors correction.
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In Figure 4.5 the band structure for the tetragonal MAPbI3 (upper panel), MAPbBr3
(middle panel), and MAPbCl3 (lower panel). The band structure was computed
along high-symmetry directions in the BZ, following the coordinates for: Z [0,0,0.5],
Γ [0,0,0], M [0.5,0.5,0], A [0.5,0.5,0.5], R [0,0.5,0.5], X [0,0.5,0], and Γ [0,0,0] in units
of 2π/a where Â¨aÂ¨, is the lattice constants shown in Table 4.2. As seen for the
cubic structures, MAPbI3 showed the lowest gap of 1.30 eV at the Γ point, MAPbBr3
presented a bang gap of 1.80 eV at Γ point, and MAPbCl3, presented a band gap
of 2.21 eV. Reference [Leguy 2016] tells us that the experimental gap of tetragonal
MAPbI3 is 1.55 eV. Our computed value is approximately being underestimated by
16 %, double than the cubic perovskite case. The scissors correction is 0.25 eV for
the MAPbI3 tetragonal perovskite. To our knowledge, there is not quality reported
experimental band gap data for the MAPbCl3 and MAPbBr3 tetragonal structures,
in consequence, the cases of Cl and Br cases is not possible to estimate with the
scissors correction. A comparison between the three band structures, in Figure 4.5,
showed us that MAPbI3 has the flattest valence bands of all tetragonal structures,
this was the same result for the cubic case. Observing the valence bands (blue lines),
we can see their displacement between perovskites in the range of -2 and -4 eV.

4.5 Bandstructure: Orthorhombic MAPbX (X=I, Br,

Cl)

The orthorhombic band structure can be seen in Figure 4.6 for MAPbI3 (upper
panel), MAPbBr3 (middle panel), and MAPbCl3 (lower panel). The band structure
was computed along high-symmetry directions in the BZ, following the coordinates
for: G [0,0,0], X [0.5,0,0], S [0.5,0.5,0], Y [0,0.5,0], Γ [0,0,0], Z [0,0,0.5], U [0.5,0,0.5],
R [0.5,0.5,0.5], T [0,0.5,0.5], Z [0,0,0.5], and Γ [0,0,0] in units of 2π/a where a, is
the lattice constants shown in Table 4.3.

Following the same trend as the cubic and tetragonal structures, orthorhombic
MAPbI3 showed the lowest gap of 1.45 eV at the Γ point, MAPbBr3 presented a
band gap of 1.89 eV at Γ point, and MAPbCl3, has the highest gap of 2.17 eV.
Again to our knowledge, we couldn’t find reported experimental band gap data for
all three orthorhombic structural phase perovskites.

As for the valence bands in Figure 4.6, MAPbI3 has the flattest valence bands of
all orthorhombic structures, this is a shared behavior observed independent of the
structural perovskite phase.

In the upper panel of Figure 4.6, we can observe that the bandwidth of the va-
lence bands (blue lines), is in the ranging energy from 0 to -4 eV for the case of the
perovskite with iodine in its stature, for the Br perovskite the bandwidth shifts to the
range of 0 to -4.5 eV, and for the Cl perovskite, the bandwidth shift from 0 to -5 eV.
With the comparison made, we can say that for the three cases, the band structure
is very similar. It is noteworthy that the difference among them is the values of the
band gap.
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Figure 4.6: The upper panel shows the band structure of the orthorhombic primitive
cell MAPbI3 along with the HSD on the BZ Γ-X-S-Y-Γ-Z-U-R-T-Z-Γ. The middle
panel shows the computed band structure along the same HSD on BZ, employing
the primitive cell for a orthorhombic MAPbBr3, and the lower panel shows the
computed band structure along the same HSD on the BZ, employing the primitive
cell for the orthorhombic MAPbCl3. The blue-solid lines correspond to the valence
bands and the red-solid lines correspond to the conduction bands. We show the
band structure without an applied scissors correction.
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4.6 PDOS: Cubic MAPbX (X=I, Br, Cl)
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Figure 4.7: The upper panel shows the Kohn-Sham projected density of states
(PDOS) for the cubic MAPbI3 structure. The middle panel shows the PDOS for
the cubic MAPbBr3 structure, and the lower panel shows the PDOS for the cubic
MAPbCl3 structure. In all plots, the Fermi energy is shifted to zero.



4.6. PDOS: Cubic MAPbX (X=I, Br, Cl) 41

 

!

"

#

$

%

&
'
(
)

*+,-

*+.

 

!

"

#

$

%

&
'
(
)

*+,-

*+/0

 

!

"

#

$

%

1! 12 13 1$ 1"  " $ 3

&
'
(
)

4+45 6789

*+,-

*+:;

Figure 4.8: The upper panel shows the Kohn-Sham projected density of states
(PDOS) for the tetragonal MAPbI3 structure. The middle panel shows the PDOS
for the tetragonal MAPbBr3 structure, and the lower panel shows the PDOS for the
tetragonal MAPbCl3 structure. In all plots, the Fermi energy is shifted to zero.
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To elucidate the nature of the electronic band structure, we calculated the density
of states (DOS) and projected density of states (PDOS) as a function of energy for
for the MAPbI3 MAPbBr3 and MAPbCl3 systems.

Figure 4.7 display the PDOS for the three cubic systems. The upper panel
of Figure 4.7 shows the Kohn-Sham projected density of states (PDOS) for the
MAPbI3 structure where the Fermi energy is shifted to zero. Notice, that it is
zero in the range of bandgap. The examination of the PDOS shows that the width
of valence bands is approximately 3 eV, Moreover, the PDOS showed the highest
valence bands are mainly formed by a mix of p states from the Iodine and p and s
states from lead. The p-Iodine states are depicted in purple-solid line, whereas p-
lead states are depicted in red-solid line. In the Figure, one can see the p-lead states
strongly dominate at the Fermi level with a slight mixture of methylammonium, so
the charge transfer is null between the Pb and methylammonium. Remarkably, the
methylammonium states are located below of -5 eV, they are very far away from
the Fermi level, so they do not participate in the optical transitions at low energy.
Regarding, the conduction bands, the lowest conduction band is mainly formed by
the p-lead states, as a consequence the onset of the optical absorption should be
dominated by the lead and Iodine atoms.

The upper panel of Figure 4.7 shows the Kohn-Sham projected density of states
for the MAPbBr3 structure where the Fermi energy is shifted to zero. A closer
examination of the PDOS shows that the width of valence bands is approximately
4 eV, slightly larger than the MAPbI3 structure. Moreover, the PDOS shown the
highest valence bands are mainly formed by a mix of p states from the Br atom and
lead p and s states.

The p-Br states are depicted in yellow-solid line, whereas p-lead states are de-
picted in red-solid line. Also, the methylammonium states are located below -5.5
eV, similar to the Iodine case, they are very far away from the Fermi level, so they
do no take participate in the optical transitions at low energy. Regarding the con-
duction bands, the lowest conduction band is mainly formed by the p-lead states,
as a consequence the onset of the optical absorption should be dominated by the
lead and Br atoms.

The MAPbCl3 structure, shows a very similar behavior than the MAPbI3 and
MAPbBr3 cases. The lower panel of Figure 4.7 shows the Kohn-Sham projected
density of states for the MAPbCl3 structure where the Fermi energy is shifted to
zero. A closer examination of the PDOS shows that the width of valence bands is
approximately 4.5 eV, slightly larger than the MAPbI3 and MAPbBr3 structures.
Moreover, the PDOS shown the highest valence bands are mainly formed by a mix
of p states from the Br atom and lead p and s states.

The p-Cl states are depicted in green-solid line, whereas p-lead states are de-
picted in red-solid line. The methylammonium states are located below -5.5 eV,
very far from the Fermi level, so they do not participate in the optical transitions at
low energy. Regarding, the conduction bands, the lowest conduction band is mainly
formed by the p-lead states, as consequence, the onset of the optical absorption is
dominated by the lead and Cl atoms.



4.6. PDOS: Cubic MAPbX (X=I, Br, Cl) 43

 

!

"

#

$

%

&
'
(
)

*+,-

*+.

 

!

"

#

$

%

&
'
(
)

*+,-

*+/0

 

!

"

#

$

%

1! 12 13 1$ 1"  " $ 3

&
'
(
)

4+45 6789

*+,-

*+:;

Figure 4.9: The upper panel shows the Kohn-Sham projected density of states
(PDOS) for the MAPbI3 structure. The middle panel shows the PDOS for the
MAPbBr3 structure, and the lower panel shows the PDOS for the MAPbCl3 struc-
ture. All three perovskites are in their orthorhombic structural phase, and their
Fermi energy is shifted to zero.
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4.7 PDOS: Tetragonal MAPbX (X=I,Br,Cl)

Figure 4.8 display the PDOS for the three tetragonal systems. The upper panel of
shows the Kohn-Sham PDOS for the MAPbI3 structure, MAPbBr3 being the middle
one and MAPbCl3 the bottom one. The Fermi energy is shifted to zero.

As explained before, the valence bands are dominated by a mix of p states from
the halogen and p and s states from the lead atoms, while the conduction bands
are totally dominated by p-lead states. The methylammonium states are located
very far away from the Fermi level, not participating in the optical transitions.
Depending on the halogen in the perovskite structure, it can be seen, as is the case
for the description in the cubic cell, that shifts of the valence states are observed in
the PDOS plots. Like before, the valence band is approximately 3 eV for MAPbI3,
4 eV for MAPbBr3, and 4.5 eV for MAPbCl3.

4.8 PDOS: Orthorhombic MAPbX (X=I, Br, Cl)

Figure 4.9 display the PDOS for the three orthorhombic systems. The upper panel
of shows the Kohn-Sham PDOS for the MAPbI3 structure, MAPbBr3 being the
middle one and MAPbCl3 the bottom one. The Fermi energy is shifted to zero.

For orthorhombic structures, shifts of the valence states are observed depending
on the halogen in the perovskite structure, the same can be seen for the methylam-
monium states which are located at -5 eV for MAPbI3, and proceed to shift to -6
eV for MAPbCl3, MAPbBr3 located in between. For the valence and conduction
states that dominate the region close to the band gap of the material. The valence
bands are being dominated by a mix of p states from the halogen and p and s states
from the lead atoms, while the conduction bands are dominated almost exclusively
by p-lead states.
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4.9 Optical properties

The electron is a charged particle that interacts with an electric field. We must
point out that the electric field could be static or variable in time; light being is
an electric field variable in time; the application of an electric field originating from
an external source will act on the electrons just as the field of the nuclei does. If
the electromagnetic field is applied to the perovskites, the electromagnetic field is
considered average. From a macroscopic point of view, the electrons are screening
the external field. This is the optical response which we computed in this thesis. This
chapter is primarily concerned with theoretical computations of optical constants
of perovskites, which are computed within the long-wavelength limit q→ 0 of the
dielectric function ε(q, ω). These include the complex dielectric function ε(ω), the
complex index of refraction, the energy-loss function, absorption coefficient, and the
optical reflectivity.

The ab initio calculation of the above-mentioned optical properties for many
nanomaterials has been a long-standing problem in chemistry, physics, and condensed-
matter physics [Ehrenreich 1959, Adler 1962, Nozières 1958, Onida 2002, Sipe 2000,
Anderson 2015]. In practice, these properties are computed for only a reduced set of
perovskites materials. Thus, we aim to employ and develop an efficient and widely
applicable method covering a broad range of frequencies from 0 to 20 eV to compute
perovskites optical properties, providing a complement for experimental data.

The dielectric response theory for periodic systems has been developed exten-
sively in the last years [Onida 2002], among the first theoretical works on the com-
putation of the dielectric response, that developed the theory of dielectric function
within the time-dependent Hartree approximation, also known as the random phase
approximation, we highlight Pines et al. [Nozières 1958], Cohen et al. [Ehrenreich 1959],
Adler et al. [Adler 1962], and Wiser et al. [Wiser 1963], and recently Cabellos et
al. [Cabellos 2009a] corrected the effects of DFT band gap underestimation of the
optical response. Theoretical methods for accurate calculations of optical spectra
are still under development. Nowadays, more advanced theories are under develop-
ment that takes into account excitonic and dynamics correlation effects based on the
Bethe-Salpeter equation [Onida 2002]. Moreover, the theory has been extended to
include time dependent density functional theory (TDDFT) [Zangwill 1980], which
includes exchange effects.

In the following, the computational details involved in the computation of op-
tical response will be explained. The optical absorption spectrum is determined
by the imaginary part of the dielectric function, [Molina-Sánchez 2013] given in
Equation 4.2 which in turn is related to imaginary part of electric susceptibil-
ity [Sipe 2000] given in Eq. B.50.

εab(ω) = 1 + 4πχab
1 (−ω;ω) (4.2)

Following the procedure of this thesis, we computed the expression given by Eq. B.50.
The peaks present in the Im[χxx

1 (−ω, ω)] part are due to direct interband optical
transitions among the valence and conduction bands. They can be identified from
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the critical points of the band structure. The band structure can give major con-
tribution to the Im[χxx

1 (−ω, ω)] part, identified as the top valence band and lowest
conduction band [Salazar 2016, Lee 2004]. Additionally, we take into account the
scissors correction [Nastos 2005, Cabellos 2009a] which is obtained by a rigid shift
of the DFT energies to the experimental values [Stahrenberg 2001], as consequence
the spectrum of Im[χab

1 (−ω, ω)] is shifted along the energy axis without changing
the spectrum shape. [Nastos 2005, Cabellos 2009a] The Re[χab

1 (−ω, ω)] part was
computed using the Kramers-Kronig relations [Reshak 2012], where the indirect
transitions are neglected because they represent little contribution [Okoye 2003] to
Im[χab

1 (−ω, ω)], also the spin-orbit, local field, and electron-hole effects are also
neglected. [Leitsmann 2005, Cabellos 2009a], we express that the inclusion of these
effects, is beyond the scope of this thesis work.

The wavefunctions were expanded in plane waves basis set and checked for con-
vergence applying kinetic cutoff energy of 15 Hartree. The Monkhorst-Pack scheme
was used [Monkhorst 1976] to sample the Irreducible Brillouin Zone (IBZ). To en-
sure that the optical properties converged. The total energy SCF tolerance was set
to a value of 2x10−8 eV/atom. It is important to mention that there are several parts
of the input file of QE, code calculation, data structure, parameter data, k-points,
and pseudopotential files, that had to be tested until finding values that would al-
low a quality calculation. The perovskites are defined in the structure data, where
the parameter data contains quantities such as kinetic energy cut-off (ecutwfc), the
k-points sampling, the IBZ, and the pseudopotential files obtained directly from the
QE website. Special care had to be taken with kinetic energy cut-off (ecutwfc) and
the k-point mesh to get converged calculation for the perovskites.

Calculating optical properties is very sensible to the kinetic energy cut-off (ecutwfc),
so, the optimization was done looking to get the best balance between the compu-
tation efficiency and maintaining the computation accuracy. A large cutoff energy
is more exact is the optics calculation for periodic systems, like our perovskites
materials. The plane wave is expressed by the Equation 4.3.

