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1 Introduction 
Many of the different processes of synthesis of nanostructured material frequently use catalysts 

whose rates and properties are studied under stationary regimes. As far as our understanding goes, 

the most common approach is the Michaelis-Menten model, or a modified version of it, where the 

rate of change of the enzyme-substrate complex concentration is slow enough that it can be 

approximated as if it was zero [1]. 

Although it is common to see the Michaelis-Menten model being used in diverse circumstances, the 

validity of the algebraic expression known as the Michaelis-Menten equation (𝑉 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀+[𝑆]
 where 𝑉 

is the rate of product formation, 𝑉𝑚𝑎𝑥 the maximum rate of product formation, [𝑆] is the substrate 

concentration and 𝐾𝑀 is known as the Michaelis-Menten constant), has been widely studied [2], [3], 

and a variety of methods have been used to study the dynamics of the reaction [4]–[6]. From the 

point of view of stochastic processes, it is worth to mention A. F. Bartholomay [7], who formulated 

the problem of chemical reactions as a probability density that was a function of time and of the 

concentrations of substrate and enzyme-substrate complex. He obtained the corresponding master 

equation and demonstrated that the time evolution of the means of the concentrations match with 

the non-linear differential equations known in the textbooks of chemical kinetics. Sandra Hasstedt 

[8] studied the same problem with bivalued variables {0,1}, to indicate the presence or absence of 

a single enzyme molecule. Arányi & Thöt [9] developed a similar approach for states with zero or 

one enzyme molecule but an unlimited amount of substrate molecules. After 1990, the 

advancements in technology and measurement techniques using Raman spectroscopy and methods 

of photo-physics and photochemistry [10]–[12], have made the study of random fluctuations a 

necessity. In the XXI century the study of stochastic systems has proliferated [13]–[15] brought to 

attention to the fact that, in the smaller dimensions inside of the cell, enzymes are subject to 

random fluctuations due to the Brownian motion, causing random displacements of these, 

therefore changing the reaction rates. After noting that the number of proteins is also very small, 

the authors of the last references above questioned the description of reactions based in the 

continuous flow of matter and proposed a formulation in terms of discrete stochastic equations. 

Puchaka and Kierzek [16] suggested a method named “maximal time step method” aimed at 

stochastic simulation of systems composed of metabolic reactions and regulatory processes 

involving small quantities of molecules. Turner et al. [17] reviewed the efforts intended to include 

the effects of fluctuations in the structural organization of the cytoplasm and the limited diffusion 

of molecules due to molecular aggregation, and discussed the advantages of these for the modelling 

of intracellular reactions. In 2008 Valdus Saks et al. [18] showed that cells have a highly 

compartmentalized inner structure, thus they are not to be considered as simple bags of protein 

where enzymes diffuse as a gas. Also, this type of works has inspired specialists to design drugs, who 

have initiated studies about the required sizes for better substrate processing. Among these, one 

analyzed pairs of compartments in cyanobacterias, which contain two compartments named 𝛼-

carboxysome and 𝛽 -carboxysome, with dimensions of the order of nanometers [19]. These 
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elements lead us to maintain our position that the analysis of random fluctuations of substance 

concentrations are relevant in biochemical systems. 

While there are many enzyme reactions that can be described by the Michaelis-Menten model, it is 

better suited for cases that follow two conditions: 

1. The number of substrate species that can bind to an enzyme is one. 

2. The system does not exhibit cooperativity, therefore the curve of the reaction velocity, as a 

function of substrate concentration, has a hyperbolic shape. 

Advancements in fluorescence spectroscopy have allowed tracking single catalytic molecules, 

providing fundamental knowledge about the reactions being catalyzed. Noticing that the 

proportions of enzyme molecules fluctuate drastically compared to its mean values, Kumar et al. 

[20] suggest that a stochastic approach demonstrates the appearance of a cooperative dynamic in 

the chemical reaction kinetics such that, when the number of enzymes participating in the catalysis 

are few, there is a combined effect of the enzyme fluctuation that renders the Michaelis-Menten 

model ineffective. The classical model, they affirm, is useful only in cases where substrate 

concentration is much greater than enzyme concentration, consequently giving rise to modifications 

being made to the model to introduce parallel pathway mechanisms, which translate to the addition 

of reaction rates to the Michaelis-Menten model. 

Many of such pathways involve allosteric regulation of enzymes by different mechanisms. Allosteric 

regulation occurs when particles (ions or molecules) usually bind reversibly to active or allosteric 

sites on the enzyme, activating or inhibiting its catalytic activity; therefore, modulating the kinetic 

behavior of the ensemble of enzymes. Such particles are often given the name of regulators or 

modulators, and these can be products formed by the enzymatic activity, or products from other 

reactions from other processes occurring in a larger scale. 

Unlike single active site enzymes, such as beta-lactamase or the oxygen carrier myoglobin, which 

have a hyperbolic binding curve; enzymes with multiple binding sites, such as the oxygen carrier 

hemoglobin, present a sigmoid curve. This shape results from what is called a cooperative binding 

behavior and can be understood as follows: An enzyme that cooperatively binds its substrates, at 

low substrate concentration, will behave as if it had poor affinity to it. But as substrate concentration 

levels increase and more substrate binds to it, the affinity of the enzyme to its substrate also 

increases. 

Said another way: From the perspective of a single, multisite enzyme, the first substrate particle 

that binds to one of the sites will have a hard time binding to it, but as more sites are occupied, the 

easier it will be for other substrate particles to bind to other sites of the same enzyme, eventually 

saturating it. 

In the case of hemoglobin, it is considered that this behavior occurs because its structure undergoes 

a conformational change from a lower affinity state (T state) to a higher affinity state (R state). It is 
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the substrate the one responsible with regulating the oxygenation process. This kind of regulation 

is called homoalloesteric. 

Another mechanism of enzymatic regulation is known as heteroallosteric that activate or inhibit 

enzyme function, by binding and shifting the conformational state of the structure from T to R (in 

the case of an activator) or R to T (in the case of an inhibitor). In the hemoglobin, these particles are 

the 𝐶𝑂2, biphosphoglycerate (BPG), and H+ ions that regulate the liberation of the oxygen in tissues 

that require the payload carried by the protein. 

In our aim to develop a model capable of simulating cooperative binding, we opted to focus on 

studying the oxygenation process of hemoglobin since its dissociation curve (ODC) presents the 

sigmoid shape that is characteristic to this type of binding behavior, as well as being a system that 

has been well studied in the medical sciences. 

In medical practice, the oxygen dissociation curve of the hemoglobin (ODC) is used to determine the 

oxygenation capacity of a living being. This is a curve on a plane where the 𝑂2 saturation of an Hb is 

measured in respect to the partial pressure of oxygen, 𝑃𝑂2  [21], [22]. There exist a variety of 

algebraic expression that attempt to parametrize the ODC [23]–[26] and one of the simpler ones is 

the Hill equation [27], where two parameters are enough to determine its geometry. 

Although there have been attempts in past research, spanning over a century, to understand the 

phenomenon of oxygenation of Hb, there still exist aspects of it that remain obscure. As can be seen 

in physical statistics textbooks, this law rests on the hypothesis of equilibrium [28], but as we will 

see here, this is not a sufficient description because it does not consider how it reaches equilibrium 

if the oxygenation process, which consists in the penetration of 𝑂2 into the erythrocyte, is a non-

equilibrium phenomenon. 

The relaxation process towards equilibrium has been studied for decades. Using modified diffusion 

equations, W. Moll [29] studied in 1968 the rate of 𝑂2 transportation from the instant it binds to 

the Hb to when it is released to the tissues. With a similar approach, Baxley et al. [30] in 1983 studied 

𝑂2 transport through capillary vessels. Clark et al. [31] also analyzed the release of 𝑂2 considering 

that the diffusion coefficient is different inside the carrier cell from the diffusion near the cell-

membrane. A general review, updated in 1989, was written by Popel [32], who discusses at length 

the kinetics of Hb and 𝑂2 in the transport process of blood flowing through different geometries. 

Fischer et al. [33] developed a dissolution model of a bubble of 𝑂2 immersed in blood, trying to 

understand the dynamics of the diffusion process of this gas in blood. 

The rise in computational techniques in the last four decades has allowed scientists to study the 

transport phenomenon using numerical methods. An example is the work by Hyakutake and 

Kishimoto [34], who studied oxygen carriers based in Hb, approaching diffusion equations with 

various parameters, among them the 𝑃50 value, diffusion constant 𝐷, length of a blood vessel and 

𝐶𝑂2 concentration. 
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A great deal of interest has been given to understanding how 𝑂2 molecules diffuse through liquid 

membranes to reach Hb molecules, or membranes similar to biological tissues. This is with the 

express goal of designing external and internal respirators or oxygen concentrators aimed to help 

patients with respiratory deficiencies [35]–[38]. 

In a line of research close to our work, recently Scrima et al. [39] studied the out of equilibrium 

oxygen-hemoglobin dissociation curve (ODC). It is an experimental approach where, among other 

results, they obtain the sigmoidal shape of the curve, as well as values of equilibrium constants for 

the four oxygenation states, and also identify a source of sequential cooperativity and of 

conformational cooperativity. 

Moreover, Agliari et al. [40], [41] have developed a very interesting connection between three 

apparently dissimilar fields of knowledge: enzyme kinetics, ferromagnetism and neural networks. 