ψnk

(

r
)

=
∑

G

Cnk(G)ei(k+G)r (4.3)

Where Cnk(G) are the plane wave coefficient, where G is a reciprocal lattice
vector. The energy cut-off, limits these G vectors. (it is impossible that they are
infinite) and it is given by Equation 4.4

~|k+G|2
2m

6 Ecut (4.4)

The ecutwfc value employed in optics computation was 40 Rydberg. In the k-
point optimization, we practically limit only a finite number of k plane waves. The
summation in limited IBZ sampling was adapted where we used the mesh variation,
that depends on the perovskite, k1×k2× k3 from 1× 1 ×1 to 9×9×9 and for finding
the best convergence in the optics. In the following section, we turn our attention
to the perovskites optical spectra.
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4.10 Optics: Cubic MAPbI3,MAPbBr3, and MAPbCl3

In this part of the results, the optical properties calculated for perovskites of cubic
structural phase are presented. The calculated optical properties of the materials
can be found in the section of each respective perovskite. The real part and the
imaginary part of the dielectric function were calculated using epsilon.x in Quantum
ESPRESSO. Once they were obtained for the proposed K-points mesh, they were
utilized to obtain the refractive index, the reflectivity, the absorption coefficient and
finally the Energy Loss spectrum was calculated employing programs made in home
and written using Python programming code.
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Figure 4.10: Frequency dependence of the εab(ω) of the Cubic MAPbI3. The upper
panel shows the εab2 (ω) in the ranging frequency from 0 to 10 eV, and the lower panel
shows the εab1 (ω) in the ranging frequency from 0 to 10 eV. The dielectric function is
related to the imaginary part of electric susceptibility by εab(ω) = 1+4πχab

1 (−ω;ω).
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The absorptive part of the dielectric function, εab2 (ω) for the Cubic MAPbI3
structure, is displayed in the upper panel (a) of Figure 4.10. The onset of the signal
starts to rise at 1.2 eV, slightly smaller than the computed band gaps of the band
structures shown in Figure 4.4 "a" where the electronic bandgap computed is 1.47
eV. This small difference is due to the excitonic effects not taken in the computation
of the εab2 (ω). In the ranging energy from 1 to 2 eV, it grows exponentially, and in
the ranging energy from 2 to 2.8 eV, it presents a linearly growth.
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Figure 4.11: Frequency dependence of the refractive index, n(ω), and reflectivity,
R(ω), of the Cubic MAPbI3. The upper panel (c) shows the refractive index in the
ranging energy from 0 to 10 eV, and the lower panel (d) shows the reflectivity in
the ranging energy from 0 to 10 eV.

The largest peak is located at 2.8 eV of the energy range, followed by the second
largest located at 7 eV. Remarkably, the largest peak ob absorption is located at the
visible range of 2 and 3 eV. The onset of the signal in the energy range of 1.0 to 2
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eV, which is mainly due to the direct transitions from the top-most valence bands
(highest-energy valence bands) to the lowest energy conduction band localized at
the Γ point. Because the cubic MAPbI3 is completely isotropic, the xx, yy, and zz
components are also isotropic. as consequence, we only present the xx component,
and for the case of Cubic MAPbI3, the scissor correction of 0.14 eV was applied. As
we mentioned earlier, the onset of the signal is due to the optical transition between
the top-most valence band to the lowest energy conduction band. According to the
PDOS of the Cubic MAPbI3 displayed on the upper panel of Figure 4.7, the top-
most valence band is formed by p-Iodine states and the composition of the lowest
energy conduction band is formed by the lead "p" states, which implies that the
low energy part of the optical absorption spectrum displayed in the upper panel of
Figure 4.10 is due to the iodine and lead atoms. The largest absorption peak located
at 2.8 eV shown in the upper panel of Figure 4.10, is due to optical transitions
from p-Iodine states to the methylammonium states located in the ranging energy
from 3 to 6 eV, which can be seen in the upper panel of Figure 4.7. In summary,
the methylammonium contributes to the high part of the optical absorption with
transitions from the iodine states to the methylammonium states.

The lower panel (b) of Figure 4.10 shows the real part of the dielectric function,
εab1 (ω) for the cubic MAPbI3 structure. We point out that the real εab1 (ω) part
provides information about the polarizability of the material. The lower panel of
Figure 4.10 shows that the static value of the 4.4 u.a. ( εab1 (0) = 4.4). In the ranging
energy from 0 to 2.1 eV. The real εab1 (ω) part starts to increase and reach a large
peak with a value of 7.8 located at 2.1 eV, after that, a rapid decrease is observed
until it reaches zero. The negative values of the real εab1 (ω) part are indicative of
metallic behavior. In contrast, a change of sign in the real part indicates plasmonic
resonances in the energy region where it crosses the energy axes with a positive
slope.

4.11 Optical reflectivity & refractive index of cubic MAPbI3

The refractive index of a material is defined as the ratio of the speed of light in
a vacuum to that of in matter [Palik 1998]. The refractive index of a material is
a function of the frequency, doping, thickness, and grain boundaries [Ong 2001,
Ono 2018, Nenkov 2008, Lamichhane 2020], The refractive index of a perovskite in
this thesis is computed using the Equation 3.34 and it is related to εab1 (ω) trough
the Equation 4.5 given as

n(0) =
√

εab1 (0) (4.5)

In panel (c) of Figure 4.12 we show the frequency dependence of the refractive index
of the cubic MAPbI3 in the ranging energy from 0 to 10 eV. Our computed refractive
index spectra, depicted in Figure 4.12 "c", revels that the static refractive index is
2.1 (n(0) = 2.1) for the cubic MAPbI3 perovskite. According to the lower panel (b)
on Figure 4.10, the static value of Re[εab1 (0) = 4.4] so, according with Equation 4.5,
the static value of the refractive index is

√
4.4 =2.09, which is in good agreement
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Figure 4.12: Frequency dependence of the absortion coefficient (α(ω)) and energy
loss spectrum, L(ω), of the Cubic MAPbI3. The upper panel (c) show the absortion
coeficient in in the ranging energy from 0 to 14 eV. The lower panel (d) show the
loss energy spectrum in the ranging energy from 0 to 14 eV.

with the static refractive index displayed in Figure 4.12c of 2.1. The above model
related the static of Re[εab1 (0)] part to the refractive index, as we demostrated it
perfomed well. At beginning of the 1950, Moss [Moss 1951] proposed a relationship
between the electronic gap (Eg) and the refractive index (n) given in Equation 4.6,

n4Eg = 95 eV (4.6)

The Equation 4.6 is based on Bohr’s atomic model of hydrogen. In the ’90s,
Herbe and Vandamme [HervÃ c© 1994] formulated the Equation 4.7
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n =

√

1 +

(

A

Eg +B

)

(4.7)

where A=13.6 eV and B=3.4 eV are the constants. This Equation 4.7 agrees
satisfactorily for most optoelectronic materials of the IV-VI group [Reddy 2008]
Moreover, it reproduces the reported experimental values of the refractive indices of
perovskites [Lamichhane 2020] For our case of cubic MAPbI3 perovskite the data for
the Equation 4.7 are: Eg= 1.47 eV, A= 13.6 eV, and B= 3.4 eV, so the evaluation
leads to 2.97. This value is lower in almost 25% to the computed refractive index
of 4.2. From the experimental point of view, there are several methods based on
optical transmission and reflection measurements are used to calculate the refractive
index data using the envelope, Maxwell-Garnett, and Goodman method [Sohn 2017]
So far, other relations between the electronic gap and refractive index have been
proposed, based on the fact that the optoelectronic properties of perovskites depend
on the ionic nature by simply treating perovskites as ionic solids[Lamichhane 2020].
We let the study of these relations for a new project. The peaks in the refractive
index are due to the interband transition of electrons from the valence band to the
conduction band. In Figure 4.12c we can observe that at above the energy of 8 eV,
the value of the refractive index is less than unity. Refractive index smaller than
unity describes that group velocity, vg of light that goes through the perovskite
becomes greater than the speed of light, according to Equation 4.8

vg = c/n (4.8)

In the Equation above, c is the velocity of the light in vacuum and n the index
of refraction, so at values of energy around 9 eV, the vg is two times the velocity of
light (6×108 cm/s). In Figure 4.12c, we can observe that the refractive index starts
to increase from the static value to the largest peak located at 2 eV; after that, it
decreases until it reaches 3 eV; in this region, the velocity of light increases very
fast. Above 3 eV, the refractive index keeps the value around 1.5 until it reaches 7,
after that, it starts to decrease, and around 8 eV, it becomes smaller than one.

In panel (d) of Figure 4.12 we show the frequency dependence of the reflectivity
spectrum, R(ω), of the cubic MAPbI3. Reflectivity is described as the relation
equal to the ratio of incident light to a medium and the reflected light, this was
computed in the range of 0 to 10 eV. In panel (d) of Figure 4.12 we observe that
the static value of the reflectivity (R(ω = 0))=0.15) is 0.15. R(0) is independent
of the size of cation A (MA+). The reflectivity spectrum R(ω), again, displayed in
panel (d), shows a global minimum at 4.5 eV, corresponding to the plasma edge.
This decrease in reflectivity may be due to plasmonic excitation [Lamichhane 2021].
As we mentioned earlier, the reflectivity spectrum has its first large peak located at
3.1 eV, which is related to the Penn bandgap. The global peak in the reflectivity
spectrum is located at 8.8 eV, and at this point, the reflectivity is almost 50%,
meaning that the perovskite is not absorbing 50% of the incident solar light. We
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underline, that this frequency is far away from the visible spectrum that is of our
interest, located between the range 1 to 3 eV.

The reflectivity spectrum in ranging energy from 0.5 to 3.1 eV, starts to increase
at 3.1 eV, reaching a maximum value of 0.35, suggesting that 1/3 of the solar light
is reflected. Above 3.1 eV, the reflectivity spectrum decreases until 4.5 eV, reaching
a global minimum. In the ranging energy from 3.1 to 4.5 eV, the reflective spectrum
is rather steep, and thus, the small energy shift leads to a significant change in
the reflectivity. As we mentioned earlier, this abrupt diminution of reflectivity is
related to the plasmon frequency. Moreover, at 4.5 eV, the reflectivity of the cubic
MAPbI3 perovskite to the part of the solar spectrum is minimum with a value of
0.08, which means that the light is absorbing or transmitting at this light frequency.
Here, we bear in mind that the sum of the reflection, transmission, and absorption
coefficients must be equal to 1 (R + T + A = 1). In the energy ranging from 4.5
to 6 eV, the reflectivity is almost constant, and after that, it starts to increase
until 8.8 eV, where it finds the largest reflectivity of 0.5%. At higher energies or
frequencies, the reflectivity tends to be as 20%. According to the dielectric function
εab2 (ω) displayed in the upper panel (a) of Figure 4.10, and DOS shows in the upper
panel of Figure 4.7 the low energy reflectivity spectrum is strongly dominated by the
Iodine and Pb atoms. In contrast, the optical transitions influence the high energy
reflectivity spectrum among states of the Iodine and methylammonium molecule.

4.12 Optical absorption coefficent of cubic MAPbI3

The frequency dependence of the absorption coefficient is a factor that gives valuable
information about the decay of light intensity per unit distance in the perovskite.
The frequency dependence of the absorption coefficient is depicted in solid-black
line in the lower panel (f) on Figure 4.12, The highest peaks occurred at 10 and 13
eV, but these energies are too high from the visible region where the solar light is
located. so, we focus on the part of the signal located in the energy range from 2
to 5 eV approximately The first peak is located at 4.2 eV. Remarkably, this peak
is related to the reflectivity where the lowest value of reflectivity is located at 4.5
eV, so the absorption coefficient displayed on Figure 4.12f is in agreement with the
reflectivity function displayed in Figure 4.12d. In the energy ranging from 5 to 8 eV,
the absorption coefficient presents a small bump and at 8 eV, it starts to increase
abruptly. The onset of the signal of the absorption coefficient is due to optical
transitions between the I-states and the Pb-states. Above 5 eV, there are optical
transitions between the methylammonium and the Pb states as the DOS reveals.

The energy loss function L(ω) is a parameter that describes the energy loss for
an electron traversing the perovskite material, and that characterizes the inelastic
scattering process [Sun 2016b]. The peaks in energy loss function L(ω) tells us which
is the plasma frequency, these peaks are related to plasmon resonance. The increase
of the light absorption is due to scattering by plasmons. An increase in the scattering
leads to a delay in electromagnetic radiation in the perovskite and, consequently,
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an increase in light absorption [Afanasyev 2021] by them. The inelastic scattering
process is related to the drift velocity and mobility of electrons in a material as
reported in literature [Ness 2005].

The lower panel (f) of Figure 4.12 display the L(ω) function in the energy ranging
from 0 to 8 eV, and clearly, we can observe that there is no energy loss for photons
having energy below 2 eV. Above 2 eV, the energy loss starts to increase very slowly,
almost linearly until to 4 eV, then it starts to increase exponentially, reaching a
maximum peak located at 4.5 eV, at this value of frequency the reflectivity get the
global minimum as mentioned before, so while the loss function, depicted in solid-
black line in Figure 4.12f, has a maximum peak located at 4.5 eV; the reflectivity,
depicted in solid-black line in Figure 4.12, has a minimum located at 4.5 eV, so there
is a common point between reflectivity and the loss of energy function. Slightly above
4.5 eV on the energy scale, it starts to decrease abruptly, and at 5 eV, it reaches a
minimum local. The largest peak is located at 5.8 eV with a value almost of 0.5.
Another peak with a value close to 0.5 is observed in Figure 4.12d and located at
7 eV. The first plasmon frequency is located at 4.5 eV, and the second is located
plasmon frequency is 7 eV.

At higher frequency energies, the loss function tends to become smaller. Our
computed loss function indicates that electrons are traversing the perovskite at an
incident photon energy less than 2 eV, which is confirmed that energy loss of the
material is due to the interband electronic transition [El-Nahass 2016]. We think
that the energy loss spectra measurements of low energy plasmon peaks in these
perovskites materials will show this second peak that we computed in this thesis.
To emphasize the lost energy spectrum for perovskites was calculated from the
negative imaginary part of the inverse dielectric function. We discussed all the
optical properties in detail showing the path taken to achieve these results.

The Table 4.12 shows the values obtained for the perovskites of MAPbI3, MAPbBr3,
and MAPbCl3. It is worth mentioning that in the tetragonal and orthorhombic per-
ovskites, anisotropy was presented within their optical properties, in these cases the
highest values obtained for each perovskites were chosen, which were put in the
table. The corresponding optics graphs can be seen in the appendix. As a quick
description of the results in the table, the perovskites with iodine in their structure
show what we consider, the best results compared to the rest of the other materials,
the band gaps obtained for the cells with iodine show to be optimal for the optical
absorption in the visible area of the electromagnetic spectrum.

For the static reflectivity, we can see that the smallest values belong to MAPbI3,
it must be taken into account that for a material that intends to absorb light, is
important that it does not reflect it, so having low reflectivity values is considerably
better, we also know that having high values for the reflectivity index are important
for semiconductors with intended applications such as solar cells, again the cells
with iodine show to stand out among the rest.

The values of the dielectric polarization or, (ε1) are shown in the Table 4.12,
since it indicates the polarization within the materials electrons, higher capacities
can probe much more beneficial for a semiconductor, so, the values obtained for
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Perovskites Structural phase Band gap (eV) R(0) n(0) ε1(0) ε2 (eV)

MAPbI3 Cubic 1.47 0.15 2.10 4.40 2.81 (7.65)

MAPbBr3 Cubic 1.95 0.97 1.90 3.61 3.50 (5.25)

MAPbCl3 Cubic 2.36 0.89 1.90 3.43 3.88 (4.75)

MAPbI3 Tetragonal 1.30 0.13 2.00 3.55 3.10 (7.00)

MAPbBr3 Tetragonal 1.80 0.78 1.80 3.15 5.15 (4.40)

MAPbCl3 Tetragonal 2.21 0.70 1.90 2.90 4.35 (4.60)

MAPbI3 Orthorhombic 1.45 0.11 2.00 4.20 3.10 (6.80)

MAPbBr3 Orthorhombic 1.89 0.80 1.70 3.20 5.20 (4.00)

MAPbCl3 Orthorhombic 2.17 0.73 1.80 2.90 4.55 (4.45)

Table 4.4: We present the obtained values for the band gap, static reflectivity (R(0)),
static refractive index (n(0)), static dielectric permittivity (ε1(0)), and the maxi-
mum peak of the imaginary part of the dielectric constant (ε2) with its respective
amplitude, for MAPbX3 perovskites in all their structural phases.

our perovskite show that MAPbI3 presents the highest in its form cubic (4.40),
followed by its orthorhombic phase (4.20) and MAPbBr3 in its cubic phase (3.61).
For the imaginary part of the dielectric constant (ε2), the location, in the energetic
range of 1.5 to 6.0 eV, where the peaks with the greatest amplitude (in parentheses)
are presented. The peaks with the greatest optical amplitude belong to the cubic
MAPbI3 perovskite, located at 2.81 eV of the chosen energy range. It is observed for
cubic perovskites, as the peaks of greater amplitude move to higher energy values in
the energy range of choice. In the case of the tetragonal and orthorhombic phases,
there is the exception of MAPbBr3, where in both cases there were high amplitude
peaks above 5 eV. Here in Figure 4.13 a comparison between εab2 (upper panel) εab1
(bottom panel) of cubic perovskites is shown. In both graphs, perovskite with iodine
is represented by a purple line, bromine perovskite with a red line, and perovskite
with chlorine, a green line. We can observe the shift of the beginning of absorption
between perovskites, each perovskite showing the onset of its signal agreed with its
bandgap, (I= 1.47 eV, Br= eV, and Cl= eV). Its maximum peak is also shifted to the
right of the energy spectrum; also we can observe the amplitude difference between
the maximum peaks, where the MAPbI3 perovskite shows the largest amplitude.

On the bottom graph of Figure 4.13 we have the comparison of (εab1 (ω)) between
our three perovskites, the panel shows us that MAPbI3 presents both the highest
and lowest (εab1 (ω)) value in the chosen range. Showing that MAPbI3 has the highest
polarization capacity in the optical range of the electromagnetic spectrum; moreover,
we point out that the MAPbI3 perovskite shows a sign change at 3 eV and 7 eV,
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Figure 4.13: The upper panel shows the comparison of the Im[εab(ω)] part for the
three cubic perovskites of MAPbI3, MAPbBr3, and MAPbCl3. The bottom panel
shows the comparison of the Re[εab(ω)] part for the the three mentioned cubic
perovskites, in the energy range from 0 to 10 eV. Notice, the MAPbI3 perovskite,
shows the largest absorption peak located at 2.8 eV. Moreover, it is larger in 31%
than Br perovskite.

this is not present in MAPbBr3 and MAPbCl3 perovskites, their signal maintains a
positive output (they don’t cross to a negative value) within the set range.

With a closer examination of the imaginary part of the perovskites, shown in
upper panel of Figure 4.13, we observe that the maximum absorption peak in the
set energy range for all our perovskites belonged to MAPbI3 showing the highest
amplitude in comparison to the rest of the perovskites studied; In the image, we
can see that the maximum absorption peak is 31.3 % larger than for the case of
perovskite with bromine and 38 % larger than for the chlorine one. Exceptionally,
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the absorption peak for MAPbI3 is located in the visible region of the solar spectrum,
which is between 1 to 3 eV, this is not the case for the other perovskites, that
have their maximum absorption peak located far away from the visible range of
the spectrum. These results separate the cubic perovskite MAPbI3 from the rest.
Furthermore, the best spectra belong to iodine, this being the least electronegative
atom in comparison with bromide and chloride atoms. Based on this, an important
conclusion on this thesis is that the larger the atom electronegativity is, the larger the
shifts to higher energies in the energy scale will be, making MAPbBr3 and MAPbCl3
perovskites, less efficient for photovoltaic solar cells. In this thesis and based on the
computed spectra, I propose this perovskite as the representative for this group of
examined materials to become the light harvesting layer for a perovskite solar cell.
We affirm that this perovskite will generate the largest output of electrical current
once used in a photovoltaic solar cell. All calculates optical spectra for the tetragonal
and orthorhombic perovskites, can be found in the appendix of this thesis.

We expect that our results presented in this thesis be of great guidance for the
experimental part.

4.13 Theoretical vs experimental results

In this section of the thesis, a comparison will be made between the theoretical
results obtained using the DFT-PBE method and experimental results from the
literature. It is important to note that the experimental part was not dealt with in
this thesis work, but this does not make it less important in any way. One of the
most important objectives in theoretical studies is to support experimental research.
A theoretical study can explore the areas that the experimental one cannot achieve
as a guide to follow.

Perovskite a (Å) c (Å) Exp. a (Å)) Exp. c (Å))

MAPbI3 8.695 12.834 8.800 [Oku 2015] 12.685 [Oku 2015]

MAPbBr3 5.920 —— 5.933 [Oku 2015] ——

MAPbCl3 5.680 —— 5.666 [Oku 2015] ——

Table 4.5: Calculated structural properties of a tetragonal MAPbI3, cubic
MAPbBr3, and cubic MAPbCl3 compared with their experimental (Exp.) coun-
terparts. The calculated structural parameters showed an error of less than ≤ 2%
compared to the experimental results for all perovskites shown.

Table 4.6 includes the theoretical values of the band gaps and Table 4.5 display
structural parameters for the structures obtained with their experimental references.
The experimental perovskites presented in the literature show a tetragonal structural
phase for MAPbI3, while the case for MAPbBr3 and MAPbCl3 is that they present
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their cubic structural phase, which is in agreement with the table 2.1. For MAPbI3,
the resulting band gap presents a margin of 16 % of error when compared to the
experimental one, for the other cases, MAPbBr3 is more accurate, presenting 13
%, the opposite compared to MAPbCl3, which has the highest error with 20 % to
the experimental one. On the other hand, the structural parameters are almost

Perovskite Band gap (eV) Exp. Band gap (eV)

MAPbI3 1.30 1.55 [Leguy 2016]

MAPbBr3 1.95 2.24 [Leguy 2016]

MAPbCl3 2.36 2.97 [Leguy 2016]

Table 4.6: Calculated bandgaps of a tetragonal MAPbI3, cubic MAPbBr3, and cubic
MAPbCl3 compared with their experimental (Exp.) counterparts. The MAPbI3
calculated bandgap was approximately underestimated by 16%, in comparison with
its experimental result.

identical to those reported, for the three cases, having an error in their coefficients
of less than 2 %. It should be noted that DFT has a problem calculating properties
such as the forbidden band, since this is a ground state theory, these properties
belonging to the excited state can be obtained, but not without problems. This, of
course, can be solved by improving the DFT calculation, the use of newer and more
refined approximations such as the GW approximation [Mosconi 2016] can help by
reducing the threshold if not completely eliminate it.

Next, the absorption coefficient calculated in this work is presented in Figure 4.14
together with an experimental one taken from the indicated reference. Similarities
can be observed between the two, we can maintain a similar growth trend when in-
creasing by the energy range, together with both having an absorption onset around
1.5 eV. Taking into account the above, we consider that the calculation of the co-
efficient is of good quality. Below we present a method that demonstrates how it
is possible to calculate the optical properties experimentally, such as the dielec-
tric function of a material, with which we can obtain a wide quantity of optical
properties, as seen in this work.

4.13.1 Spectroscopic Ellipsometry

For the case of experimental work, there are different ways to calculate the dielectric
constant of a material, one of them is called ellipsometry, which consists of the
measure of a material film thickness and refractive index of individual layers and
multiple layers in form of stacks. This technique has become quite popular in these
years, mainly because it allows to obtain the imaginary and the real part of the
dielectric function directly with a simple process [Wang 2020, Jellison 1999].
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Figure 4.14: The absorption coefficient of the tetragonal perovskite MAPbI3, (a)
computed in this thesis, and (b) an experimental one [Kanemitsu 2017]. The onset
of α(ω) is in agremment with the experimental one. The computed α(ω) does not
present the same behavior as the experimental one, on the spectrum α(ω) there is
a missing shoulder, that is probably due to excitonic effects.

Figure 4.15: Illustration of a typical ellipsometer configuration. Image taken from
Ref. [Wang 2020].

An ellipsometer consists of five main elements: a light source, a polarization state
generator (PSG), a sample, a polarization state detector (PSD), and a light detector.
In Figure 4.15, the configuration of this equipment is shown, where unpolarized light
passes through a polarizer which polarizing the incident light beam, reflecting it off
a sample surface. which is then repolarized before measuring its intensity. The
process of reflecting light from a smooth sample surface generally linearly changes
polarized light into elliptically polarized light. [Jellison 1999]

From these measurements, it is possible to obtain a description of the sample,
the technique obtains information on the thickness and optical properties, like the
complex dielectric function. Along with the latter, obtaining the optical properties
studies in this work can prove quite simple.
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In this chapter, we present our conclusions and observations on the photovoltaic
perovskites studied in this thesis. We studied hybrid perovskites material focusing
on their optical response and electronic states. Nowadays, hybrid perovskites are
one of the most studied emerging solar cell technologies. The structural, optical,
and electronic properties for the proposed perovskites of MAPbI3, MAPbBr3 and
MAPbCl3 were calculated using the DFT-PBE method implemented in Quantum
ESPRESSO. All of the following properties were obtained for the cubic (Pm-3m),
tetragonal (I4/mcm) and orthorhombic (Pnam) structural phases of the three per-
ovskites:

5.0.1 Electronic properties

• Band structure

• Total density of states (TDOS)

• Projected density of states (PDOS)

5.0.2 Optical properties

• Real part (ε1) and imaginary part (ε2) of the dielectric function

• Refractive index (n)

• Reflectivity (R)

• Absorption coefficient (α)

• Energy loss spectrum (L)
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To achieve this, first, we chose the Quantum ESPRESSO software package which
is essential to the learn DFT theory and provides a medium to work in. First, we
took appropriate benchmarks to obtain the correct methods; then we proceeded
to obtain the results covered in this work. QE was installed in ACARUS of the
Universidad de Sonora where I became familiar with its packages and how to use
them. The first benchmark that we employed to verify its accuracy in calculating the
structural parameters and electronic band structure of graphene, silicon and gallium
arsenide. Some of the results were presented in a seminar of my thesis. From these
benchmarks, I learned that the cutoff energy for the wave function tells how many
vectors of the reciprocal space will be needed to represent the wavefunctions, which
means how much energy can be used for the dispersion relation of the wavefunctions
plane waves.

We computed the optical and electronic properties of perovskites as follows: As
the first step, we optimized the atomic structure, then with the structure in hand we
computed the band structure, DOS, PDOS, and optical properties. We point out
here, that the reflectivity, refraction index, and other properties were computed by
scripts created with the Python programming language, to help with the calculation
of all optical properties based on ε1 and ε2 of the dielectric constant, as well as the
generation of their respective graphs using Gnuplot.

The computation of optical and electronic properties was performed within the
framework of DFT as implemented in Quantum ESPRESSO code. Our results
showed mainly that:

1. The most important perovskite for absorb solar light in the visible range is
the cubic MAPbI3 perovskite. The Iodine atom is the the least electronegative
of the halides considered in this thesis, so the electronegativity influence the
performance of the perovskite as solar collector.

2. The methylammonium affects the high energy part of the spectrum.

3. The onset of the absorption is strongly dominated by the halides and the Pb
atoms.

4. The unit cell distortion depends on the relation of halide atoms (anions) and
the cations that contain the unit cell. Here, electronegativity plays a minor
role; in contrast, the covalent radius defines the degree of distortion.

5. The hybrid perovskites have strong light absorption in the visible range of
light, between 1 and 3 eV, which implies that they are good candidates as
light harvesting materials.

6. The onset of the Im[χ1
ab(−ω;ω)] part is strongly dominated by the Pb and

halide optical transference, this implies that at the Fermi level, the composition
of the valence bands are due a mixture of the halogen and Pb atoms "p" states,
in contrast, the low-energy conduction bands are formed mainly by Pb "p"
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states. From the mentioned above, the methylammonium does not play an
important role in optical absorption.

7. Remarkably, the largest Kohn-Sham band gap is correlated with the structure
that has the most electronegative atom, the Chlorine atom in the unit cell.

Further, for the first time to our knowledge, here, we deduced χ within the
matrix density formalism as well as the Hi Hamiltonian.

1. A complete quantum derivation of the first order optical tensor Im[χ1
ab(−ω;ω)]

was obtained employing the perturbation approach that allows us to under-
stand how the process of light absorption happens in the perovskite material.
Moreover, Im[χ1

ab(−ω;ω)] depends on the band structure and the matrix ele-
ments of the position quantum operator computed as the rmn = 〈ψ|r̂|ψ∗〉. In
this thesis we demonstrated that:

• To correct the effect of the bang gap underestimation problem on the
Im[χ1

ab(−ω;ω)], we just shift the Im[χ1
ab(−ω;ω)] to the experimental

value.

• If we employ pmn = 〈ψ|P̂ |ψ∗〉 or rmn = 〈ψ|r̂|ψ∗〉 in the computation of
the spectrum, this is the same. (gauge-invariance).

2. Revision of Maxwell Equations in order to derive the interaction Hamiltonian.

3. A complete derivation of the interaction Hamiltonian Hi = A · p̂ that describes
how the light and the material interact. The light was described classically
by Maxwell Equations, whereas, the perovskite is described by Schrödinger
Equation. This allows us to understand how the solar light is coupled to the
perovskite solar cell.

Without a doubt, the perovskite with the halogen iodine in its structure (MAPbI3)
showed the best results in the group, starting with its near optimal band gap, lo-
cated at 1.45 eV, a material with a starting absorption of this energy level tends
to absorb the most photons from the sun radiation in the visible range, making it
the most promising perovskite of all three investigated to use as a light harvesting
layer for a solar cell. Absorption wise, all three phases of MAPbI3 gave similar
results, but the cubic perovskite showed the highest absorption in the visible range
of the electromagnetic spectrum, MAPbI3 perovskite in its cubic structural phase
is proposed as the best material for PSC development in this perovskite group.