Particularly, they have used Hopfield neural networks at the thermodynamic limit, which 

theoretically consist in an infinite number of neurons, and have established various connections 

between these three phenomena. Their approach consists in using a McCulloch-Pitts neuron as a 

model for a binding site, so the output of this neuron is +1 if the binding site is occupied and −1 if 

it is vacant. If the network consists of 𝑁 neurons, this can also be understood as an Ising spin model 

system of 𝑁 spins [42]. 

This work is divided into two chapters: 

The first chapter is an application that expands our previous work [43] in the extension of the 

Michaelis-Menten model. We use our extended version to study the hydrolization of rifampicin (a 

member of the penicillin family of antibiotics) by beta-lactamase enzymes. There are two new 

contributions: 

1. After studying the formalism of stochastic velocities, this approach was used to analyze the quasi-

stationary state of the reaction process, as well as its entropy. 

2. One of the results previously found was the decrease in entropy in purely theoretical simulated 

reactions. We replicate this result using experimental data for the simulations, as well as propose 

an explanation of this phenomenon based on the formalism stated in the previous point. We suggest 

that a decrease in entropy is possible due to work being done on the system, also propose that the 

source of this energy comes from the normal vibration modes of the enzyme, which have well 

defined vibration frequencies. This is a relevant result, because the specificity of enzyme catalysis 

could be related to a process of resonance between the active site of the enzyme and the molecular 

structure of the substrate. The approach developed here is useful for any number of participating 

enzymes and substrate molecules, provided that the initial number of enzymes is smaller than the 

initial number of molecules; therefore, it is applicable to nano-scaled systems. 

The second chapter is a new approach to the simulation of enzymatic reactions in reduced spaces 

that present cooperative behavior. This model is based in the use of finite Hopfield neural networks, 

taking as type case the oxygenation of a cluster of hemoglobin molecules. Our results are valid for 
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a finite number of participating oxygen molecules, therefore it is useful for micro and nano devices 

that could be placed inside living organisms that are suffering from diminished oxygenation capacity.  
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2 Chapter I: Entropy and stochastic properties in catalysis at 

nanoscale 

2.1 Objective: 

As a first part of this work, we calculate the entropy of fluctuations and present kinematics that 

describe the behavior of these fluctuations from the point of view of their state space, given the 

name of fluctuation space. We introduce various stochastic velocities and take advantage of two of 

these to describe the regions of higher and lower probability. It will be shown that, during the course 

of the chemical reaction, an entropy of fluctuation arises that presents two characteristics: 

1. The initial increment is positive, which guarantees the spontaneous nature of the reaction. 

2. There is a subsequent decrease in entropy, which in turn reveals two aspects: 

a. There exists a source of energy in the process. 

b. This decrease in the change of entropy translates into the heat capacity at constant 

pressure, 𝐶𝑝, is negative in the catalysis. This is a result that has been confirmed in 

previous literature. 

The stochastic velocities surged as part of the efforts to understand quantum phenomena as a 

probabilistic problem [44]–[47]. However, the mathematical expansion is valid for any stochastic 

phenomenon that can be described by diffusion equations. These velocities have been previously 

used to study the active Brownian motion [48]; in this work they are applied to the field mentioned 

in this section. 

For the sake of completeness and for a uniform notation throughout this work and the ones 

referenced, the initial sections are dedicated to a short examination of the master equation and the 

van Kampen method for the separation of the problem into a deterministic and stochastic parts. A 

Fokker-Planck equation (FPE) is obtained in the latter part, which is then used as grounds to discuss 

the formalism of stochastic velocities and the entropy of the system. The results are discussed based 

on the references cited in this work. 

This chapter is organized as follows: 

We begin by defining the physical system and present the results of a simulated reaction using the 

Gillespie algorithm. In the following section, based on the graphs obtained from it, we review the 

theory developed by Bartholomay, which is used to split the state space in two: one for the average 

concentrations and another for their fluctuations (the latter one receiving the name of fluctuation 

space). In this same section we clarify what is understood by a state of equilibrium in this work, and 

its difference with the stationary state under study. 

In the next section we analyze the behavior of the state points in the fluctuation space obtained 

previously and do a short review of the stochastic velocities formalism, as well as obtain the 

expression for the entropy in this system. We pay special attention to the form of these velocities 

in time dependent Ornstein-Uhlenbeck processes. We examine what it means to reach a state of 
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equilibrium in the simulated reaction, and the conduct of the probability density of the state points 

in the fluctuation space during the quasi-stationary state. 

We then retake the discussion of the entropy, performing an estimation of its value at different 

points in time of the reaction. We find that, during the evolution of the reaction, the Michaelis-

Menten model is capable of describing an expected decrease of the entropy of the system. 

We close this chapter by discussing the results obtained and our conclusions. 

2.2 Physical system 

The physical system under consideration are the chemical reactions described by the following 

reaction equation: 

𝐸 + 𝑆
𝑘𝑓
⇌
𝑘𝑟
𝐸𝑆

𝑘𝑐𝑎𝑡
→  𝐸 + 𝑃 

where 𝐸 stands for enzyme molecules, 𝑆 for substrate molecules, 𝐸𝑆 for enzyme-substrate complex 

and 𝑃 for product. During the time interval 𝑡 < 0, enzyme and substrate molecules exist without 

interaction within a fluid that serves as a medium that is in thermodynamic equilibrium. At time 𝑡 =

0 the system suffers a change that gives way to the start of the reaction, an event that could be, for 

example, the stirring of the fluid with the enzymes and substrate molecules. During the interval 𝑡 >

0 the system undergoes the process of a catalytic reaction until all substrate molecules have been 

depleted.  

We started by simulating a reaction using the Gillespie algorithm [49]. One hundred realizations are 

carried out with the following initial conditions: 𝐸 = 100, 𝑆 = 4900, 𝐸𝑆 = 0, 𝑃 = 0. The reaction 

rates were taken from the work by Weilandt et al. [50] and selecting the special case where the 

reaction is irreversible, thus 𝑘2
𝑏 = 0 . In this work the notation used for the reaction rates are 

presented in Table 1. 

𝑘1
′  1.52 × 105 

(
1

𝑠𝑒𝑔 ∙ 𝑀
) 

𝑘2 10 
(
1

𝑠
) 

𝑘3 22 
(
1

𝑠
) 

𝑟 6.5579 × 10−5 dimensionless 

𝑘𝑀 2.105 × 10−4 (𝑀) 

Table 1. Reaction rate used in the simulation. 
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The simulation results were data structures for ( 𝑡, 𝐸, 𝑆, 𝐸𝑆, 𝑃 ), where 𝑡  is the time between 

reactions. An example of a time evolution of 𝐸 and 𝐸𝑆 as it progresses towards a stationary state is 

given in Figure 1 

 

Figure 1. Time evolution of the number of enzyme molecules (black) and ES complex (red) 

reaching stationary states. One realization with the Gillespie algorithm. Initial conditions: 

E=100, S=4900, ES=0, P=0 (product and substrate not pictured). 

We found that as the reaction progresses, the number of enzymes decreases to almost zero due to 

them having transitioned to the enzyme-substrate complex state. Once in this state, the quantity of 

𝐸𝑆 is kept almost constant in time. The amount of 𝑆 decreases as it is consumed to form 𝑃, and 

when the process is nearing depletion of 𝑆 the same occurs to 𝐸𝑆, returning the amount of free 

enzyme 𝐸 to its initial value. The evolution of 𝐸 and 𝐸𝑆 is shown in Figure 2. 
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Figure 2. Time evolution of the number of enzyme molecules (black) and ES complexes 

(red). The number of ES go to zero. One realization with the Gillespie algorithm. Initial 

conditions: E=100, S=4900, ES=0, P=0 (product and substrate not pictured). 

Between the initial and final stages exists a stage called the quasi-stationary state of the chemical 

reaction. This is presented in Figure 3 and is the regime that will be addressed in greater detail in 

this chapter. 

 

Figure 3. The number of ES complexes is almost constant. This is the state considered as 

stationary in this work. Average over 100 realizations with the Gillespie algorithm.  Initial 

conditions: E=100, S=4900, ES=0, P=0. 
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Figures 1 and 2 show the stochastic nature of this process, and these random fluctuations are the 

focal point of our work. An adequate treatment for this kind of problems was developed in the past; 

this is presented in the section below. 

One of the results obtained predicts that the profile of the mean of the ES complex is a decreasing 

curve. This occurs when the product is reaching its constant value and the amount of substrate is 

nearly depleted. We will also demonstrate that this is what is called the state of equilibrium. 

2.3 Master equation and the van Kampen omega expansion 

The usual mathematical treatment sets off from the consideration of a process where a number of 

𝑁10  enzyme molecules and 𝑁20  substrate molecules react, first to form an enzyme-substrate 

complex in a reversible reaction, followed by an irreversible reaction that can form a product plus a 

free enzyme. We model this system through 4 amounts that at a given time 𝑡 have: 𝑁1 enzyme 

particles, 𝑁2 substrate particles, 𝑁3 enzyme-substrate complexes, and 𝑁4 product particles. 

Two laws of conservation are followed: 

1. The number of enzyme molecules at any given time are conserved and can be described by: 

𝑁10 = 𝑁1 + 𝑁3 (1) 

2. The number of substrate molecules at any given time are conserved and can be described 

by: 

𝑁20 = 𝑁2 +𝑁3 +𝑁4 (2) 

From above follows that there are only two independent variables, therefore {𝑁2, 𝑁3} are taken as 

the state variables that evolve with time, and to introduce 𝑃(𝑁2, 𝑁3, 𝑡) as the probability that there 

are 𝑁2 substrate particles and 𝑁3 enzyme-substrate complexes at time 𝑡. From now on these will be 

called {𝑁,𝑀}, to ease reading and to connect with the notation used in reference [51]. The time 

evolution equation of 𝑃(𝑁,𝑀, 𝑡) is obtained on the basis of three transitions that can occur in the 

state space representable in a two-dimensional plane, as shown in Figure 4. 
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Figure 4. State space. The number of complexes M versus the number of substrates N. The 

arrows show the transitions needed to build the master equation. 