DFT-PBE theory used obtained good results regarding the calculation of the
structural properties for all the structural phases of the three investigated per-
ovskites, these were compared with experimental results found in the literature,
and an error percentage of less than 2 % was found when compared, showing an
excellent approximation for experimental data. The resulting band gaps showed an
error percentage of 20 %, considering that DFT usually underestimates the gap by
up to 50 %, the results were accepted as positive. This thesis, helped us to clearly
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understand how to compute from first principles, the optical response of perovskite
material.

5.1 Future work

• As per future work, I’d like to develop a total description employing DFT-
GW (Green’s function (G) and Coulomb interaction (W)) of these studied
perovskites, with a focus mainly on their ability to produce electricity due
to their photovoltaic capacities. GW approximation presents itself as an ad-
vancement of typical GGA approximation for DFT, providing highly accurate
calculations for semiconductor material’s electronic and optical properties.

• The inclusion of temperature.

• The inclusion of excitonic effects through the Bethe-Salpeter Equation.
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A.0.1 Attendance certificate RUIM 2019

Figure A.1: Attendance certificate of work presented in the: La Reunión Univer-
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A.0.2 Attendance certificate RUIM 2021

Figure A.2: Attendance certificate of work presented in the: La Reunión Univer-
sitaria de Investigación en Materiales,RUIM, March 2021, Universidad de Sonora,
Hermosillo, Sonora.



Appendix B

Appx. Linear response

In this appendix we review the approach used to calculate the first order lin-
ear response (Im[χ(−ω;ω)]). Although this is already presented in several arti-
cles [Cabellos 2009a, Cabellos 2011], for study in this thesis we derive and present
the main steps in the calculation in the velocity gauge formalism of Im[χ(−ω;ω)].

B.0.1 Perturbation approach

We use the independent particle approximation, that allow us to describe the system
using a scaled one electron density operator ρ, with which we can calculate the
expectation value of an observable O as

O = Tr(ρÔ), (B.1)

with Ô the associated quantum mechanical operator. The dynamical equation of ρ
is given by

i~
dρ

dt
= [H, ρ], (B.2)

with H as the total single electron Hamiltonian, written as

H(t) = H0 +HI(t), (B.3)

where H0 is the unperturbed time-independent Hamiltonian, and HI(t) is the time-
dependent potential energy due to the interaction of the electron with the elec-
tromagnetic field. H0 has eigenvalues ~ωn(k) and eigenstates |nk〉 (Bloch states)
labeled by a band index n and crystal momentum k.

To proceed with the solution of Eq. (B.2) it is convenient to use the interaction
picture, where one uses a unitary operator U = exp(iH0t/~) to transform any
operator Ô into Õ = UÔU †, where even if Ô does not depend on t, Õ does depend
through the explicit dependence of U . Then Eq. (B.2) leads to

i~
dρ̃

dt
= [H̃i, ρ̃], (B.4)

with solution

i~ρ̃(t) = i~ρ̃0 +

∫ t

−∞

dt′[H̃I(t
′), ρ̃(t′)], (B.5)

where ρ̃0 = ρ̃(t = −∞) is the unperturbed density matrix. We look for the standard
perturbation series solution,

ρ̃(t) = ρ̃(0) + ρ̃(1) + ρ̃(2) + · · · , (B.6)
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where the superscript denotes the order (power) with which each term depends on
the perturbation HI . Then, Eq. (B.5) gives that the N -th order term is given by

ρ̃(N)(t) =
1

i~

∫ t

−∞

dt′[H̃I(t
′), ρ̃(N−1)(t′)]. (B.7)

The series is generated by the unperturbed density operator ρ̃(0) ≡ ρ̃0, assumed
to be the diagonal Fermi-Dirac distribution, 〈nk|ρ̃0|nk〉 = f(~ωn(k)) ≡ fn. For a
clean, cold (T = 0K) semiconductor fn = 1 for n a valence (v) or occupied band
and zero for n a conduction (c) or empty band.

We first look for the expectation value of the macroscopic current density, J,
through

J = eTr(ρṙ) = eTr(ρ̃ ˙̃r), (B.8)

where ṙ is the time derivative of the position operator of the electron of charge e,
given by

v ≡ ṙ =
1

i~
[r, H], (B.9)

with v the velocity operator of the electron. Then, we calculate the macroscopic
polarization density P related to J by dP/dt = J, and for a harmonic perturbing
electromagnetic field, we write the second order non-linear polarization for as,

P a(2)(2ω) = χabc(−2ω;ω, ω)Eb(ω)Ec(ω), (B.10)

where χabc is the second harmonic non-linear susceptibility responsible of second
harmonic generation (SHG). The roman superscripts in Eq. (B.10) denote Cartesian
directions and if repeated they have to be summed upon, and we see that χabc must
satisfy the intrinsic permutation symmetry, χabc = χacb.

B.0.2 Scissors Hamiltonian

As it is well known, LDA underestimates the band gap. A procedure to fix this is
to use the so called scissors correction by which one could only shift the conduction
bands in energy, so that the band gap corresponds to the accepted experimental, or
GW band gap.[Hybertsen 1986, Cabellos 2009a, Cabellos 2011] Concurrently, one
uses the LDA wave functions since they produce band structures with dispersion
relations similar to those predicted by the GW approximation. Then, the scissors
term Ŝ,

Ŝ = ~∆
∑

n

∫

d3k(1− fn)|nk〉〈nk|, (B.11)

where ~∆ is the rigid (k-independent) energy correction to be applied. The scissored
Hamiltonian is

HS
0 = H0 + S(r,p), (B.12)
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where S(r,p) is the coordinate representation of Ŝ, and H0 is the unscissored or
LDA Hamiltonian,

H0 =
p2

2m
+ V (r), (B.13)

with m the mass of the electron, p its canonical momentum given by −i~∇, and
V (r) the periodic crystal potential. These Hamiltonians satisfy

H0ψnk(r) = ~ωnkψnk(r), (B.14)

HS
0 ψnk(r) = ~ωS

nkψnk(r), (B.15)

with
ωS
nk = ωnk + (1− fn)∆, (B.16)

and ψnk(r) = 〈r|nk〉 is the coordinate representation of the ket |nk〉. As stated
above, the scissored Hamiltonian has the same wave functions as the unscissored
one.

B.1 Velocity-gauge Formalism

To calculate the optical response through the colloquially called “velocity-gauge”, we
use the minimal substitution through which the in the presence of an electromagnetic
field the Hamiltonian is written as

HS =
1

2m
(p−

e

c
A)2 + V (r) + S(r,p−

e

c
A), (B.17)

A is the vector potential, through which one calculates the magnetic field B = ∇×A

and the electric field E = −(1/c)Ȧ. We assume the long wavelength approximation
by which A is spatially constant and thus only depends on time. Furthermore we
use a harmonic perturbation such that A(t) = A(ω)e−iω̃t, where ω̃ = ω + iη, and
η > 0 is used to turn on the interaction, adiabatically. We can expand the scissors
operator according to,[Nastos 2005]

S(r,p−
e

c
A) = S(r,p)+

e

c

i

~
A · [r, S(r,p)]+

1

2!

(

e

c

i

~

)2

[A · r, [A · r, S(r,p)]] + · · · ,

(B.18)
then the scissored Hamiltonian up to second order in A is

HS = HS
0 +HI,1 +HI,2, (B.19)

where

HI,1 = −
e

c
A · vS , (B.20)

HI,2 = −
ie2

2~c2
[rb, vNL,c]AbAc +

e2

2mc2
A2, (B.21)
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are the linear and non-linear (second order) interaction Hamiltonians. We have
defined

vNL = −
i

~
[r, S(r,p)], (B.22)

as the non-local contribution to the velocity operator due to the scissors term, and

vS =
p

m
+ vNL, (B.23)

as the scissored velocity operator. From Eq. (B.9), we get that

ṙa = −
i

~
[ra, HS ]

= vS,a −
e

mc
Aa +

ie

~c
[ra, vNL,b]Ab −

e2

2~2c2
[ra, [rb, vNL,c]]AbAc, (B.24)

thus the current operator, j = eṙ, up to second order in A is

ja = ja0 + ja1 + ja2 , (B.25)

From Eq. (B.8),
J (1)a = Tr(ja0ρ

(1)) + Tr(ja1ρ
(0)), (B.26)

is the linear macroscopic current.

B.1.1 Linear Response

We derive the linear response as part of this thesis, we also derive some results that
will be used for the Edgar’s Doctoral project, any way. Taking matrix elements of
Eq. (B.7) and using Eq. (B.20) we have

ρ̃(1)mn(t) =
ei

~c

∫ t

−∞

dt′Ab(t′)
∑

ℓ

(

ṽS,bmℓ(t
′)ρ̃

(0)
ℓn (t′)− ρ̃

(0)
mℓ(t

′)ṽS,bℓn (t′)
)

, (B.27)

where the sum over ℓ is over all states, and we have omitted k from the already
crowded notation. Since U(t) = exp(iHS

0 t/~), we get

ṽS,bmℓ(t
′) = 〈mk|U(t′)vS,bU(t′)†|ℓk〉 = eiω

S

mℓ
t′vS,bmℓ , (B.28)

and ρ̃0ℓn(t
′) = fℓ∆ℓn, then

ρ̃(1)mn(t) = =
ei

~c
fnmv

S,b
mnA

b
0

∫ t

−∞

dt′ei(ω
S
mn−ω)t

′

=
e

~c

vS,bmnfnm
ωS
mn − ω

Ab(t)eiω
S
mnt, (B.29)

from where, we get

ρ(1)mn(t) =
e

~c

fnmv
S,b
mn

ωS
mn − ω

Ab(t). (B.30)
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From Eq. (B.26) (using the cyclic invariance of the trace),

J (1)a(t) = eTr
(

vS,aρ(1)
)

+ eTr
(

ρ(0)
(

−
e

mc
Aa +

ie

~c
Ab[ra, vNL,b]

))

= e

∫

d3k

8π3

∑

mn

vS,anmρ
(1)
mn −

e2n

mc
Aa +

ie2

~c
AbTr(ρ(0)[ra, vNL,b])

=
(−ie2

~ω

∫

d3k

8π3

∑

mn

vS,anmv
S,b
mnfnm

ωS
mn − ω

+
ie2n

mω
δab +

e2

~ω
Tr(ρ(0)Fab)

)

Eb(t),(B.31)

we have defined
Fab = [ra, vNL,b], (B.32)

and we used A(t) = −i(c/ω)E(t) and Tr(ρ(0)) = n with n the electronic density.
We use dP/dt = J to write P a(ω) = (i/ω)Ja(ω) = χab(−ω;ω)Eb(ω), where

χab(−ω;ω) =
e2

~ω2

∫

d3k

8π3

∑

mn

vS,anmv
S,b
mnfnm

ωS
mn − ω

−
e2n

mω2
δab +

ie2

~ω2
Tr(ρ(0)Fab)

=
e2

~

∫

d3k

8π3

∑

mn

fnmv
S,a
nmv

S,b
mn

( 1

(ωS
mn)

2(ωS
mn − ω)

+
1

(ωS
mn)

2ω
+

1

ωS
mnω

2

)

−
e2n

mω2
δab +

ie2

~ω2
Tr(ρ(0)Fab), (B.33)

is the linear susceptibility within the scissored Hamiltonian. Using time reversal
symmetry vSmn(−k) = −vSnm(k) and ωS

mn(−k) = ωS
mn(k), we can easily show that

the contribution to J(1) coming from the second term in the right hand side (rhs)
of Eq. (B.33) cancels. By simple subindex manipulation, the third term, combined
with the fourth term in the rhs of Eq. (B.33), gives

1

ω2

(e2

~

∫

d3k

8π3

∑

vc

vS,avc v
S,b
cv + vS,acv v

S,b
vc

ωS
cv

−
e2n

m
δab

)

≡
ζab

ω2
. (B.34)

The last term in the rhs of Eq. (B.33) reduces to

ie2

~ω2
Tr(ρ(0)Fab) =

ie2

~ω2

∫

d3k

8π3

∑

mn

ρ(0)mnF
ab
nm

=
ie2

~ω2

∫

d3k

8π3

∑

n

fnF
ab
nn

=
−e2∆

~ω2

∫

d3k

8π3

∑

vc

(ravcr
b
cv + rbvcr

a
cv) ≡

ηab

ω2
, (B.35)

where
Fab
nn = i∆

∑

ℓ6=n

fnℓ(r
a
nℓr

b
ℓn + rbnℓr

a
ℓn). (B.36)

We can show in general that,

Fbc
nm(k) = Fbc

i,nm(k) + Fbc
e,nm(k), (B.37)
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with

Fbc
e,nm(k) = [rbe, v

NL,c]nm = i∆
(

∑

p 6=m

fnpr
c
np(k)r

b
pm(k)−

∑

p 6=n

fpmr
b
np(k)r

c
pm(k)

)

,

(B.38)
and

Fbc
i,nm(k) = [rbi , v

NL,c]nm = ∆fnmr
c
nm;b(k). (B.39)

This is done by decomposing r into its interband part re and intraband part ri;
using the following property of ri,

〈nk|[ri,O]|mk′〉 = iδ(k− k′)(Onm);k, (B.40)

whereO is an operator and (Onm);k the generalized derivative of its matrix elements,
and the matrix elements of re simply calculated through

(re)nm → rnm =
pnm

imωnm
n 6= m. (B.41)

The generalized derivative rbnm;ka is explicitly given by,

rbnm;ka =
ranm∆b

mn + rbnm∆a
mn

ωnm
+

i

ωnm

∑

ℓ

(

ωℓmr
a
nℓr

b
ℓm − ωnℓr

b
nℓr

a
ℓm

)

, (B.42)

where ∆a
nm = (pann − pamm)/m is the difference between the electron velocity at

bands n and m. Considering that both the non-diagonal matrix elements of r, rnm,
and its generalized derivative, rnm;k, are evaluated using the unscissored energies,
and the canonical momentum matrix elements given by

pnm = 〈nk|p|mk〉 =

∫

d3rψnk(r)(−i~∇)ψmk(r). (B.43)

Finally, Eq. (B.33) reduces to

χab(−ω;ω) =
e2

~

∫

d3k

8π3

∑

mn

vS,anmv
S,b
mnfnm

(ωS
mn)

2(ωS
mn − ω)

+
ζab

ω2
+
ηab

ω2
. (B.44)

We can use

vS
nm = vnm

ωS
nm

ωnm
, (B.45)

where vnm = pnm/m, then Eq. (B.34) reduces to (ωS
cv = ωcv + δ)

ζab =
e2

~

∫

d3k

8π3

∑

vc

ωS
cv

vavcv
b
cv + vacvv

b
vc

ω2
cv

−
e2n

m
δab

= −e2
∫

d3k

8π3

∑

v

fv
(δab
m
−

∑

c

vavcv
b
cv + vacvv

b
vc

~ωcv

)

+
e2∆

~

∫

d3k

8π3

∑

vc

vavcv
b
cv + vacvv

b
vc

ω2
cv

.

= −e2
∫

d3k

8π3

∑

v

fv

[

1

m∗v

]ab

+
e2∆

~

∫

d3k

8π3

∑

vc

(

ravcr
b
cv + racvr

b
vc

)

, (B.46)
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where [1/m∗v]
ab is the effective mass tensor. The second term in the rhs of Eq. (B.46)

is −ηab, then above equation leads to

ζab + ηab = −e2
∫

d3k

8π3

∑

v

fv

[

1

m∗v(k)

]ab

, (B.47)

with which we obtain the following result for the linear susceptibility

χab(−ω;ω) =
e2

~

∫

d3k

8π3

∑

mn

vanmv
b
mnfnm

ω2
mn(ω

S
mn − ω)

−
e2

ω2

∫

d3k

8π3

∑

v

fv

[

1

m∗v(k)

]ab

.(B.48)

For a clean, cold semiconductor the integration over the Brillouin Zone of the term
involving the effective mass tensor vanishes identically, which implies

Im[χab(−ω;ω)] =
πe2

~

∫

dk

8π3

∑

cv

Re{ravc(k)r
b
cv(k)}δ(ω

S
cv(k)− ω), (B.49)

Our result show, that simply states that for the linear response, the scissors cor-
rection only shifts rigidly the energy position of the LDA spectrum by ∆. This
Equation B.50 is important in this thesis, and with it we computed the imaginary
part of the linear optical response.

Im[χab(−ω;ω)] =
πe2

~

∫

dk

8π3

∑

cv

Re{ravc(k)r
b
cv(k)}δ(ω

S
cv(k)− ω), (B.50)





Bibliography

[Adair 1989] Robert Adair, L. L. Chase and Stephen A. Payne. Nonlinear refractive
index of optical crystals. Phys. Rev. B, vol. 39, pages 3337–3350, Feb 1989.
24

[Adler 1962] Stephen L. Adler. Quantum Theory of the Dielectric Constant in Real
Solids. Phys. Rev., vol. 126, pages 413–420, Apr 1962. 45

[Afanasyev 2021] Dmitriy Afanasyev, Niyazbek Ibrayev and Nurxat Nuraje. Ef-
fect of Plasmonic Nanostructures on the Optical Properties of CH3NH3PbI
Perovskite Films. Frontiers in Materials, vol. 7, page 492, 2021. 53

[Ahmed 2014] Towfiq Ahmed, C. La o vorakiat, T. Salim, Y. M. Lam, Elbert E. M.
Chia and Jian-Xin Zhu. Optical properties of organometallic perovskite: An
ab initio study using relativistic GW correction and Bethe-Salpeter equation.
EPL (Europhysics Letters), vol. 108, no. 6, page 67015, dec 2014. 36

[Akkus 2007] Harun Akkus and Amirullah M Mamedov. Ab initiocalculations of the
electronic structure and linear optical properties, including self-energy effects,
for paraelectric SbSI. Journal of Physics: Condensed Matter, vol. 19, no. 11,
page 116207, mar 2007. 25

[Aleman-Nava 2014] Gibran S. Aleman-Nava, Victor H. Casiano-Flores, Diana L.
Cardenas-Chavez, Rocio Daaz-Chavez, Nicolae Scarlat, Jurgen Mahlknecht,
Jean-Francois Dallemand and Roberto Parra. Renewable energy research
progress in Mexico: A review. Renewable and Sustainable Energy Reviews,
vol. 32, pages 140–153, 2014. 1

[Anderson 2015] Sean M. Anderson, Nicolas Tancogne-Dejean, Bernardo S. Men-
doza and Valérie Véniard. Theory of surface second-harmonic generation for
semiconductors including effects of nonlocal operators. Phys. Rev. B, vol. 91,
page 075302, Feb 2015. 21, 45

[Argaman 2000] Nathan Argaman and Guy Makov. Density functional theory: An
introduction. American Journal of Physics, vol. 68, no. 1, pages 69–79, 2000.
13

[Ashcroft 1976] W. Ashcroft, N.W. Ashcroft, N.D. Mermin, N.D. Mermin and
Brooks/Cole Publishing Company. Solid state physics. HRW international
editions. Holt, Rinehart and Winston, 1976. 16, 21

[Askeland 2010] Donald R. Askeland and Pradeep P. Fulay. The Science & Engi-
neering of Materials. Cengage Learning, sixth edition édition, 2010. 21



74 Bibliography

[Aversa 1995] Claudio Aversa and J. E. Sipe. Nonlinear optical susceptibilities of
semiconductors: Results with a length-gauge analysis. Phys. Rev. B, vol. 52,
pages 14636–14645, Nov 1995. 16

[Bachelet 1982] Giovanni Bachelet. Relativistic norm-conserving pseudopotentials.
Physical Review B, vol. 25, no. 4, 1982. 15

[Barca 2020] Giuseppe M.J. Barca, Colleen Bertoni, Laura Carrington, Dipayan
Datta, Nuwan De Silva, J. Emiliano Deustua, Dmitri G. Fedorov, Jeffrey R.
Gour, Anastasia O. Gunina, Emilie Guidez, Taylor Harville, Stephan Irle,
Joe Ivanic, Karol Kowalski, Sarom S. Leang, Hui Li, Wei Li, Jesse J. Lutz,
Ilias Magoulas, Joani Mato, Vladimir Mironov, Hiroya Nakata, Buu Q.
Pham, Piotr Piecuch, David Poole, Spencer R. Pruitt, Alistair P. Rendell,
Luke B. Roskop, Klaus Ruedenberg, Tosaporn Sattasathuchana, Michael W.
Schmidt, Jun Shen, Lyudmila Slipchenko, Masha Sosonkina, Vaibhav Sun-
driyal, Ananta Tiwari, Jorge L. Galvez Vallejo, Bryce Westheimer, Marta
Włoch, Peng Xu, Federico Zahariev and Mark S. Gordon. Recent devel-
opments in the general atomic and molecular electronic structure system.
Journal of Chemical Physics, vol. 152, no. 15, 2020. 14

[Becke 2014a] Axel Becke. Perspective: Fifty years of density-functional theory in
chemical physics. The Journal of chemical physics, vol. 140, page 18A301,
05 2014. 11

[Becke 2014b] Axel D. Becke. Perspective: Fifty years of density-functional theory
in chemical physics. Journal of Chemical Physics, vol. 140, no. 18, may 2014.
3

[Beiser 1987] A. Beiser. Concepts of modern physics. McGraw-Hill International
Student Editions. McGraw-Hill, 1987. 15

[Benmir 2013] A. Benmir and M.S. Aida. Analytical Modeling and Simulation of
CIGS Solar Cells. Energy Procedia, vol. 36, pages 618–627, 2013. TerraGreen
13 International Conference 2013 - Advancements in Renewable Energy and
Clean Environment. 1

[Bennink 1999] Ryan S. Bennink, Young-Kwon Yoon, Robert W. Boyd and J. E.
Sipe. Accessing the optical nonlinearity of metals with metal dielectric pho-
tonic bandgap structures. Opt. Lett., vol. 24, no. 20, pages 1416–1418, Oct
1999. 22

[Berestetskii 2012] V.B. Berestetskii, L.P. Pitaevskii and E.M. Lifshitz. Quantum
electrodynamics: Volume 4. Numeéro v. 4. Elsevier Science, 2012. 17

[Boyd 2013] R.W. Boyd. Nonlinear optics. Elsevier Science, 2013. 16

[Burke 2012] Kieron Burke. Perspective on density functional theory. Journal of
Chemical Physics, vol. 136, no. 15, apr 2012. 12



Bibliography 75

[Burschka 2013] Julian Burschka, Norman Pellet, Soo-Jin Moon, Robin Humphry-
Baker, Peng Gao, Mohammad K. Nazeeruddin and Michael Grätzel. Se-
quential deposition as a route to high-performance perovskite-sensitized solar
cells. Nature, vol. 499, no. 7458, pages 316–319, Jul 2013. 34

[Cabellos 2009a] J. L. Cabellos, Bernardo S. Mendoza, M. A. Escobar, F. Nastos
and J. E. Sipe. Effects of nonlocality on second-harmonic generation in bulk
semiconductors. Phys. Rev. B, vol. 80, page 155205, Oct 2009. 5, 12, 21, 22,
45, 46, 65, 66

[Cabellos 2009b] J. L. Cabellos, Cuauhtémoc Salazar and Bernardo S. Mendoza.
Stress-modulated optical spin injection in bulk Si and GaAs semiconductors.
Phys. Rev. B, vol. 80, page 245204, Dec 2009. 5

[Cabellos 2011] J. L. Cabellos, Bernardo S. Mendoza and A. I. Shkrebtii. Optical
coherent current control at surfaces: Theory of injection current. Phys. Rev.
B, vol. 84, page 195326, Nov 2011. 5, 65, 66

[Cai 2017] Molang Cai, Yongzhen Wu, Han Chen, Xudong Yang, Yinghuai Qiang
and Liyuan Han. Cost-Performance Analysis of Perovskite Solar Modules.
Advanced Science, pages 1–6, 2017. 2

[Cargnoni 2000] Fausto Cargnoni, Carlo Gatti, Emanuela May and Dario Narducci.
Geometrical reconstructions and electronic relaxations of silicon surfaces. I.
An electron density topological study of H-covered and clean Si(111)(1×1)
surfaces. The Journal of Chemical Physics, vol. 112, no. 2, pages 887–899,
2000. iii, 22

[Castillo-Quevedo 2020] Cesar Castillo-Quevedo, Jose Luis Cabellos, Raul Aceves,
Roberto Nuez-Gonzalez and Alvaro Posada-Amarillas. Cu-Doped KCl Un-
folded Band Structure and Optical Properties Studied by DFT Calculations.
Materials, vol. 13, no. 19, 2020. 12, 21, 34

[Che 2008] Renchao Che, Ruijuan Xiao, Chongyun Liang, Huaixin Yang, Chao Ma,
Honglong Shi and Jianqi Li. Electron energy-loss spectroscopy andab ini-
tioelectronic structure of the LaOFeP superconductor. Physical Review B,
vol. 77, no. 18, May 2008. 25

[Chimata 2010] Raghuveer Chimata. Optical Properties of Materials Calculated
from First Principles Theory. PhD thesis, Uppsala University, 2010. 23

[Clark 2005] Stewart J. Clark, Matthew D. Segall, Chris J. Pickard, Phil J. Hasnip,
Matt I.J. Probert, Keith Refson and Mike C. Payne. First principles methods
using CASTEP. Zeitschrift fur Kristallographie, vol. 220, no. 5-6, pages 567–
570, 2005. 14



76 Bibliography

[Denteneer 1987] P.J.H. Denteneer. The pseudopotential-density-functional method
applied to semiconducting crystals. PhD thesis, Technische Universiteit Eind-
hoven, 1987. 14

[Diana Marcela Montoya Montoya 2016] Diana Marcela Montoya Montoya. Pelícu-
las Orgánico-Inorgánicas con Estructura Perovskita como Capa Activa en
Dispositivos Fotovoltaicos. PhD thesis, Centro de Investigaciones en Optica
A.C., Guanajuato, 2016. 8

[Diau 2017] Eric Diau and Peter Chen. Perovskite Solar Cells: Principle, Materials
and Devices. World Scientific Publishing, Singapore, volume 1 édition, 2017.
4

[Dominikowska 2016] Justyna Dominikowska, Miroslaw Jablonski and Marcin Palu-
siak. Feynman force components, basis for a solution to the covalent vs. ionic
dilemma. Phys. Chem. Chem. Phys., vol. 18, pages 25022–25026, 2016. 28

[Ehrenreich 1959] H. Ehrenreich and M. H. Cohen. Self-Consistent Field Approach
to the Many-Electron Problem. Phys. Rev., vol. 115, pages 786–790, Aug
1959. 45

[El-Nahass 2016] M. M. El-Nahass, H. S. Soliman and A. El-Denglawey. Absorption
edge shift, optical conductivity, and energy loss function of nanoÂ thermal-
evaporated N-type anatase TiO2 films. Applied Physics A, vol. 122, no. 8,
page 775, Jul 2016. 53

[Eljarrat 2016] A. Eljarrat, L. López-Conesa, S. Estradé and F. Peiró. Electron en-
ergy loss spectroscopy on semiconductor heterostructures for optoelectronics
and photonics applications. Journal of Microscopy, vol. 262, no. 2, pages
142–150, 2016. 25

[Ellabban 2014] Omar Ellabban, Haitham Abu-Rub and Frede Blaabjerg. Renew-
able energy resources: Current status, future prospects and their enabling
technology. Renewable and Sustainable Energy Reviews, vol. 39, pages 748–
764, 2014. 1

[Eperon 2014] Giles E. Eperon, Samuel D. Stranks, Christopher Menelaou,
Michael B. Johnston, Laura M. Herz and Henry J. Snaith. Formamidinium
lead trihalide: A broadly tunable perovskite for efficient planar heterojunction
solar cells. Energy and Environmental Science, 2014. 8

[Eswaramoorthy 2020] Nandhakumar Eswaramoorthy and Kamatchi R. Fabrica-
tion and manufacturing process of perovskite solar cell, chapitre 3, pages
67–101. John Wiley and Sons, Ltd, 2020. 34

[Fan 2010] Qi Hua Fan, Changyong Chen, Xianbo Liao, Xianbi Xiang, Shibin
Zhang, W. Ingler, Nirupama Adiga, Zhihua Hu, Xinmin Cao, Wenhui Du
and Xunming Deng. High efficiency silicon-germanium thin film solar cells



Bibliography 77

using graded absorber layer. Solar Energy Materials and Solar Cells, vol. 94,
no. 7, pages 1300–1302, 2010. 1

[Feng 2014] Jing Feng. Mechanical properties of hybrid organic-inorganic
CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers.
APL Materials, vol. 2, no. 8, page 081801, 2014. 13

[Fermi 1928] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigen-
schaften des Atoms und ihre Anwendung auf die Theorie des periodischen
Systems der Elemente. Science, vol. 48, pages 73–79, 1928. 12

[Filip 2018] Marina R. Filip, George Volonakis and Feliciano Giustino. Hybrid
halide perovskites: Fundamental theory and materials design, pages 1–30.
Springer International Publishing, Cham, 2018. 34

[Fischer 1995] George L. Fischer, Robert W. Boyd, Russell J. Gehr, Samson A.
Jenekhe, John A. Osaheni, J. E. Sipe and Laura A. Weller-Brophy. Enhanced
Nonlinear Optical Response of Composite Materials. Phys. Rev. Lett., vol. 74,
pages 1871–1874, Mar 1995. 22

[Fox 2001] Mark Fox. Optical properties of solids, volume 70. 01 2001. 24

[Fox 2006] A.M. Fox, M. Fox, D.P.A.M. Fox and Oxford University Press. Quantum
optics: An introduction. Oxford Master Series in Physics. OUP Oxford, 2006.
16