The probability 𝑃(𝑁,𝑀, 𝑡 + Δ𝑡) can be calculated considering the conservation of probability. Each 

term consists of two factors, such that each factor is the probability of an independent event. For 

instance, in the event where the state transitions from (𝑁 − 1,𝑀 + 1) to (𝑁,𝑀) in the interval 

(𝑡, 𝑡 + Δ𝑡), considers the product of the probability of the state to be at (𝑁 − 1,𝑀 + 1) at time 𝑡, 

and the probability of the transition to be towards (𝑁,𝑀). A similar argument is applicable for each 

of the three transitions drawn in Figure 4. There also exist the passive transition, that consists of the 

system already being at state (𝑁,𝑀) at time 𝑡, and stays in that state during the time interval 

(𝑡, 𝑡 + Δ𝑡). The general formulation of this can be consulted in [51]. The resulting master equation 

is: 

𝜕𝑃(𝑁,𝑀, 𝑡)

𝜕𝑡
= ℒ̂𝑃(𝑁,𝑀, 𝑡) (3) 

where 

ℒ̂ = (ℰ𝑁ℰ𝑀
−1 − 1)𝑑𝑀 + (ℰ𝑀 − 1)𝑟𝑀 + (ℰ𝑁

−1ℰ𝑀 − 1)𝐹𝑀 (4) 

with step operators: 

ℰ𝑁
±1𝑓(𝑁,𝑀, 𝑡) = 𝑓(𝑁 ± 1,𝑀, 𝑡) 

ℰ𝑀
±1𝑓(𝑁,𝑀, 𝑡) = 𝑓(𝑁,𝑀 ± 1, 𝑡) 

The van Kampen omega expansion allows one to separate the state space represented in Figure 4 

in two distinct spaces, one for the deterministic side of the problem, and another for the random 

fluctuations. For this purpose, the next intensive variables are defined: 
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𝑛 =
𝑁

𝛺
= 𝜓 +

1

√𝛺
𝑞1   , 𝑚 =

𝑀

𝛺
= 𝜙 +

1

√𝛺
𝑞2 (5) 

with Ω = 𝑁10 +𝑁20 . It is important to note that, while it is common practice to define 

concentration as the quotient between the number of molecules within a volume, in this work it is 

defined in respect to the total number of reactants in the system. The relation between both ratios 

is a constant. 

The pair (𝜓, 𝜙) represent the deterministic conduct (also called the macroscopic description) of the 

particle densities (concentrations), and the pair (𝑞1, 𝑞2) are their respective random fluctuations. 

The step operator acts as shown in equation (6) below: 

ℰ𝑁
±1𝑁 = ℰ𝑁

±1(𝛺𝜓 + √𝛺𝑞1) = 𝛺𝜓 + √𝛺 (𝑞1 ±
1

√𝛺
) (6) 

Such that the action of this step operator causes the change 𝑞1 → 𝑞1 ±
1

√Ω
. There is an analogous 

expression for ℰ𝑀
±1. Working with an arbitrary function, of which the second derivatives exists, from 

their Taylor expansion follows that an approximation for the operators can be expressed as: 

 
ℰ𝑁
±1 ≅ 1 +

1

√𝛺

𝜕

𝜕𝑞1
+
1

2𝛺

𝜕2

𝜕𝑞1
2 

ℰ𝑀
±1 ≅ 1 +

1

√𝛺

𝜕

𝜕𝑞2
+
1

2𝛺

𝜕2

𝜕𝑞2
2 

(7) 

These will be used in expression (4), along with transition rates {𝑑𝑀, 𝑟𝑀 , 𝐹𝑀}. 

If one is looking for a probabilistic treatment where a well-defined probability density is obtained, 

in the sense that it is non-negative for every value of time 𝑡 in all the fluctuation space (𝑞1, 𝑞2), the 

only option is to cut (7) at its second order. Higher order expansions allow working with statistical 

moments or cumulants, but the pseudoprobability being used is not well defined; non-negativity is 

only recovered if all the terms in the series are used, in other words, if ℰ𝑁 is of the form shown in 

the expression below: 

ℰ𝑁 = 𝑒𝑥𝑝{∑
1

𝑗! (𝛺)𝑗 2⁄
𝜕𝑗

𝜕𝑞1
𝑗

∞

𝑗=0

} 

The other three operators involved would also have to have analogous expressions. In other words, 

according to the Pawula theorem, the expansion should stop after the first term or after the second 

term. On the contrary, it must contain an infinite number of terms for the solution to the equation 

to be interpretable as a probability density function [52]. 

The transition rates are usually introduced by means of the law of mass action, resulting in 

𝑑𝑀 = 𝑘1𝑁1𝑁2 ,   𝑟𝑀 = 𝑘3𝑁3 ,   𝐹𝑀 = 𝑘2𝑁3 (8) 
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with {𝑘1, 𝑘2, 𝑘3} as the reaction rates given by the Arrhenius law. The description in the state space 

{𝑁,𝑀} is recovered by considering 𝑁1 = 𝑁10 −𝑀 in 𝑑𝑀. 

Substituting (5) in (8) and rescaling Ω𝑘1 = 𝑘1
′  results in 

𝑑𝑀 = 𝛺𝑘1
′ (𝑛10 − 𝜙)𝜓 + √𝛺[(𝑛10 − 𝜙)𝑞1 + 𝜓𝑞2] (9) 

𝐹𝑀 = 𝑘2(𝛺𝜙 + √𝛺𝑞2) (10) 

𝑟𝑀 = 𝑘3(𝛺𝜙 + √𝛺) (11) 

Also, now the probability 𝑃(𝑁,𝑀, 𝑡) has the following functional dependence for every pair of 

(𝑁,𝑀) 

𝑃(𝑁,𝑀, 𝑡) = 𝑃(𝛺𝜓 + √𝛺𝑞1, 𝛺𝜙 + √𝛺𝑞1, 𝑡) = 𝛱(𝑞1, 𝑞2, 𝑡) (12) 

Substituting (7) and (9) to (11) in (4), the right-hand side of the master equation (3) takes the 

following form: 

ℒ̂ = √𝛺𝐺1 + 𝛺
0𝐺2 (13) 

The left-hand side is also rewritten as: 

𝜕𝑃(𝑁,𝑀, 𝑡)

𝜕𝑡
=
𝜕𝛱(𝑞1, 𝑞2, 𝑡)

𝜕𝑡
− 𝛺1 2⁄

𝑑𝜓

𝑑𝑡

𝜕𝛱(𝑞1, 𝑞2, 𝑡)

𝜕𝑞1
− 𝛺1 2⁄

𝑑𝜙

𝑑𝑡

𝜕𝛱(𝑞1, 𝑞2, 𝑡)

𝜕𝑞2
(14) 

Substituting (13) and (14) in the master equation, and comparing terms with like coefficients it is 

possible to obtain: 

For Ω1 2⁄  

−
𝑑𝜓

𝑑𝑡

𝜕𝛱(𝑞1, 𝑞2, 𝑡)

𝜕𝑞1
−
𝑑𝜙

𝑑𝑡

𝜕𝛱(𝑞1, 𝑞2, 𝑡)

𝜕𝑞2
= 𝐺1 (15) 

For Ω0 

𝜕𝛱(𝑞1, 𝑞2, 𝑡)

𝜕𝑡
= 𝐺2 (16) 

The equations for the deterministic part of the problem, also called the macroscopic part, can be 

obtained through 𝐺1 , and the partial differential equation that allows the study of the random 

fluctuations can be obtained through 𝐺2 . The procedures for these are widely covered in the 

literature [47]. From here onwards we will be using them in the context of the notation initially 

proposed in this work as was done in [51]. 

2.3.1 Deterministic equations 

The equations for the mean substrate concentration, 𝜓, and the mean concentration of enzyme-

substrate complex, 𝜙, that describe the macroscopic part are: 
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 𝑑𝜓

𝑑𝑡
= −𝑘1

′(𝑛10 − 𝜙)𝜓 + 𝑘2𝜙 

𝑑𝜙

𝑑𝑡
= 𝑘1

′ (𝑛10 −𝜙)𝜓 − (𝑘2 + 𝑘3)𝜙 

(17) 

This approach is versatile enough to be of use at any enzyme-substrate ratio, since these differential 

equations can be solved numerically for different initial conditions; but it will be used with the usual 

proportions of reactants found in in-vitro experiments, where the initial substrate concentration is 

much greater than the initial enzyme concentration. The logic behind this is that smaller quantities 

of enzyme can catalyze much larger quantities of substrate, thus it is a topic of efficiency; however, 

this is not the only situation that can be studied in the laboratories. Albe et al. [53] report the 

progress of a chemical reaction with different enzyme-substrate ratios, including cases where these 

ratios are inverted, so that the amount of enzyme exceeds that of the substrate. 

Equations (17) can take a very practical form when multiplied by 
1

𝑘1
′ , and one can define the 

evolution parameter 𝑠 = 𝑘1
′ 𝑡, with units of 

1

𝑀
. The resulting expressions are: 

 𝑑𝜓

𝑑𝑠
= −(𝑛10 − 𝜙)𝜓

+ 𝑟𝜙 
𝑑𝜙

𝑑𝑡
= (𝑛10 − 𝜙)𝜓 − 𝑘𝑀𝜙 

(18) 

Where 𝑟 = 𝑘2 𝑘1
′⁄  is an efficiency parameter that measures the rate of dissociation of the 𝐸𝑆 

complex that is not transformed into product. 