[G. Burns 1990] A. M. Glazer G. Burns. Space Groups for Solid State Scientists.
Academic Press, Boston, first edition édition, 1990. 15

[Gehr 1996] Russell J. Gehr, George L. Fischer, Robert W. Boyd and J. E. Sipe.
Nonlinear optical response of layered composite materials. Phys. Rev. A,
vol. 53, pages 2792–2798, Apr 1996. 22

[Geist 1990] Jon Geist, A. Russell Schaefer, Jun-Feng Song, Yun Hsia Wang and
Edward F. Zalewski. An Accurate Value for the Absorption Coefficient of
Silicon at 633 nm. Journal of research of the National Institute of Standards
and Technology, vol. 95, no. 5, pages 549–558, 1990. 28179791[pmid]. 24, 25

[Geng 2014] Wei Geng, Le Zhang, Yan-Ning Zhang, Woon-Ming Lau and Li-Min
Liu. First-Principles Study of Lead Iodide Perovskite Tetragonal and Or-
thorhombic Phases for Photovoltaics. The Journal of Physical Chemistry C,
vol. 118, no. 34, pages 19565–19571, 2014. 13

[Giannozzi 2009] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calan-
dra, Roberto Car, Carlo Cavazzoni, Davide Ceresoli, Guido L. Chiarotti,
Matteo Cococcioni, Ismaila Dabo, Andrea Dal Corso, Stefano De Giron-
coli, Stefano Fabris, Guido Fratesi, Ralph Gebauer, Uwe Gerstmann, Chris-
tos Gougoussis, Anton Kokalj, Michele Lazzeri, Layla Martin-Samos, Nicola



78 Bibliography

Marzari, Francesco Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo
Pasquarello, Lorenzo Paulatto, Carlo Sbraccia, Sandro Scandolo, Gabriele
Sclauzero, Ari P. Seitsonen, Alexander Smogunov, Paolo Umari and Re-
nata M. Wentzcovitch. QUANTUM ESPRESSO: A modular and open-source
software project for quantum simulations of materials. Journal of Physics
Condensed Matter, vol. 21, no. 39, 2009. 3, 4, 13

[Giannozzi 2017] P Giannozzi, O Andreussi, T Brumme, O Bunau, M Buongiorno
Nardelli, M Calandra, R Car, C Cavazzoni, D Ceresoli, M Cococcioni,
N Colonna, I Carnimeo, A Dal Corso, S de Gironcoli, P Delugas, R A
DiStasio, A Ferretti, A Floris, G Fratesi, G Fugallo, R Gebauer, U Ger-
stmann, F Giustino, T Gorni, J Jia, M Kawamura, H-Y Ko, A Kokalj,
E KÃ1

4çÃ
1
4kbenli, M Lazzeri, M Marsili, N Marzari, F Mauri, N L Nguyen,

H-V Nguyen, A Otero de-la Roza, L Paulatto, S Poncé, D Rocca, R Sabatini,
B Santra, M Schlipf, A P Seitsonen, A Smogunov, I Timrov, T Thonhauser,
P Umari, N Vast, X Wu and S Baroni. Advanced capabilities for materi-
als modelling with Quantum ESPRESSO. Journal of Physics: Condensed
Matter, vol. 29, no. 46, page 465901, oct 2017. 3, 4

[Giannozzi 2020] Paolo Giannozzi, Oscar Baseggio, Pietro BonfÃ , Davide Brunato,
Roberto Car, Ivan Carnimeo, Carlo Cavazzoni, Stefano de Gironcoli, Pietro
Delugas, Fabrizio Ferrari Ruffino, Andrea Ferretti, Nicola Marzari, Iurii Tim-
rov, Andrea Urru and Stefano Baroni. Quantum ESPRESSO toward the ex-
ascale. The Journal of Chemical Physics, vol. 152, no. 15, page 154105, 2020.
3, 4

[Gielen 2019] Dolf Gielen, Francisco Boshell, Deger Saygin, Morgan D. Bazilian,
Nicholas Wagner and Ricardo Gorini. The role of renewable energy in the
global energy transformation. Energy Strategy Reviews, vol. 24, pages 38–50,
2019. 1

[Giorgi 2015] Giacomo Giorgi and Koichi Yamashita. Alternative, Lead-free, Hy-
brid Organic-Inorganic Perovskites for Solar Applications: A DFT Analysis.
Chemistry Letters, vol. 44, no. 6, pages 826–828, 2015. 13

[Gomes 2019] Eduardo O. Gomes, Guilherme S.L. Fabris, Mateus M. Ferrer, Fabi-
ana V. Motta, Mauricio R.D. Bomio, Juan Andres, Elson Longo and Julio R.
Sambrano. Computational procedure to an accurate DFT simulation to solid
state systems. Computational Materials Science, vol. 170, page 109176, 2019.
3

[Gonze 2002] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M.
Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy,
M. Mikami, Ph. Ghosez, J.-Y. Raty and D.C. Allan. First-principles compu-
tation of material properties: The ABINIT software project. Computational
Materials Science, vol. 25, no. 3, pages 478–492, November 2002. 3



Bibliography 79

[Gonze 2005] Xavier Gonze. A brief introduction to the ABINIT software package.
Zeitschrift fÃ1

4r Kristallographie - Crystalline Materials, vol. 220, no. 5-6,
pages 558–562, 2005. 3

[Green 1982] M.A. Green. Solar cells: Operating principles, technology, and sys-
tem applications. Prentice-Hall Contemporary Comparative Politics Series.
Prentice-Hall, 1982. 24

[Green 2014] Martin A. Green, Anita Ho-Baillie and Henry J. Snaith. The emer-
gence of perovskite solar cells. Nature Photonics, no. 8, pages 506–514, 2014.
iii, 7

[Green 2015] Martin A. Green, Yajie Jiang, Arman Mahboubi Soufiani and Anita
Ho-Baillie. Optical Properties of Photovoltaic Organic-Inorganic Lead Halide
Perovskites. The Journal of Physical Chemistry Letters, vol. 6, no. 23, pages
4774–4785, 2015. PMID: 26560862. 30

[He 1999] G. He and S.H. Liu. Physics of nonlinear optics. World Scientific, 1999.
16

[Hecht 2017] E. Hecht. Optics. Pearson Education, Incorporated, 2017. 25

[Heine 1970] Volker Heine. The Pseudopotential Concept. volume 24 of Solid State
Physics, pages 1–36. Academic Press, 1970. 14

[Hernández-Haro 2019] Noemí Hernández-Haro, Joaquín Ortega-Castro,
Yaroslav B. Martynov, Rashid G. Nazmitdinov and Antonio Frontera.
DFT prediction of band gap in organic-inorganic metal halide perovskites:
An exchange-correlation functional benchmark study. Chemical Physics,
vol. 516, pages 225–231, 2019. 13

[HervÃ c© 1994] P. HervÃ c© and L.K.J. Vandamme. General relation between refrac-
tive index and energy gap in semiconductors. Infrared Physics & Technology,
vol. 35, no. 4, pages 609–615, 1994. 50

[Herz 2017] Laura M. Herz. Charge-Carrier Mobilities in Metal Halide Perovskites:
Fundamental Mechanisms and Limits. ACS Energy Letters, vol. 2, no. 7,
pages 1539–1548, 2017. 34

[Hohenberg 1964] P. Hohenberg. Inhomogeneous Electron Gas. PHYSICAL RE-
VIEW, vol. 136, no. 3 B, pages 864–871, 1964. 4, 12

[Huang 2019] Fei Huang, Mengjie Li, Peter Siffalovic, Guozhong Cao and Jianjun
Tian. From scalable solution fabrication of perovskite films towards commer-
cialization of solar cells. Energy Environ. Sci., vol. 12, pages 518–549, 2019.
1



80 Bibliography

[Huang 2021] Hsin-Hsiang Huang, Qi-Han Liu, Hsinhan Tsai, Shreetu Shrestha, Li-
Yun Su, Po-Tuan Chen, Yu-Ting Chen, Tso-An Yang, Hsin Lu, Ching-Hsiang
Chuang, King-Fu Lin, Syang-Peng Rwei, Wanyi Nie and Leeyih Wang. A
simple one-step method with wide processing window for high-quality per-
ovskite mini-module fabrication. Joule, vol. 5, no. 4, pages 958–974, 2021.
34

[Hutchings 1992] D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan and E. W.
Van Stryland. Kramers-Krönig relations in nonlinear optics. Optical and
Quantum Electronics, vol. 24, no. 1, pages 1–30, Jan 1992. 23

[Hybertsen 1986] Mark S. Hybertsen and Steven G. Louie. Electron correlation in
semiconductors and insulators: Band gaps and quasiparticle energies. Phys.
Rev. B, vol. 34, no. 8, pages 5390–5413, Oct 1986. 12, 21, 66

[Indari 2017] E. D. Indari, T. D.K. Wungu and R. Hidayat. Ab-Initio Calculation of
Electronic Structure of Lead Halide Perovskites with Formamidinium Cation
as an Active Material for Perovskite Solar Cells. In Journal of Physics:
Conference Series, volume 877. Institute of Physics Publishing, aug 2017. 8

[Janesko 2021] Benjamin G. Janesko. Replacing hybrid density functional theory:
motivation and recent advances. Chem. Soc. Rev., pages –, 2021. 11, 13

[Jellison 1999] G.E. Jellison. Ellipsometry. In John C. Lindon, editeur, Encyclo-
pedia of Spectroscopy and Spectrometry, pages 402–411. Elsevier, Oxford,
1999. 57, 58

[Jeon 2014a] Nam Joong Jeon, Jun Hong Noh, Young Chan Kim, Woon Seok Yang,
Seungchan Ryu and Sang Il Seok. Solvent engineering for high-performance
inorganic–organic hybrid perovskite solar cells. Nature Materials, vol. 13,
no. 9, pages 897–903, Sep 2014. 34

[Jeon 2014b] Nam Joong Jeon, Jun Hong Noh, Young Chan Kim, Woon Seok Yang,
Seungchan Ryu and Sang Il Seok. Solvent engineering for high-performance
inorganic-organic hybrid perovskite solar cells. Nature Materials, vol. 13,
no. 9, pages 897–903, 2014. 1

[Kanemitsu 2017] Yoshihiko Kanemitsu. Luminescence spectroscopy of lead-halide
perovskites: materials properties and application as photovoltaic devices. J.
Mater. Chem. C, vol. 5, pages 3427–3437, 2017. vi, 58

[Keast 2005] V.J. Keast. Ab initio calculations of plasmons and interband tran-
sitions in the low-loss electron energy-loss spectrum. Journal of Electron
Spectroscopy and Related Phenomena, vol. 143, no. 2, pages 97–104, 2005.
Electron Energy Loss Spectroscopy in the Electron Microscope. 25



Bibliography 81

[Kieslich 2014] Gregor Kieslich, Shijing Sun and Anthony K. Cheetham. Solid-state
principles applied to organic-inorganic perovskites, new tricks for an old dog.
Chem. Sci., vol. 5, pages 4712–4715, 2014. 30

[Kim 2014] Jongseob Kim, Sung-Hoon Lee, Jung Hoon Lee and Ki-Ha Hong. The
Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. The
Journal of Physical Chemistry Letters, vol. 5, no. 8, pages 1312–1317, 2014.
13

[Kittel 2004] C. Kittel. Introduction to solid state physics. Wiley, 2004. 16, 21

[Klimeš 2011] Ji ří Klimeš, David R. Bowler and Angelos Michaelides. Van der
Waals density functionals applied to solids. Phys. Rev. B, vol. 83, page
195131, May 2011. 13

[Kohn 1965] W. Kohn and L. J. Sham. Self-Consistent Equations Including Ex-
change and Correlation Effects. Phys. Rev., vol. 140, pages A1133–A1138,
Nov 1965. 12, 13

[Kojima 2009] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai and Tsutomu
Miyasaka. Organometal halide perovskites as visible-light sensitizers for pho-
tovoltaic cells. Journal of the American Chemical Society, 2009. 9

[Kovalev 1965] O. V. Kovalev. Irreducible Representations of the Space Groups.
Gordon and Breach, New York, first edition édition, 1965. 15

[KRANE 1996] K.A. KRANE and K.S. Krane. Modern physics. Milestones in the
history of modern physics. Wiley, 1996. 19

[Kresse 1993a] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid
metals. Phys. Rev. B, vol. 47, pages 558–561, Jan 1993. 3

[Kresse 1993b] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid
metals. Physical Review B, vol. 47, no. 1, pages 558–561, 1993. 3, 14

[Kresse 1996] G. Kresse and J. FurthmÃ1
4 ller. Efficiency of ab-initio total energy

calculations for metals and semiconductors using a plane-wave basis set.
Computational Materials Science, vol. 6, no. 1, pages 15–50, 1996. 3

[Kühne 2020] Thomas D. Kühne, Marcella Iannuzzi, Mauro Del Ben, Vladimir V.
Rybkin, Patrick Seewald, Frederick Stein, Teodoro Laino, Rustam Z. Khali-
ullin, Ole Schütt, Florian Schiffmann, Dorothea Golze, Jan Wilhelm, Sergey
Chulkov, Mohammad Hossein Bani-Hashemian, Valéry Weber, Urban Boršt-
nik, Mathieu Taillefumier, Alice Shoshana Jakobovits, Alfio Lazzaro, Hans
Pabst, Tiziano Müller, Robert Schade, Manuel Guidon, Samuel Andermatt,
Nico Holmberg, Gregory K. Schenter, Anna Hehn, Augustin Bussy, Fabian
Belleflamme, Gloria Tabacchi, Andreas Glöß, Michael Lass, Iain Bethune,
Christopher J. Mundy, Christian Plessl, Matt Watkins, Joost VandeVondele,



82 Bibliography

Matthias Krack and Jürg Hutter. CP2K: An electronic structure and molec-
ular dynamics software package -Quickstep: Efficient and accurate electronic
structure calculations. Journal of Chemical Physics, vol. 152, no. 19, 2020.
14

[Lamichhane 2020] Aneer Lamichhane and Nuggehalli M. Ravindra. Energy Gap-
Refractive Index Relations in Perovskites. Materials (Basel, Switzerland),
vol. 13, no. 8, page 1917, Apr 2020. 32325802[pmid]. 49, 51

[Lamichhane 2021] Aneer Lamichhane and N M Ravindra. First-principles study of
cubic alkaline-earth metal zirconate perovskites. Journal of Physics Commu-
nications, vol. 5, no. 3, page 035006, mar 2021. 51

[Lee 2004] Ming-Hsien Lee, Chou-Hsun Yang and Jeng-Huei Jan. Band-resolved
analysis of nonlinear optical properties of crystalline and molecular materials.
Phys. Rev. B, vol. 70, page 235110, Dec 2004. 46

[Lee 2012] Michael M. Lee, Joël Teuscher, Tsutomu Miyasaka, Takurou N. Mu-
rakami and Henry J. Snaith. Efficient Hybrid Solar Cells Based on Meso-
Superstructured Organometal Halide Perovskites. Science, vol. 338, no. 6107,
pages 643–647, 2012. 34

[Lee 2014] Youn-Jung Lee, Byung-Sung Kim, S. Ifitiquar, Cheolmin Park and Jun-
sin Yi. Silicon solar cells: Past, present and the future. Journal of the Korean
Physical Society, vol. 65, pages 355–361, 08 2014. 2

[Leguy 2016] Aurélien M.A. Leguy, Pooya Azarhoosh, M. Isabel Alonso, Mariano
Campoy-Quiles, Oliver J. Weber, Jizhong Yao, Daniel Bryant, Mark T.
Weller, Jenny Nelson, Aron Walsh, Mark Van Schilfgaarde and Piers R.F.
Barnes. Experimental and theoretical optical properties of methylammonium
lead halide perovskites. Nanoscale, vol. 8, no. 12, pages 6317–6327, 2016. 36,
38, 57

[Leitsmann 2005] R. Leitsmann, W. G. Schmidt, P. H. Hahn and F. Bechstedt.
Second-harmonic polarizability including electron-hole attraction from band-
structure theory. Phys. Rev. B, vol. 71, page 195209, May 2005. 46

[Lemanov 1999] V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht and
R. Kunze. Perovskite CaTiO3 as an incipient ferroelectric. Solid State Com-
munications, vol. 110, no. 11, pages 611–614, 1999. 7

[Li 2016] Jingrui Li and Patrick Rinke. Atomic structure of metal-halide perovskites
from first principles: The chicken-and-egg paradox of the organic-inorganic
interaction. Phys. Rev. B, vol. 94, page 045201, Jul 2016. 29

[Lieb 1977] Elliott H Lieb and Barry Simon. The Thomas-Fermi theory of atoms,
molecules and solids. Advances in Mathematics, vol. 23, no. 1, pages 22–116,
1977. 12



Bibliography 83

[Liu 2013a] Mingzhen Liu, Michael B. Johnston and Henry J. Snaith. Efficient
planar heterojunction perovskite solar cells by vapour deposition. Nature,
vol. 501, pages 395–398, 2013. 2

[Liu 2013b] Mingzhen Liu, Michael B. Johnston and Henry J. Snaith. Efficient
planar heterojunction perovskite solar cells by vapour deposition. Nature,
vol. 501, pages 395–398, 2013. 8

[Liu 2015] Xiangye Liu, Wei Zhao, Houlei Cui, Yi’an Xie, Yaoming Wang, Tao Xu
and Fuqiang Huang. Organic-inorganic halide perovskite based solar cells-
revolutionary progress in photovoltaics. Inorg. Chem. Front., vol. 2, pages
315–335, 2015. 7

[Liu 2018] Dongyan Liu, Shanshan Li, Fang Bian and Xiangying Meng. First-
Principles Investigation on the Electronic and Mechanical Properties of Cs-
Doped CH3NH3PbI3. Materials, vol. 11, no. 7, 2018. 13

[Löper 2015] Philipp Löper, Michael Stuckelberger, Bjoern Niesen, Jérémie Werner,
Miha Filipic, Soo-Jin Moon, Jun-Ho Yum, Marko Topic, Stefaan De Wolf
and Christophe Ballif. Complex Refractive Index Spectra of CH3NH3PbI3
Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spec-
trophotometry. The Journal of Physical Chemistry Letters, vol. 6, no. 1,
pages 66–71, 2015. PMID: 26263093. 24

[Lucarini 2005] V. Lucarini, J.J. Saarinen, K.E. Peiponen and E.M. Vartiainen.
Kramers-kronig relations in optical materials research. Springer Series in
Optical Sciences. Springer Berlin Heidelberg, 2005. 23

[Makableh 2019] Yahia F. Makableh, Ghaleb Aljaiuossi and Rama Al-Abed. Com-
prehensive design analysis of electron transmission nanostructured layers
of heterojunction perovskite solar cells. Superlattices and Microstructures,
vol. 130, no. May, pages 390–395, 2019. iii, 10

[Mamedov 2011] Amirullah M. Mamedov and Ekmel Ozbay. Mechanism of the
electro-optic effect and nonlinear optical susceptibilities of some ferroelectrics:
ab initio calculation. no. 2, pages 1–26, 2011. 9, 23

[Martin 2004] R.M. Martin, R.M. Martin and Cambridge University Press. Elec-
tronic structure: Basic theory and practical methods. Cambridge University
Press, 2004. 16, 21

[Mashiyama 2006] H Mashiyama and Y Kawamura. The Anti-Polar Structure of
CH 3 NH 3 PbBr 3. vol. 51, no. phase IV, pages 15–17, 2006. 32

[Matsushita 2011] Yu-ichiro Matsushita, Kazuma Nakamura and Atsushi Os-
hiyama. Comparative study of hybrid functionals applied to structural and
electronic properties of semiconductors and insulators. Phys. Rev. B, vol. 84,
page 075205, Aug 2011. 29



84 Bibliography

[Meng 2018] Lei Meng, Jingbi You and Yang Yang. Addressing the stability issue of
perovskite solar cells for commercial applications. Nature Communications,
vol. 9, no. 1, pages 1–4, 2018. 2

[Meza 2019] Ulises R. Meza, Bernardo S. Mendoza and W. Luis Mochán. Second-
harmonic generation in nanostructured metamaterials. Phys. Rev. B, vol. 99,
page 125408, Mar 2019. 21

[Mohamed 2019] Hassen Mohamed, Mehdi Ben Jebli and Slim Ben Youssef. Re-
newable and fossil energy, terrorism, economic growth, and trade: Evidence
from France. Renewable Energy, vol. 139, pages 459–467, 2019. 1

[Molina-Sánchez 2013] Alejandro Molina-Sánchez, Davide Sangalli, Kerstin Hum-
mer, Andrea Marini and Ludger Wirtz. Effect of spin-orbit interaction on
the optical spectra of single-layer, double-layer, and bulk MoS2. Phys. Rev.
B, vol. 88, page 045412, Jul 2013. 45

[Monkhorst 1976] Hendrik J. Monkhorst and James D. Pack. Special points for
Brillouin-zone integrations. Phys. Rev. B, vol. 13, pages 5188–5192, Jun
1976. 46

[Mosconi 2015a] Edoardo Mosconi, Jon M. Azpiroz and Filippo De Angelis. Ab Ini-
tio Molecular Dynamics Simulations of Methylammonium Lead Iodide Per-
ovskite Degradation by Water. Chemistry of Materials, vol. 27, no. 13, pages
4885–4892, 2015. 13

[Mosconi 2015b] Edoardo Mosconi, Paolo Umari and Filippo De Angelis. Electronic
and optical properties of mixed Sn-Pb organohalide perovskites: a first prin-
ciples investigation. J. Mater. Chem. A, vol. 3, 2015. 13

[Mosconi 2016] Edoardo Mosconi, Paolo Umari and Filippo De Angelis. Electronic
and optical properties of MAPbX3 perovskites (X = I, Br, Cl): A unified
DFT and GW theoretical analysis. Physical Chemistry Chemical Physics,
vol. 18, no. 39, pages 27158–27164, 2016. 31, 57

[Moss 1951] T S Moss. Photoconductivity in the Elements. Proceedings of the Phys-
ical Society. Section A, vol. 64, no. 6, pages 590–591, jun 1951. 50

[Motta 2015] Carlo Motta, Fedwa El-Mellouhi and Stefano Sanvito. Charge carrier
mobility in hybrid halide perovskites. Scientific Reports, vol. 5, no. 1, page
12746, Aug 2015. 34

[Nastos 2005] F. Nastos, B. Olejnik, K. Schwarz and J. E. Sipe. Scissors implemen-
tation within length-gauge formulations of the frequency-dependent nonlinear
optical response of semiconductors. Phys. Rev. B, vol. 72, no. 4, page 045223,
2005. 17, 46, 67

[National Renewable Energy Laboratory ] National Renewable Energy Laboratory.
Best Research-Cell Efficiency Chart. iii, 2



Bibliography 85

[Neese 2012] Frank Neese. The ORCA program system. Wiley Interdisciplinary
Reviews: Computational Molecular Science, vol. 2, no. 1, pages 73–78, 2012.
14

[Nenkov 2008] Milen R. Nenkov and Tamara G. Pencheva. Determination of thin
film refractive index and thickness by means of film phase thickness. Central
European Journal of Physics, vol. 6, no. 2, pages 332–343, Jun 2008. 49

[Ness 2005] H. Ness and A. J. Fisher. Vibrational inelastic scattering effects in
molecular electronics. Proceedings of the National Academy of Sciences of
the United States of America, vol. 102, no. 25, pages 8826–8831, Jun 2005.
15956206[pmid]. 53

[Niu 2015] Guangda Niu, Xudong Guo and Liduo Wang. Review of recent progress
in chemical stability of perovskite solar cells. Journal of Materials Chemistry
A, vol. 3, no. 17, pages 1–29, 2015. 2

[Nozières 1958] Philippe Nozières and David Pines. Electron Interaction in Solids.
General Formulation. Phys. Rev., vol. 109, pages 741–761, Feb 1958. 45

[Okoye 2003] C M I Okoye. Theoretical study of the electronic structure, chemi-
cal bonding and optical properties of KNbO3in the paraelectric cubic phase.
Journal of Physics: Condensed Matter, vol. 15, no. 35, pages 5945–5958, aug
2003. 46

[Oku 2015] Takeo Oku. Crystal Structures of CH3NH3PbI3 and Related Perovskite
Compounds Used for Solar Cells. In Solar Cells - New Approaches and
Reviews. InTech, oct 2015. vii, 8, 9, 29, 31, 32, 56

[Ong 2001] H. C. Ong, J. Y. Dai, A. S. K. Li, G. T. Du, R. P. H. Chang and
S. T. Ho. Effect of a microstructure on the formation of self-assembled laser
cavities in polycrystalline ZnO. Journal of Applied Physics, vol. 90, no. 3,
pages 1663–1665, 2001. 49

[Onida 2002] Giovanni Onida, Lucia Reining and Angel Rubio. Electronic exci-
tations: density-functional versus many-body Green’s-function approaches.
Rev. Mod. Phys., vol. 74, pages 601–659, Jun 2002. 21, 45

[Ono 2018] Madoka Ono, Shuhei Aoyama, Masanori Fujinami and Setsuro Ito. Sig-
nificant suppression of Rayleigh scattering loss in silica glass formed by the
compression of its melted phase. Opt. Express, vol. 26, no. 7, pages 7942–
7948, Apr 2018. 49

[Osterthun 2021] N. Osterthun, N. Neugebohrn, K. Gehrke, M. Vehse and C. Agert.
Spectral engineering of ultrathin germanium solar cells for combined photo-
voltaic and photosynthesis. Opt. Express, vol. 29, no. 2, pages 938–950, Jan
2021. 1



86 Bibliography

[Palik 1998] E.D. Palik. Handbook of optical constants of solids. Academic Press
handbook series. Elsevier Science, 1998. 49

[Park 2015] Nam Gyu Park. Perovskite solar cells: An emerging photovoltaic tech-
nology, 2015. 10

[Perdew 1986] J. P. Perdew. Density-functional approximation for the correlation
energy of the inhomogeneous electron gas. Physical Review B, vol. 33,
no. June, pages 8822–8824, 1986. 13

[Perdew 1996] John P. Perdew, Kieron Burke and Matthias Ernzerhof. Generalized
gradient approximation made simple. Physical Review Letters, vol. 77, no. 18,
pages 3865–3868, 1996. 11, 13

[Petrovic 2015] Milos Petrovic, Vijila Chellappan and Seeram Ramakrishna. Per-
ovskites: Solar cells & engineering applications-materials and device devel-
opments. Solar Energy, vol. 122, pages 678–699, 2015. 8

[Ramanujam 2015a] Srinivasa Varadan Ramanujam. Band Structure of Graphene
Using Emperical Pseudopotentials. Arizona State University, no. December,
pages 1–61, 2015. 13

[Ramanujam 2015b] Srinivasa Varadan Ramanujam. Band Structure of Graphene
Using Emperical Pseudopotentials. Arizona State University, no. December,
pages 1–61, 2015. 14

[Rathod 2017] Siddharth Narendrakumar Rathod. Structure Stability and Optical
Response of Lead Halide Hybrid Perovskite Photovoltaic Materials : A First-
Principles Simulation Study Halide Hybrid Perovskite Photovoltaic materials:
A First Principles Simulation Study. 2017. 12

[Reddy 2008] R.R. Reddy, K. Rama Gopal, K. Narasimhulu, L. Siva Sankara Reddy,
K. Raghavedra Kumar, C.V. Krishna Reddy and Syed Nisar Ahmed. Corre-
lation between optical electronegativity and refractive index of ternary chal-
copyrites, semiconductors, insulators, oxides and alkali halides. Optical Ma-
terials, vol. 31, no. 2, pages 209–212, 2008. 51

[Reshak 2012] Ali Hussain Reshak, Xuean Chen, S. Auluck and H. Kamarudin.
Linear and nonlinear optical susceptibilities and hyperpolarizability of bo-
rate LiNaB4O7 single crystals: Theory and experiment. Journal of Applied
Physics, vol. 112, no. 5, page 053526, 2012. 46

[Romero 2020] Aldo H. Romero, Douglas C. Allan, Bernard Amadon, Gabriel An-
tonius, Thomas Applencourt, Lucas Baguet, Jordan Bieder, FranÃ§ois Bot-
tin, Johann Bouchet, Eric Bousquet, Fabien Bruneval, Guillaume Brunin,
Damien Caliste, Michel CÃ´tÃ c©, Jules Denier, Cyrus Dreyer, Philippe
Ghosez, Matteo Giantomassi, Yannick Gillet, Olivier Gingras, Donald R.