2.3.2 Quasi-stationary state 

The quasi-stationary state that is of interest in the in-vitro experiments is obtained through the 

condition that the density of enzyme-substrate complex changes very little across time, which is 

mathematically expressed as 
𝑑𝜙𝑠

𝑑𝑡
≅ 0. This is the topic of discussion in this subsection. 

In terms of the densities, the conservation laws take the form of 

𝑛10 = 𝑒(𝑡) + 𝜙(𝑡) ,    𝑛20 = 𝜓(𝑡) + 𝜙(𝑡) + 𝑃(𝑡) (19) 

Where 𝑒(𝑡) and 𝑃(𝑡) are the densities of the enzyme and the product, respectively. It is possible to 

demonstrate that the time evolution equations can be obtained through the following expressions: 

𝑑𝑒

𝑑𝑡
= −

𝑑𝜙

𝑑𝑡
  ,

𝑑𝑃

𝑑𝑡
= −𝑘3𝜙(𝑡) (20) 

Introducing the quasi-stationary condition in the time evolution equation of 𝜙(𝑡) in (17) results in 

𝑘1
′(𝑛10 − 𝜙𝑠)𝜓𝑠 − (𝑘2 + 𝑘3)𝜙𝑠 ≅ 0 

The conservation laws yield the relation (𝑛10 − 𝜙𝑠) = 𝑒𝑠, such that 
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𝜙𝑠 ≅
𝑘1
′𝑒𝑠𝜓𝑠
𝑘2 + 𝑘3

=
𝑒𝑠𝜓𝑠
𝑘𝑀

(21) 

where 𝑘𝑀 =
𝑘2+𝑘3

𝑘1
′  and receives the well-known name of the Michaelis-Menten constant. 

Denoting as 𝑉 the rate of growth of the product density 𝑃(𝑡), one obtains: 

𝑉 =
𝑑𝑃(𝑡)

𝑑𝑡
 

The in-vitro experiments are performed with amounts on the order micromoles. In such cases the 

behavior observed is of a slow decrease of the functions 𝜓(𝑡)  and 𝜙(𝑡). It is then where the 

condition of 
𝑑𝜙𝑠

𝑑𝑡
 is applicable. 

From the deterministic equation for 
𝑑𝜙

𝑑𝑡
 in (18) results 

(𝑛10 − 𝜙)𝜓 − 𝑘𝑀𝜙 ≅ 0 (22) 

One can obtain the following expression for the mean concentration of enzyme-substrate complex: 

𝜙𝑠 ≅
𝑛10𝜓𝑠
𝑘𝑀 + 𝜓𝑠

 

Using de definition 𝑉 =
𝑑𝑃(𝑡)

𝑑𝑡
 and the time evolution of 𝑃(𝑡) in (20), the demonstration of the 

following expression is straightforward. 

𝑉 ≅
𝑉𝑚𝑎𝑥𝜓𝑠
𝑘𝑀 + 𝜓𝑠

 

Where 𝑉𝑚𝑎𝑥 = 𝑘3𝑛10. The usual notation is recovered by simply rewriting 𝜓𝑠 as [𝑆]. 

2.3.3 Equilibrium state 

It is common practice to indistinctively use the terms “stationary” and “equilibrium” as synonyms, 

but it is imperative to establish a clear distinction between them. This section is dedicated to this 

purpose, showing the difference between a stationary state achieved in in-vitro experiments and 

the equilibrium state. This latter one corresponds to the mathematical condition: 

𝑑𝜓

𝑑𝑡
= 0 ,

𝑑𝜙

𝑑𝑡
= 0 (23) 

such that the following equations are followed: 

 −𝑘1
′ (𝑛10 − 𝜙𝑒)𝜓𝑒 + 𝑘2𝜙𝑒 = 0 

𝑘1
′(𝑛10 − 𝜙𝑒)𝜓𝑒 − (𝑘2 + 𝑘3)𝜙𝑒 = 0 

(24) 

The algebraic solution is 𝜓𝑒 = 0,𝜙𝑒 = 0 , it corresponds to the complete consumption of the 

substrate and enzyme-substrate complex. It is for this reason that the state of equilibrium is only 
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attainable when all the substrate has been consumed, such that only the initial amounts of free 

enzymes and the product remain in the system. 

It is possible to study the stability of the equilibrium state. Linearizing the differential equations 

around (𝜓𝑒 , 𝜙𝑒) = (0,0) results in: 

𝑑

𝑑𝑡
(
𝜓(𝑡)

𝜙(𝑡)
) = (

−𝑘1
′𝑛10 𝑘2

𝑘1
′𝑛10 −(𝑘2 + 𝑘3)

) (
𝜓
𝜙
) 

To ease reading, we introduce a shorter notation: 

𝐴 = 𝑘1
′𝑛10 , 𝐶 = 𝑘2, 𝐷 = 𝑘3 , 𝑅 = √−4𝐴𝐷 + (𝐴 + 𝐶 + 𝐷)2 

Thus, the eigenvalues of the matrix above are given as: 

𝜆1,2 = −
1

2
(𝐴 + 𝐶 + 𝐷 ± 𝑅) 

The transition rates and initial conditions are defined positive, this results in the eigenvalues 

satisfying the inequality: 𝜆1,2 < 0 . The fundamental solutions {𝑒𝜆1𝑡, 𝑒𝜆2𝑡}  generate the most 

general solution: 

(
𝜓(𝑡)

𝜙(𝑡)
) = (𝐴𝑒

𝜆1𝑡 + 𝐵𝑒𝜆2𝑡

𝐸𝑒𝜆1𝑡 + 𝐹𝑒𝜆2𝑡
) 

Which will always converge towards the equilibrium state. This mathematic expression explains the 

profile of the curve for the 𝐸𝑆 complex seen in Figure 1 and the decreasing stage shown in Figure 

14. 

2.4 Analysis of the random fluctuations 

2.4.1 General solution 

The following equation is called the Fokker-Planck equation (FPE): 

𝜕𝑃(�⃗�, 𝑡)

𝜕𝑡
=
𝜕[𝐴𝜇(�⃗�, 𝜓, 𝜙)𝑃(�⃗�, 𝑡)]

𝜕𝑞𝜇
+
1

2
∑∑𝐷𝜇𝜈(𝜓, 𝜙)

𝜕2𝑃(�⃗�, 𝑡)

𝜕𝑞𝜇𝑞𝜈

2

𝜈=1

2

𝜇=1

(25) 

The expression above describes the probability that the fluctuation of substrate concentration takes 

the value 𝑞1, and the fluctuation of enzyme-substrate complex concentration takes the value 𝑞2, at 

time 𝑡. The systematic term can be written as: 

𝐴𝜇(�⃗�, 𝜓, 𝜙) = ∑𝐿𝜇𝜈(𝜓, 𝜙)

2

𝜈=1

𝑞𝜈 (26) 

Where 𝐴𝜇 is the flux of random concentration fluctuations of 𝑆 and 𝐸𝑆. 

And its general solution [54] is a gaussian function of the form: 
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𝑃(�⃗�, 𝑡) =
1

2𝜋√𝐷𝑒𝑡(𝛯(𝑡))

𝑒−
1
2(
𝑞𝜇−〈𝑞𝜇(𝑡)〉)𝛯

−1(𝑡)(𝑞𝜈−〈𝑞𝜈(𝑡)〉) (27)
 

with Ξ(𝑡) = 〈𝑞𝜇𝑞𝜈〉 − 〈𝑞𝜇〉〈𝑞𝜈〉 as the self-correlation matrix, and Ξ−1(𝑡) as its inverse. This is the 

matrix that contains the variance of the random fluctuations of 𝐸 and 𝐸𝑆 concentrations, as well as 

their correlations. 

In the case under study, the elements of {𝐿𝜇𝜈} and {𝐷𝜇𝜈} are given by: 

 𝐿11 = −𝑘1
′ (𝑛10 − 𝜙) ,   𝐿12 = 𝑘1

′𝜓 + 𝑘2 

𝐿21 = 𝑘1
′ (𝑛10 − 𝜙) ,   𝐿22 = −𝑘1

′𝜓 − 𝑘2 − 𝑘3 
(28) 

 

 𝐷11 = 𝑘1
′ (𝑛10 − 𝜙)𝜓 + (1 + 𝑘2)𝜙 

𝐷22 = 𝑘1
′ (𝑛10 −𝜙)𝜓 + (𝑘2 + 𝑘3)𝜙 

𝐷12 = −𝑘1
′ (𝑛10 − 𝜙)𝜓 − 𝑘2𝜙 

(29) 

Given a physical magnitude 𝑔(�⃗�, 𝑡) that is relevant to the system, its mean can be calculated by: 

〈𝑔(�⃗�, 𝑡)〉(𝑡) = ∫ ∫ 𝑔(�⃗�, 𝑡)𝑃(�⃗�, 𝑡)𝑑𝑞1𝑑𝑞2

∞

−∞

∞

−∞

(30) 

The time evolution equations of the mean of the fluctuations of the concentrations of 𝐸 and 𝐸𝑆 

take the form of: 

𝑑

𝑑𝑡
(
〈𝑞1〉(𝑡)

〈𝑞2〉(𝑡)
) = (

𝐿11 𝐿12
𝐿21 𝐿22

)(
〈𝑞1〉(𝑡)