Bibliography 87

Hamann, Geoffroy Hautier, FranÃ§ois Jollet, GÃ c©rald Jomard, Alexan-
dre Martin, Henrique P. C. Miranda, Francesco Naccarato, Guido Petretto,
Nicholas A. Pike, Valentin Planes, Sergei Prokhorenko, Tonatiuh Rangel,
Fabio Ricci, Gian-Marco Rignanese, Miquel Royo, Massimiliano Stengel,
Marc Torrent, Michiel J. van Setten, Benoit Van Troeye, Matthieu J. Ver-
straete, Julia Wiktor, Josef W. Zwanziger and Xavier Gonze. ABINIT:
Overview and focus on selected capabilities. The Journal of Chemical Physics,
vol. 152, no. 12, page 124102, 2020. 3

[Salazar 2016] Cuauhtémoc Salazar, J. L. Cheng and J. E. Sipe. Coherent control
of current injection in zigzag graphene nanoribbons. Phys. Rev. B, vol. 93,
page 075442, Feb 2016. 46

[Schrödinger 1926] E. Schrödinger. An Undulatory Theory of the Mechanics of
Atoms and Molecules. Phys. Rev., vol. 28, pages 1049–1070, Dec 1926. 12

[Seminario 1995] Jorge M. Seminario. An introduction to density functional theory
in chemistry. In J.M. Seminario and P. Politzer, editeurs, Modern Density
Functional Theory, volume 2 of Theoretical and Computational Chemistry,
pages 1–27. Elsevier, 1995. 13

[Senocrate 2019] Alessandro Senocrate, Gee Yeong Kim, Michael Grätzel and
Joachim Maier. Thermochemical Stability of Hybrid Halide Perovskites. ACS
Energy Letters, vol. 4, no. 12, pages 2859–2870, 2019. 34

[Setyawan 2010] Wahyu Setyawan and Stefano Curtarolo. High-throughput elec-
tronic band structure calculations: Challenges and tools. Computational Ma-
terials Science, vol. 49, no. 2, pages 299–312, 2010. iii, 16

[Shi 2018] Jing Shi and Sining Yun. First-principles dft calculations for perovskite
solar cells, chapitre 19, pages 487–509. John Wiley & Sons, Ltd, 2018. 13

[Shirayama 2016] Masaki Shirayama, Hideyuki Kadowaki, Tetsuhiko Miyadera,
Takeshi Sugita, Masato Tamakoshi, Masato Kato, Takemasa Fujiseki,
Daisuke Murata, Shota Hara, Takurou N. Murakami and et al. Optical
Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Func-
tional Theory, and Quantum Efficiency Analyses forCH3NH3PbI3. Physical
Review Applied, vol. 5, no. 1, 2016. 13

[Singh 2012] R.J. Singh. Solid state physics. Always Learning. Dorling Kindersley,
2012. 16

[Sipe 1987] J. E. Sipe, D. J. Moss and H. M. van Driel. Phenomenological theory
of optical second- and third-harmonic generation from cubic centrosymmetric
crystals. Phys. Rev. B, vol. 35, pages 1129–1141, Jan 1987. 21



88 Bibliography

[Sipe 2000] J. E. Sipe and A. I. Shkrebtii. Second-order optical response in semi-
conductors. Phys. Rev. B, vol. 61, pages 5337–5352, Feb 2000. 21, 22, 23,
45

[Snaith 2012] Henry J. Snaith, Michael M. Lee and Tsutomu Miyasaka. Efficient
Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Per-
ovskites. Science, vol. 338, pages 643–647, 2012. 9

[Sohn 2017] Honglae Sohn. Refractive index of porous silicon, pages 1–12. Springer
International Publishing, Cham, 2017. 51

[Soler 2002] José M. Soler, Emilio Artacho, Julian D. Gale, Alberto García, Javier
Junquera, Pablo Ordejón and Daniel Sánchez-Portal. The SIESTA method
for ab initio order-N materials simulation. Journal of Physics Condensed
Matter, vol. 14, no. 11, pages 2745–2779, 2002. 14

[Stahrenberg 2001] K. Stahrenberg, Th. Herrmann, K. Wilmers, N. Esser,
W. Richter and M. J. G. Lee. Optical properties of copper and silver in
the energy range 2.5–9.0 eV. Phys. Rev. B, vol. 64, page 115111, Aug 2001.
46

[Stephenson 2018] Michael Stephenson. Chapter 1 - The Carbon Cycle, Fossil Fuels
and Climate Change. In Michael Stephenson, editeur, Energy and Climate
Change, pages 1–26. Elsevier, 2018. 1

[Stranks 2013] Samuel D. Stranks, Giles E. Eperon, Giulia Grancini, Christopher
Menelaou, Marcelo J. P. Alcocer, Tomas Leijtens, Laura M. Herz, Annamaria
Petrozza and Henry J. Snaith. Electron-Hole Diffusion Lengths Exceeding
1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science,
vol. 342, no. 6156, pages 341–344, 2013. 34

[Sun 2016a] Yang Sun, Huan Xu, Bo Da, Shi feng Mao and Ze jun Ding. Calcula-
tions of Energy-Loss Function for 26 Materials. Chinese Journal of Chemical
Physics, vol. 29, no. 6, pages 663–670, 2016. 25

[Sun 2016b] Yang Sun, Huan Xu, Bo Da, Shi-feng Mao and Ze-jun Ding. Calcula-
tions of Energy-Loss Function for 26 Materials. Chinese Journal of Chemical
Physics, vol. 29, no. 6, pages 663–670, 2016. 52

[Suzuki 2019] Atsushi Suzuki, Masataka Kato, Naoki Ueoka and Takeo Oku. Ad-
ditive Effect of Formamidinium Chloride in Methylammonium Lead Halide
Compound-Based Perovskite Solar Cells. Journal of Electronic Materials,
vol. 48, no. 6, pages 3900–3907, Jun 2019. 29

[Tao 2017] Shu Xia Tao, Xi Cao and Peter A. Bobbert. Accurate and efficient band
gap predictions of metal halide perovskites using the DFT-1/2 method: GW
accuracy with DFT expense. Scientific Reports, vol. 7, no. 1, page 14386,
Oct 2017. 34



Bibliography 89

[Targhi 2018] Farhad Fouladi Targhi, Y. S. Jalili and F. Kanjouri. MAPbI3 and
FAPbI3 perovskites as solar cells Case study on structural, electrical and
optical properties. Results in physics, vol. 10, pages 616–627, 2018. 13

[Teller 1962] Edward Teller. On the Stability of Molecules in the Thomas-Fermi
Theory. Rev. Mod. Phys., vol. 34, pages 627–631, Oct 1962. 4

[Thomas 1927a] L. H. Thomas. The calculation of atomic fields. Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 23, no. 5, pages
542–548, 1927. 4

[Thomas 1927b] L. H. Thomas. The calculation of atomic fields. Proceedings of the
Cambridge Philosophical Society, vol. 23, no. 5, page 542, January 1927. 12

[Tokmakoff 2019] Andrei Tokmakoff. Time Dependent Quantum Mechanics & Spec-
troscopy. University of Chicago, first edit édition, 2019. 16, 23

[Toll 1956] John S. Toll. Causality and the Dispersion Relation: Logical Founda-
tions. Phys. Rev., vol. 104, pages 1760–1770, Dec 1956. 23

[Tombe 2017] Sekai Tombe, Getachew Adam, Herwig Heilbrunner, Dogukan Apay-
din, Christoph Ulbricht, Niyazi Sariciftci, Christopher Ardense, Emmanuel
Iwuoha and Markus Scharber. Optical and electronic properties of mixed
halide (X = I, Cl, Br) methylammonium lead perovskite solar cells. J. Mater.
Chem. C, vol. 5, 01 2017. 15

[Tran 1999] Muoi Tran, Nacir Tit and M. W. C. Dharma-wardana. Dielectric con-
stant and light emission in Si/SiO2 superlattices. Applied Physics Letters,
vol. 75, no. 26, pages 4136–4138, 1999. 25

[Uprety 2019] Prakash Uprety, Indra Subedi, Maxwell M. Junda, Robert W. Collins
and Nikolas J. Podraza. Photogenerated Carrier Transport Properties in
Silicon Photovoltaics. Scientific Reports, vol. 9, no. 1, page 19015, Dec 2019.
34

[Van Krevelen 2009] D.W. Van Krevelen and K. Te Nijenhuis. Optical Properties.
In Properties of Polymers, pages 287–318. Elsevier, 2009. 24

[van Mourik 2014] Tanja van Mourik, Michael BÃ1
4hl and Marie-Pierre Gaigeot.

Density functional theory across chemistry, physics and biology Introduction.
Philosophical transactions. Series A, Mathematical, physical, and engineer-
ing sciences, vol. 372, page 20120488, 02 2014. 3

[Vanderbilt 1990] David Vanderbilt. Soft self-consistent pseudopotentials in a gen-
eralized eigenvalue formalism. Physical Review B, vol. 41, no. 11, 1990. 15

[Viklund 2016] Lina Viklund, Louise Augustsson and Jonas Melander. Numerical
approaches to solving the time-dependent Schrödinger equation with different
potentials, 2016. 12



90 Bibliography

[Von Barth 2004] U Von Barth. Basic Density-Functional Theory-an Overview.
Physica Scripta, vol. T109, pages 9–39, 2004. 12

[Walls 2012] D.F. Walls and G.J. Milburn. Quantum optics. Springer Study Edition.
Springer Berlin Heidelberg, 2012. 16

[Wang 2016] Lingrui Wang, Kai Wang, Guanjun Xiao, Qiaoshi Zeng and Bo Zou.
Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal
Halide Perovskite-Based Methylammonium Lead Chloride. Journal of Physi-
cal Chemistry Letters, vol. 7, no. 24, pages 5273–5279, 2016. 32

[Wang 2020] Kai Wang. Optical properties of 5d transition metal oxides. PhD thesis,
University of Geneva, 2020. vi, 57, 58

[Wei 2017] Hui Wei, Yang Tang, Bo Feng and Hui You. Importance of PbI2 morphol-
ogy in two-step deposition of CH3NH3PbI3for high-performance perovskite
solar cells. Chinese Physics B, pages 1–8, 2017. 10

[Whitfield 2016] P. S. Whitfield, N. Herron, W. E. Guise, K. Page, Y. Q. Cheng,
I. Milas and M. K. Crawford. Structures, Phase Transitions and Tricritical
Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide. Scientific
Reports, vol. 6, no. June, pages 1–15, 2016. 8

[Wild 2013] Martin Wild, Doris Folini, Christoph Schär, Norman Loeb,
Ellsworth G. Dutton and Gert König-Langlo. The global energy balance from
a surface perspective. Climate Dynamics, vol. 40, no. 11, pages 3107–3134,
Jun 2013. 1

[Wiser 1963] Nathan Wiser. Dielectric Constant with Local Field Effects Included.
Phys. Rev., vol. 129, pages 62–69, Jan 1963. 45

[Wu 2014] Yongzhen Wu, Ashraful Islam, Xudong Yang, Chuanjiang Qin, Jian Liu,
Kun Zhang, Wenqin Peng and Liyuan Han. Retarding the crystallization
of PbI2 for highly reproducible planar-structured perovskite solar cells via
sequential deposition. Energy and Environmental Science, vol. 32, no. 9,
pages 1–6, 2014. 10

[Wu 2018a] Jian Wu, Jing-Jing Dong, Si-Xuan Chen, Hui-Ying Hao, Jie Xing and
Hao Liu. Fabrication of Efficient Organic-Inorganic Perovskite Solar Cells
in Ambient Air. Nanoscale Research Letters, vol. 13, no. 1, page 293, Sep
2018. 34

[Wu 2018b] Jiayi Wu, Wen qi, Zhe Luo, Ke Liu and Hong Zhu. Electronic Structure
and Stability of Lead-free Hybrid Halide Perovskites: A Density Functional
Theory Study. Journal of Shanghai Jiaotong University (Science), vol. 23,
pages 202–208, 2018. 13



Bibliography 91

[Wu 2018c] Yinghui Wu, Wei Chen, Guo Chen, Liyu Liu, Zhubing He and Ruchuan
Liu. The Impact of Hybrid Compositional Film/Structure on Organic-
Inorganic Perovskite Solar Cells. Nanomaterials, vol. 8, no. 6, 2018. 10

[Wu 2019] Cuncun Wu, Duo Wang, Yuqing Zhang, Feidan Gu, Ganghong Liu, Ning
Zhu, Wei Luo, Dong Han, Xuan Guo, Bo Qu, Shufeng Wang, Zuqiang Bian,
Zhijian Chen and Lixin Xiao. FAPbI3 Flexible Solar Cells with a Record
Efficiency of 19.38% Fabricated in Air via Ligand and Additive Synergetic
Process. Advanced Functional Materials, vol. 1902974, pages 1–7, 2019. 9

[Xing 2013] Guichuan Xing, Nripan Mathews, Shuangyong Sun, Swee Sien Lim,
Yeng Ming Lam, Michael Grätzel, Subodh Mhaisalkar and Tze Chien Sum.
Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-
Inorganic CH3NH3PbI3. Science, vol. 342, no. 6156, pages 344–347, 2013.
34

[Xu 2015] Jixian Xu, Andrei Buin, Alexander H. Ip, Wei Li, Oleksandr Voznyy,
Riccardo Comin, Mingjian Yuan, Seokmin Jeon, Zhijun Ning, Jeffrey J. Mc-
Dowell, Pongsakorn Kanjanaboos, Jon-Paul Sun, Xinzheng Lan, Li Na Quan,
Dong Ha Kim, Ian G. Hill, Peter Maksymovych and Edward H. Sargent.
Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes.
Nature Communications, vol. 6, no. 1, page 7081, May 2015. 1

[YAKOVKIN 2007] I. N. YAKOVKIN and P. A. DOWBEN. The Problem of the
Band Gap In LDA Calcualtions. Surface Review and Letters, vol. 14, no. 03,
pages 481–487, 2007. 12

[Yang 2017] Shida Yang, Weifei Fu, Zhongqiang Zhang, Hongzheng Chen and
Chang-Zhi Li. Recent advances in perovskite solar cells: efficiency, stability
and lead-free perovskite. J. Mater. Chem. A, vol. 5, pages 11462–11482, 2017.
34

[Yang 2018] Jin-Peng Yang, Matthias Meissner, Takuma Yamaguchi, Xiu-Yun
Zhang, Takahiro Ueba, Li-Wen Cheng, Shinichiro Ideta, Kiyohisa Tanaka,
Xiang-Hua Zeng, Nobuo Ueno and Satoshi Kera. Band Dispersion and Hole
Effective Mass of Methylammonium Lead Iodide Perovskite. Solar RRL,
vol. 2, no. 10, page 1800132, 2018. 34

[Yehuda B. Band 2013] Yehuda B. Band. Quantum Mechanics with Applications to
Nanotechnology and Information Science. News & Information for Chemical
Engineers, 1st editio édition, 2013. 4

[Yu 2016] Z. G. Yu. Effective-mass model and magneto-optical properties in hybrid
perovskites. Scientific Reports, vol. 6, no. 1, page 28576, Jun 2016. 34

[Yusoff 2016] Abd Rashid Bin Mohd Yusoff and Mohammad Khaja Nazeeruddin.
Organohalide Lead Perovskites for Photovoltaic Applications. Journal of
Physical Chemistry Letters, vol. 7, pages 2448–2450, 2016. iii, 2, 20



92 Bibliography

[Zangwill 1980] A. Zangwill and Paul Soven. Density-functional approach to local-
field effects in finite systems: Photoabsorption in the rare gases. Phys. Rev.
A, vol. 21, pages 1561–1572, May 1980. 45

[Zhang 2016] Wei Zhang, Giles E. Eperon and Henry J. Snaith. Metal halide per-
ovskites for energy applications. Nature Energy, vol. 1, no. 6, page 16048,
May 2016. 1

[Zhou 2007] Di Zhou. An Introduction of Density Functional Theory and its Appli-
cation. Physics.Drexel.Edu, 2007. 12

[Zuo 2016] Lijian Zuo, Shiqi Dong, Nicholas De Marco, Yao Tsung Hsieh, Sang Hoon
Bae, Pengyu Sun and Yang Yang. Morphology Evolution of High Efficiency
Perovskite Solar Cells via Vapor Induced Intermediate Phases. Journal of
the American Chemical Society, vol. 138, no. 48, pages 1–9, 2016. 10