〈𝑞2〉(𝑡)
) (31) 

and the time evolution equations for the self-correlation functions are: 

𝑑

𝑑𝑡
(

𝛯11(𝑡)

𝛯12(𝑡)

𝛯22(𝑡)
) = (

2𝐿11 2𝐿12 0
𝐿21 𝐿11 + 𝐿22 𝐿12
0 2𝐿21 2𝐿22

)(

𝛯11(𝑡)

𝛯12(𝑡)

𝛯22(𝑡)
) + (

𝐷11(𝑡)

𝐷12(𝑡)

𝐷22(𝑡)
) (32) 

Defining Ξ⃗⃗(𝑡) = [Ξ11(𝑡), Ξ12(𝑡), Ξ22(𝑡)] and �⃗⃗⃗�(𝑡) = [𝐷11(𝑡), 𝐷12(𝑡), 𝐷22(𝑡)], the equation above 

can be rewritten as follows: 

𝑑�⃗�(𝑡)

𝑑𝑡
= 𝑀(𝑡)�⃗�(𝑡) + �⃗⃗⃗�(𝑡) (33) 

where 

𝑀(𝑡) = (

2𝐿11(𝑡) 2𝐿12(𝑡) 0

𝐿12(𝑡) 𝐿11(𝑡) + 𝐿22(𝑡) 𝐿12(𝑡)

0 2𝐿21(𝑡) 2𝐿22(𝑡)
) (34) 

Defining the entropy of fluctuation of the concentrations of 𝐸 and 𝐸𝑆 as 
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𝑆(𝑡) = −〈𝑙𝑛 𝑃(�⃗�, 𝑡)〉 = −∫ ∫ 𝑃(�⃗�, 𝑡)
∞

−∞

∞

−∞

𝑙𝑛[𝑃(�⃗�, 𝑡)] 𝑑𝑞1𝑑𝑞2 (35) 

Substituting the general solution in the expression for the entropy (35), results in expression (36) 

seen below: 

𝑆(𝑡) =
1

2
𝑙𝑛[𝐷𝑒𝑡(𝛯(𝑡))] + 𝑙𝑛(2𝜋𝑒) (36) 

Given two temporal points such that 𝑡1 < 𝑡2, the change in entropy is: 

𝛥𝑆 = 𝑆(𝑡2) − 𝑆(𝑡1) =
1

2
𝑙𝑛 [
𝐷𝑒𝑡(𝛯(𝑡2))

𝐷𝑒𝑡(𝛯(𝑡1))
] (37) 

so, the condition of Δ𝑆 ≥ 0 translates into the following condition: 

𝐷𝑒𝑡(𝛯(𝑡2))

𝐷𝑒𝑡(𝛯(𝑡1))
> 1 (38) 

Expression (38) will later be utilized to confirm that the entropy of fluctuation decreases when the 

reaction is taking place. Expression (27) provides the mathematical form of the time dependent 

probability density for the fluctuation variables which, as will be shown in the numerical example in 

a later section, performs a clockwise turning motion as the reaction progresses. This result 

showcases the importance of fluctuations in the dynamics of catalysis; therefore, in-depth study of 

this topic is relevant. 

If the phenomenon is analyzed using the dynamics of stochastic velocities, the behavior observed 

can be better understood. Thus, the section below is dedicated to the introduction of this formalism 

that may prove useful to the uninitiated reader. 

2.4.2 Stochastic velocities 

The time evolution of the fluctuations can be described by the motion of a state point �⃗� . It is 

common to assume that its study is completed once its behavior has been formulated, as we did in 

the previous section. We will see that it is possible to extract new knowledge to better understand 

the behavior of the state point �⃗�. 

In this section we present an intuitive approach to stochastic velocities. We begin with an analysis 

of the difficulty found when attempting to define velocities in stochastic processes. The typical 

example given of a stochastic process is the Brownian motion; this describes the conduct of a 

micrometric mass floating inside a liquid at temperature 𝑇. Seen through a modern video camera, 

its movement takes place in two dimensions, but for ease of writing mathematical expressions, we 

consider only one dimension. The model treats the Brownian particle as if it is a point mass, and due 

to the movement possessing random behavior, each point 𝑧  has a time dependent probability 

associated to it. This probability is a probability density function, denoted as 𝜌(𝑧, 𝑡), such that a 
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given interval, (𝑧, 𝑧 + 𝑑𝑧), on the line of accessible positions, the expression 𝜌(𝑧, 𝑡)𝑑𝑧 yields the 

probability of the particle being found within that interval at time 𝑡. 

It can be demonstrated that 𝜌(𝑧, 𝑡) follows an equation of the form shown below: 

𝜕𝜌(𝑧, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝜌(𝑧, 𝑡)

𝜕𝑧2
(39) 

where 𝐷 is named the diffusion coefficient. With the initial condition 𝜌(𝑧, 𝑡 = 0) = 𝛿(𝑧 − 𝑧0) the 

solution obtained for (39) is 

𝜌(𝑧, 𝑡) =
1

√4𝜋𝐷𝑡
𝑒−
(𝑧−𝑧0)

2

4𝜋𝐷𝑡 (40) 

In this case, the probability densities evolve with time. From (40), the statistical properties 〈𝑧〉 = 0 

and 〈𝑧2〉 = 2𝐷𝑡 can be demonstrated. It is important to note that the mean movement is zero and 

that the standard deviation changes with time as 𝑡1 2⁄ . In the approach presented by Paul Langevin 

in 1908, the Second Law of Newton is applied to a Brownian particle of mass 𝑚 with a force 𝐹(𝑥) 

acting upon it plus a friction force proportional to the velocity, −𝛽𝑣, plus a stochastic force, 𝜂(𝑡), 

with the following properties: 

〈𝜂(𝑡)〉 = 0, 〈𝜂(𝑡)𝜂(𝑠)〉 = 𝐶𝛿(𝑡 − 𝑠) (41) 

where 𝐶 is a constant. There are technical reasons for calling white noise a random magnitude that 

displays these properties. The fundamental dynamic law resulting from this is called the Langevin 

equation, and is written as shown below: 

𝑚
𝑑𝑣

𝑑𝑡
= 𝐹(𝑥) − 𝛽𝑣 + 𝜂(𝑡) (42) 

Using the method of moments, one obtains similar results for the Brownian motion. If the 

trajectories as functions of time 𝑡 are to be plotted, the resulting graphs would present functions 

with very sharp peaks and valleys, therefore one can perceive intuitively that there would be 

problems when attempting to define the displacement velocity as 𝑣 =
𝑑𝑥

𝑑𝑡
. Next, we will focus on 

this dilemma with close attention. 

In mathematical terms, the Weiner process has been defined to formalize the events that follow the 

Brownian motion. Taking as a starting point the case where 𝐷 = 1 and denoting the process as 

𝑊(𝑡), the postulated properties are: 

1. 𝑊(𝑡 = 0) = 0. 

2. 𝑊(𝑡) is continuous. 

3. 𝑊(𝑡) has independent increments, that is to say, if it follows that 0 ≤ 𝑠1 ≤ 𝑡1 ≤ 𝑠2 ≤ 𝑡2, 

then the differences 𝑊(𝑡1) −𝑊(𝑠1)  and 𝑊(𝑡2) −𝑊(𝑠2)  are independent random 

variables. 
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4. 𝑊(𝑡 − 𝑠) is a random variable with normal distribution of mean 𝜇 = 0 and variance 𝜎2 =

𝑡 − 𝑠. 

In rigorous terms, equation (42) presents a difficulty that is analyzed next. Using the traditional 

concepts of defining the rate of change in a trajectory 𝑧(𝑡) , we take the quotient of finite 

increments: 

𝛥𝑧

𝛥𝑡
=
𝑧(𝑡 + ℎ) − 𝑧(𝑡)

ℎ
(43) 

but from the fourth postulate one must have 𝑧(𝑡 + ℎ) − 𝑧(𝑡) = √ℎ, where it follows that 
Δ𝑧

Δ𝑡
=
√ℎ

ℎ
. 

Therefore, the quotient diverges in the limit ℎ → 0; consequently, it is impossible to define the rate 

of change through traditional methods. 

For the issue encountered above, instead of using the Langevin equation, as it was originally 

formulated, it is better to consider an approach using finite differences to suggest an equation that 

avoids the use of derivatives and translates all calculations to integrals, giving place to two types of 

integral calculus: that of Kiyoshi Ito and of Ruslan Stratonovich [55]. A less known option is the one 

developed by Edward Nelson, based in a system of averages over the realizations of the stochastic 

processes, and gives place to the concept of stochastic velocities [45], [56]. These have been used 

to describe quantum phenomena from a stochastic perspective, giving rise to a line of work called 

stochastic mechanics. In this work we take advantage of the mathematical tools developed and use 

them in our topic of interest. The condition is that the stochastic process must be describable by 

means of Fokker-Planck equations (FPE) [48]. 

When an ensemble is associated to a stochastic process �⃗� = (𝑥1, … , 𝑥𝑛), a state space of dimension 

𝑛 is available in which a point at a time 𝑡 corresponds to each member of the ensemble. A large 

number of members of the ensemble produce a cloud of points that move at random as time 

progresses; this idea allows the introduction of an analogy with a gas, such that it is possible to 

include in the description some properties typical of fluids. One of these is that of vorticity, which 

lets us know if the cloud of state points tends to rotate, or if it behaves like a fluid whose velocity is 

irrotational. This gives us the opportunity of using this concept to analyze the manner with which 

the agitation of this cloud of state points occurs, and with it establish a difference between a 

stationary process and that of a process at equilibrium. The former abides to the condition that the 

statistical moment of order 𝑚 must be time invariant: 

〈𝑥1(𝑡)𝑥2(𝑡)… 𝑥𝑚(𝑡)〉 = 〈𝑥1(𝑡 + 𝜏)𝑥2(𝑡 + 𝜏)…𝑥3(𝑡 + 𝜏)〉 (44) 

while the latter also follows the condition that each of the possible transitions must be balanced out 

by a transition that occurs on the opposite side. This condition is given the name of detailed balance. 

If the detailed balance is not present, then the cloud of state points tends to rotate, therefore, the 

use of the concept of vorticity contributes to the understanding of the dynamics of the gas cloud. 

Vorticity is defined as the curl of the velocity thus it is necessary to revise this point. 
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2.4.2.1 Smoothening the trajectory using a moving average 

The mean over the realizations, as originally developed by Nelson, can be understood with the 

concept of moving averages used in the study of time series. In this section we introduce these 

concepts. 

Let �⃗�(𝑡) be a stochastic process that occurs inside a state space 𝒰, and let the points {�⃗�′, �⃗�, �⃗�′′} ∈

𝒰, such that they are reached by some realizations of the stochastic process �⃗� at times 𝑡′, 𝑡, 𝑡′′, 

respectively, where 𝑡′ < 𝑡 < 𝑡′′. Let the increments be Δ+�⃗� = �⃗�
′′ − �⃗�, Δ−�⃗� = �⃗� − �⃗�′, see Figure 5. 

 

Figure 5. The state space 𝒰. The neighborhood of the point  �⃗�(𝑡), ℬ, is the region of 

interest where we determine the state points going inside or outside. One can arrive to 

the definition of the access and exit velocities if the times are considered. The stochastic 

process �⃗�(𝑡) can jump to points: {�⃗�′ 𝑜𝑟 �⃗�′′}. The velocities are defined depending on the 

jump. Each point is reached at times 𝑡′ < 𝑡 < 𝑡′′. The increments considered in the 

definitions are: 𝛥+�⃗� = �⃗�
′′ − �⃗�, 𝑎𝑛𝑑 𝛥−�⃗� = �⃗� − �⃗�′. 

Next, we will explain the relations that must be followed between the time intervals involved in the 

description; for that purpose, we continue using the Brownian movement as a case study. Suppose 

there is a camera capable of registering the random movements of a state point; due to the 

difference in mass, the collision of a single molecule against the Brownian particle does not produce 

an effect that is registerable by the lab instrument. What moves the Brownian particle is the 

difference in the number of collisions that it receives because of the random fluctuations of the 

density of particles comprising the surrounding medium. By this manner, the path traced by the 

Brownian particle, as observed by a camera recording through an optical microscope, are polygonal 

shaped. However, because of the easiness in the mathematical language, we say that a collision 

occurs each time there is a change in the path taken by the particle of interest. 

There are three instants of time that are relevant in this approach: 



22 
 

1. 𝑡𝑐 , the time required to accumulate enough collisions capable of causing a registerable 

random change in the path of the particle. 

2. 𝑇0, the time that passes between two successive frames captured by the camera. If 𝑇0 is too 

short, the displacements registered may follow the relation Δ𝑥~𝑡, as is the case in classical 

mechanics; but it is more common to find 〈Δ𝑥〉~𝑡1 2⁄  in the Brownian case. For the latter 

conduct it is necessary that 𝑇0 ≫ 𝑡𝑐. 

3. Δt, the time necessary to smoothen trajectories by the moving averages method. To study 

the movement of the state points, the stochastic trajectories are smoothed by introducing 

moving averages; these are calculated in time intervals Δ𝑡 that must be long enough to 

include various spikes of the trajectory, as can be seen in Figure 7, but also short enough 

that the camera registering the data cannot tell that the trajectory has been smoothed. 

Therefore, Δ𝑡 ≫ 𝑇0 ≫ 𝑡𝑐  must be followed. This regime is called the coarse grain time scale, as 

shown in Figure 6 below. 

 

Figure 6.𝑡𝑐is the time required to accumulate enough collisions to achieve a random motion. 

𝑇0 is the time between two successive images, or measurements, taken by a camera, or 

measuring device. 𝛥𝑇 is the time required to calculate a moving average. 

The moving average of 𝑝 points is defined as 𝑥𝑘 =
1

𝑝
∑ 𝑥𝑖
𝑘+

𝑝

2

𝑖=𝑘−
𝑝

2

, where 𝑖 takes values such that the 

sum is not out of the bounds of the interval. For continuous signals, the moving average is defined 

as: 〈𝑥〉Δ𝑡(𝑡) ≡
1

Δ𝑡
∫ 𝑥(𝑠)
𝑡′+Δ𝑡

𝑡′
𝑑𝑠. We now set out to study the derivative of a function 𝑔(�⃗�, 𝑡). For 

this purpose, we establish a set of times expressed in (45) below: 

𝑡1 < 𝑡2 < ⋯ < 𝑡𝑀 (45) 

and considering finite increments of the function 𝑔(�⃗�, 𝑡): Δ𝑔𝑘 = 𝑔(�⃗�, 𝑡𝑘 + 1) − 𝑔(�⃗�, 𝑡𝑘), with 𝑘 =

1,… ,𝑀 − 1, one can write: 

𝑔(�⃗�, 𝑡𝑀) = 𝑔(�⃗�, 𝑡1) + 𝛥𝑔1 + 𝛥𝑔2 +⋯+ 𝛥𝑔𝑀−1 (46) 

Rearranging and multiplying by 
1

2Δ𝑡
 gives: 
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𝑔(�⃗�, 𝑡𝑀) − 𝑔(�⃗�, 𝑡1)

2𝛥𝑡
=
1

2𝛥𝑡
∫

𝜕𝑔(�⃗�, 𝑠)

𝜕𝑠
𝑑𝑠

𝑡′+2𝛥𝑡

𝑡′
(47) 

This expression receives the name of coarse grain time derivative. Notice the incorporation of the 

sum of finite differences inside a moving average within an interval of width 2Δ𝑡 . Once the 

smoothening process has been applied, the resulting trajectories can be studied using the usual 

tools of calculus. An illustrative example is given in Figure 7. 

 

Figure 7. The result of the smoothening process is a curve without the spikes that are 

characteristic of the Brownian motion. 

2.4.2.2 The study of smoothened stochastic functions 

2.4.2.2.1 Points in the state space and a statistical description of their movement 

Suppose a statistical ensemble of equally prepared experiments at a macro scale. Each of these carry 

out a realization of the stochastic process �⃗�. At a given point in time, we have a cloud of points 

whose number is theoretically infinite. If one is to let the clock run out, a static image (like that of a 

photograph) would be substituted for a series of images of points moving at random, similar to a 

swarm of mosquitos swirling in summer. These will enter and exit of the previously marked region 

ℬ, as seen in Figure 5. The question that follows is: How many points enter or exit ℬ in a second? 

This problem is similar as counting the number of smoke particles in a given region of space. 

The concept of systematic velocity, which has already been presented, measure the net number of 

state points that cross ℬ per second. 

2.4.2.2.2 Systematic derivative and systematic velocity 

We define the systematic derivative as the mean over the ensemble of all the realizations: 

𝐷𝑐𝑔(�⃗�, 𝑡) ≡
〈𝑔(�⃗�, 𝑡′′) − 𝑔(�⃗�, 𝑡′)〉

2𝛥𝑡
(48) 
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To have an analytical representation of the previous definition, we introduce various hypotheses 

that lead to the Taylor series expansion. These hypotheses are: 

 The stochasticity of the physical phenomenon is introduced by a source that is: stationary, 

isotropic and homogenous. 

 The second statistical moments of the increments Δ+�⃗� and Δ−�⃗� are such that they follow: 

 〈𝛥+𝑥𝑖𝛥+𝑥𝑗〉

= 〈𝛥−𝑥𝑖𝛥−𝑥𝑗〉 

〈𝛥+𝑥𝑖𝛥−𝑥𝑗〉 = 0 

(49) 

The diffusion matrix can be defined as 

𝐷𝑖𝑗 ≡
1

2𝛥𝑡
〈𝛥+𝑥𝛥+𝑥𝑗〉 (50) 

or also as 

𝐷𝑖𝑗 ≡
1

2𝛥𝑡
〈𝛥−𝑥𝑖𝛥−𝑥𝑗〉 (51) 

Notice that the increments grow as (Δ𝑡)1 2⁄  so that the average that appears in the definition above 

grows as (Δ𝑡). It also must be noted that the products of increments appear as coefficients in the 

second order derivatives of any function 𝑑(𝑥, 𝑡) expanded using Taylor series. 

To work at higher orders of (Δ𝑡) would involve considering Taylor expansions with derivatives of 

orders of 3,4,…; although it is mathematically possible, there exist a restriction when the problem 

is translated to determining the probability 𝑃(�⃗�, 𝑡) by means of a partial differential equation. The 

function 𝑃(�⃗�, 𝑡)  that satisfies an equation of order higher than 2 ceases to be defined as 

nonnegative for all �⃗� and 𝑡, therefore it cannot be interpreted as a probability density function. 

In vector calculus, a function 𝑓(�⃗�, 𝑡) has a total time derivative that is of the form: 

 𝑑𝑓(�⃗�, 𝑡)

𝑑𝑡
=
𝜕𝑓(�⃗�, 𝑡)

𝜕𝑡
+∑

𝜕𝑓

𝜕𝑥𝑖

𝑑𝑥𝑖
𝑑𝑡

𝑛

𝑖=1

 

𝑑𝑓(�⃗�, 𝑡)

𝑑𝑡
=
𝜕𝑓(�⃗�, 𝑡)

𝜕𝑡
+ �⃗�𝑐 ∙ 𝛻𝑓(�⃗�, 𝑡) 

(52) 

where �⃗�𝑐 =
𝑑𝑥

𝑑𝑡
 is the velocity. The expression above is called the convective derivative. 

This concept can be adapted to the case where the function 𝑔(�⃗�, 𝑡) depends on a stochastic process 

�⃗�. This is the systematic derivative: 

𝐷𝑐𝑔(�⃗�, 𝑡) =
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
+ �⃗�𝑐 ∙ 𝛻𝑔(�⃗�, 𝑡) (53) 

such that the systematic velocity is as given in (54) below: 
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�⃗�𝑐 = 𝐷𝑐�⃗�(𝑡) ≡
〈�⃗�(𝑡′′) − �⃗�(𝑡′)〉

2𝛥𝑡
(54) 

2.4.2.2.3 Access velocities, of exit and of diffusion 

In fluid dynamics appears the phenomenon of swirls, or eddies, that cannot be understood with the 

systematic velocity alone; an illustrative example would be the that of cigar smoke traveling 

upwards through the air. To approach this topic let us consider a point �⃗� in the state space and both 

displacements, Δ+�⃗� and Δ−�⃗�, as shown in Figure 5. We have the next relations: 

�⃗�′′ = �⃗� + 𝛥+�⃗�   ,   �⃗�
′ = �⃗� + 𝛥−�⃗� (55) 

If �⃗� is a state point contained in vicinity ℬ, it is understood that the displacement towards �⃗�′′, in a 

time interval Δ𝑡, is related to the exit of state points. Likewise, the displacement from �⃗�′ towards �⃗�, 

also in a time interval Δ𝑡, is related with the entry of state points into vicinity ℬ. 

Let us suppose we track a state point whose route is as follows: 

 At instant 𝑡 − Δ𝑡 the state point is located at �⃗�′. 

 At instant 𝑡 the state point is located at �⃗�′′. 

Separating by components and working them individually, one can obtain 

 𝛥+𝑥𝑖 = 𝑥𝑖
′′ − 𝑥𝑖  

𝛥−𝑥𝑖 = 𝑥𝑖
′ − 𝑥𝑖  

(56) 

We now consider the physical magnitude of the system denoted as 𝑔(�⃗�′′) . To treat the 

displacement from �⃗� to �⃗�′′, the function is expanded in Taylor series as shown below: 

 𝑔(�⃗�′′, 𝑡 + 𝛥𝑡) = 𝑔(�⃗� + 𝛥+�⃗�, 𝑡 + 𝛥𝑡) 

= 𝑔(�⃗�, 𝑡) +
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
𝛥𝑡 +

𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖
(𝑥𝑖
′′ − 𝑥𝑖)

+
1

2

𝜕2𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥𝑖
′′ − 𝑥𝑖)(𝑥𝑗

′′ − 𝑥𝑗) + ⋯ 

(57) 

such that repeated indexes indicate a sum. 

In the same fashion, one can study the displacement from �⃗�′ to �⃗�, resulting in: 

 𝑔(�⃗�′, 𝑡 − 𝛥𝑡) = 𝑔(�⃗� + 𝛥−�⃗�, 𝑡 − 𝛥𝑡) 

= 𝑔(�⃗�, 𝑡) −
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
𝛥𝑡 −

𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖
(𝑥𝑖 − 𝑥𝑖

′)

+
1

2

𝜕2𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥𝑖 − 𝑥𝑖

′)(𝑥𝑗 − 𝑥𝑗
′) + ⋯ 

(58) 

The difference between 𝑔(�⃗�′′) and 𝑔(�⃗�′) is: 
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𝑔(�⃗�′′) − 𝑔(�⃗�′) =

𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
2𝛥𝑡 +

𝜕𝑔

𝜕𝑥𝑖
[𝑥𝑖
′′ − 𝑥𝑖 + 𝑥𝑖 − 𝑥𝑖

′]

+
1

2

𝜕2𝑔

𝜕𝑥𝑖𝜕𝑥𝑗
[(𝑥𝑖

′′ − 𝑥𝑖)(𝑥𝑗
′′ − 𝑥𝑗)

− (𝑥𝑖 − 𝑥𝑖
′)(𝑥𝑗 − 𝑥𝑗

′)] +⋯ 

(59) 

It is possible to find that the next relations are followed: 

 𝑥𝑖
′′ − 𝑥𝑖 + 𝑥𝑖 − 𝑥𝑖

′ = 𝛥+𝑥𝑖 + 𝛥−𝑥𝑖 

(𝑥𝑖
′′ − 𝑥𝑖)(𝑥𝑗

′′ − 𝑥𝑗) − (𝑥𝑖 − 𝑥𝑖
′)(𝑥𝑗 − 𝑥𝑗

′) = 𝛥+𝑥𝑖𝛥+𝑥𝑗 − 𝛥−𝑥𝑖𝛥−𝑥𝑗 
(60) 

Such that (59) can be written as: 

𝑔(�⃗�′′) − 𝑔(�⃗�′) =
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
2𝛥𝑡 +

𝜕𝑔

𝜕𝑥𝑖
[𝛥+𝑥𝑖 + 𝛥−𝑥𝑖] +

1

2

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
[𝛥+𝑥𝑖𝛥+𝑥𝑗 − 𝛥−𝑥𝑖𝛥−𝑥𝑗] +⋯(61) 

Multiplying by 
1

2Δt
 and calculating the mean results in 

〈𝑔(�⃗�′′) − 𝑔(�⃗�′)〉

2𝛥𝑡
=
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
+
𝜕𝑔

𝜕𝑥𝑖

〈𝑥𝑖
′′ − 𝑥𝑖

′〉

2𝛥𝑡
+
1

2

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗

〈𝛥+𝑥𝑖𝛥+𝑥𝑗 − 𝛥−𝑥𝑖𝛥−𝑥𝑗〉

2𝛥𝑡
+ ⋯ (62) 

From (54) we have that the coefficient of the first derivative with respect to the position, is the 𝑖-th 

component of the systematic velocity, 𝑣𝑖 , which has been previously found. We also find the 

following: 

〈𝛥+𝑥𝑖𝛥+𝑥𝑗 − 𝛥−𝑥𝑖𝛥−𝑥𝑗〉 = 2Δ𝑡(𝐷𝑖𝑗 − 𝐷𝑖𝑗) = 0 (63) 

Also, the expression 
〈𝑔(�⃗⃗�

′′
)−𝑔(�⃗⃗�

′
)〉

2𝛥𝑡
 is the systematic derivative of 𝑔(�⃗�, 𝑡), thus, we have: 

𝐷𝑐𝑔(�⃗�, 𝑡) =
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
+ 𝑣𝑖

𝑐 𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖
(64) 

From (64) it is easy to identify the systematic derivative operator as: 

𝐷𝑐 ≡
𝜕

𝜕𝑡
+ 𝑣𝑖

𝑐 𝜕

𝜕𝑥𝑖
(65) 

If one takes as a special case the identity function: 𝑔(�⃗�, 𝑡) = �⃗�(𝑡), the expression is reduced to the 

systematic velocity in vicinity ℬ. 

Adding (57) and (58), it results: 

𝑔(�⃗�′′, 𝑡 + Δ𝑡) + 𝑔(�⃗�′, 𝑡 − Δ𝑡)

= 2𝑔(�⃗�, 𝑡) +
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖
(𝑥𝑖
′′ − 𝑥𝑖 − 𝑥𝑖 + 𝑥𝑖

′)

+
𝜕2𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
[(𝑥𝑖

′′ − 𝑥𝑖)(𝑥𝑗
′′ − 𝑥𝑗) + (𝑥𝑖 − 𝑥𝑖

′)(𝑥𝑗 − 𝑥𝑗
′)] 
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Rearranging, multiplying by 
1

2Δ𝑡
 and calculating the mean value, one obtains: 

 〈𝑔(�⃗�′′, 𝑡 + 𝛥𝑡) + 𝑔(�⃗�′, 𝑡 − 𝛥𝑡) − 2𝑔(�⃗�, 𝑡)〉

2𝛥𝑡

=
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖

〈𝛥+𝑥𝑖 + 𝛥−𝑥𝑖〉

2𝛥𝑡

+
𝜕2𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗

〈(𝑥𝑖
′′ − 𝑥𝑖)(𝑥𝑗

′′ − 𝑥𝑗) + (𝑥𝑖 − 𝑥𝑖
′)(𝑥𝑗 − 𝑥𝑗

′)〉

2𝛥𝑡
 

(66) 

The term that accompanies the first derivative with respect to the positions is used to define the 

diffusion velocity in vicinity ℬ: 

𝑢𝑖 ≡
〈𝛥+𝑥𝑖 + 𝛥−𝑥𝑖〉

2𝛥𝑡
(67) 

Which is useful to measure the stirring that the state point undergoes in each subset ℬ  in the 

fluctuations space. We can back up this definition if we add the systematic velocity and the diffusion 

presented above, resulting in: 

〈�⃗�′′ − �⃗�′〉

2𝛥𝑡
+
〈�⃗�′′ − 2�⃗� + 𝑥′〉

2𝛥𝑡
=
〈�⃗�′′ − �⃗�〉

𝛥𝑡
(68) 

Which can be interpreted as a total velocity measuring the mean path of state points from �⃗� to �⃗�′′ 

in the time interval Δ𝑡. In that case it follows that: 

�⃗� = �⃗�𝑐 + �⃗⃗� (69) 

such that the cigarette smoke phenomenon can be described in terms of two velocities, one of 

translation and other of swirling for each of the ℬ vicinities in the fluctuation space. 

With these conceptual tools, one can identify the operators that allow the calculation of the 

velocities mentioned in this work. Combining results, we find the next expression: 

〈𝑔(�⃗�′′, 𝑡 + 𝛥𝑡) + 𝑔(�⃗�′, 𝑡 − 𝛥𝑡) − 2𝑔(�⃗�, 𝑡)〉

2𝛥𝑡
= 𝑢𝑖

𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖
+ 𝐷𝑖𝑗

𝜕2𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
(70) 

where 

𝐷𝑖𝑗 =
〈𝛥−𝑥𝑖𝛥−𝑥𝑗 + 𝛥−𝑥𝑖𝛥−𝑥𝑗〉

2𝛥𝑡
(71) 

With the elements considered up until now, we identify the left-hand side as the stochastic 

derivative, or of diffusion, of the function 𝑔(�⃗�, 𝑡)  and identify the operator of the stochastic 

derivative as 

𝐷𝑠 = 𝑢𝑖
𝜕

𝜕𝑥𝑖
+ 𝐷𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(72) 
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such that, when 𝑔(�⃗�, 𝑡) = �⃗�, it results in: 

𝐷𝑠𝑔(�⃗�, 𝑡) = 𝑢𝑖 (73) 

To study the exit velocity, �⃗�𝑒, we study the displacement from �⃗� to �⃗�′′ in a Δ𝑡 time interval. For this 

purpose, we reuse the Taylor expansion given in (57) and rearrange it as: 

𝑔(�⃗�′′, 𝑡 + 𝛥𝑡) − 𝑔(�⃗�, 𝑡)

=
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
𝛥𝑡 +

𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖
(𝑥𝑖
′′ − 𝑥𝑖) +

1

2

𝜕2𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥𝑖
′′ − 𝑥𝑖)(𝑥𝑗

′′ − 𝑥𝑗)

+ ⋯ 

Multiplying by 
1

Δ𝑡
 and calculating the mean 

〈𝑔(�⃗�′′, 𝑡 + 𝛥𝑡) − 𝑔(�⃗�, 𝑡)〉

𝛥𝑡
=
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
+
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖

〈𝑥𝑖
′′ − 𝑥𝑖〉

𝛥𝑡
+
1

2

𝜕2𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗

〈(𝑥𝑖
′′ − 𝑥𝑖)(𝑥𝑗

′′ − 𝑥𝑗)〉

𝛥𝑡
+ ⋯(74) 

Defining the 𝑖-th component of the exit velocity as follows 

𝑣𝑖
𝑒 ≡

〈𝑥𝑖
′′ − 𝑥𝑖〉

𝛥𝑡
(75) 

and identifying that 

1

2

〈(𝑥𝑖
′′ − 𝑥𝑖)(𝑥𝑗

′′ − 𝑥𝑗)〉

𝛥𝑡
=
1

2𝛥𝑡
〈𝛥+𝑥𝑖𝛥+𝑥𝑗〉 = 𝐷𝑖𝑗 (76) 

thus, we have 

〈𝑔(�⃗�′′, 𝑡 + 𝛥𝑡) − 𝑔(�⃗�, 𝑡)〉

𝛥𝑡
=
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
+ 𝑣𝑖

𝑒 𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖
+ 𝐷𝑖𝑗

𝜕2𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
(77) 

Defining the left-hand side as a forward derivative of function 𝑔(�⃗�, 𝑡) and introducing the forward 

operator as: 

𝐷𝑒 ≡
𝜕

𝜕𝑡
+ 𝑣𝑖

𝑒 𝜕

𝜕𝑥𝑖
+ 𝐷𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(78) 

Such that we represent the forward derivative as 𝐷𝑒𝑔(�⃗�, 𝑡). In the case when 𝑔(�⃗�, 𝑡) = 𝑥𝑖  one 

obtains the 𝑖-th component of the exit velocity in vicinity ℬ. 

𝐷𝑒𝑥𝑖 = 𝑣𝑖
𝑒 (79) 

Finally, one can relate the entry velocity with the translation of the state point from �⃗�′ to �⃗� in time 

interval Δ𝑡 (see Figure 5). Now consider the Taylor series expansion: 



29 
 

𝑔(�⃗�′, 𝑡 − 𝛥𝑡) = 𝑔(�⃗�, 𝑡) −
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
𝛥𝑡 −

𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖
(𝑥𝑖 − 𝑥𝑖

′) +
1

2

𝜕2𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥𝑖 − 𝑥𝑖

′)(𝑥𝑗 − 𝑥𝑗
′) + ⋯(80) 

Rearranging, multiplying by 
1

Δ𝑡
 and calculating the mean: 

〈𝑔(�⃗�′, 𝑡 − 𝛥𝑡) − 𝑔(�⃗�, 𝑡)〉

𝛥𝑡
= −

𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
−
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖

〈𝑥𝑖 − 𝑥𝑖
′〉

𝛥𝑡
+
1

2

𝜕2𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗

〈(𝑥𝑖 − 𝑥𝑖
′)(𝑥𝑗 − 𝑥𝑗

′)〉

𝛥𝑡
(81) 

Defining the 𝑖-th component of the entry velocity in vicinity ℬ as: 

𝑣𝑖
𝑎 ≡

〈𝑥𝑖 − 𝑥𝑖
′〉

𝛥𝑡
(82) 

and identifying 

1

2

〈(𝑥𝑖 − 𝑥𝑖
′)(𝑥𝑗 − 𝑥𝑗

′)〉

𝛥𝑡
= 𝐷𝑖𝑗 (83) 

It is possible to rewrite (81) as: 

〈𝑔(�⃗�′, 𝑡 − 𝛥𝑡) − 𝑔(�⃗�, 𝑡)〉

𝛥𝑡
= −

𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
− 𝑣𝑖

𝑎 𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖
+𝐷𝑖𝑗

𝜕2𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
(84) 

Defining the backwards derivative operator as 

𝐷𝑎 ≡ −
𝜕

𝜕𝑡
− 𝑣𝑖

𝑎 𝜕

𝜕𝑥𝑖
+ 𝐷𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(85) 

And rewriting (84) as 

𝐷𝑎𝑔(�⃗�, 𝑡) = −
𝜕𝑔(�⃗�, 𝑡)

𝜕𝑡
− 𝑣𝑖

𝑎 𝜕𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖
+ 𝐷𝑖𝑗

𝜕2𝑔(�⃗�, 𝑡)

𝜕𝑥𝑖𝜕𝑥𝑗
(86) 

Once again, if 𝑔(�⃗�, 𝑡) = 𝑥𝑖 one can obtain 

𝐷𝑎𝑥𝑖 = 𝑣𝑖
𝑎 (87) 

which is the 𝑖-th component of the entry velocity in vicinity ℬ. 

2.4.2.2.4 Combining operators 

Passing the operators through an algebraic process, one can obtain the following expressions: 

𝐷𝑒 ≡
𝜕

𝜕𝑡
+ 𝑣𝑖

𝑒 𝜕

𝜕𝑥𝑖
+ 𝐷𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(88) 

𝐷𝑎 ≡
𝜕

𝜕𝑡
+ 𝑣𝑖

𝑎 𝜕

𝜕𝑥𝑖
− 𝐷𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(89) 
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If we were to add (88) and (89), then multiply by 
1

2
 

1

2
(𝐷𝑒 + 𝐷𝑎) =

𝜕

𝜕𝑡
+
𝑣𝑖
𝑒 + 𝑣𝑖

𝑎

2

𝜕

𝜕𝑥𝑖
(90) 

Defining 

𝑣𝑖
𝑒 + 𝑣𝑖

𝑎

2
≡ 𝑣𝑖

𝑐 (91) 

we have 

1

2
(𝐷𝑒 + 𝐷𝑎) =

𝜕

𝜕𝑡
+
𝑣𝑖
𝑒 + 𝑣𝑖

𝑎

2

𝜕

𝜕𝑥𝑖
=
𝜕

𝜕𝑡
+ 𝑣𝑖

𝑐
𝜕

𝜕𝑥𝑖
= 𝐷𝑐 (92) 

Now, calculating the difference between (88) and (89) and multiplying by 
1

2
 

1

2
(𝐷𝑒 −𝐷𝑎) =

𝑣𝑖
𝑒 − 𝑣𝑖

𝑎

2

𝜕

𝜕𝑥𝑖
+ 𝐷𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(93) 

such that it is convenient to define: 

𝑣𝑖
𝑒 − 𝑣𝑖

𝑎

2
≡ 𝑢𝑖 (94) 

So (93) can be rewritten as: 

1

2
(𝐷𝑒 − 𝐷𝑎) = 𝑢𝑖

𝜕

𝜕𝑥𝑖
+𝐷𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
= 𝐷𝑠 (95) 

The stochastic velocities provide a description at the level of vicinities such that it is possible to 

calculate a variety of means previously mentioned. Table 2 summarizes the previous results: 

Velocity Notation Operator 

Access 

entry 
�⃗�𝑎 𝐷𝑒�⃗�(𝑡) = (

𝜕

𝜕𝑡
+ 𝑣𝑖

𝑒 𝜕

𝜕𝑥𝑖
+ 𝐷𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
) �⃗�(𝑡) 

Exit �⃗�𝑒 𝐷𝑎�⃗�(𝑡) = (
𝜕

𝜕𝑡
+ 𝑣𝑖

𝑎 𝜕

𝜕𝑥𝑖
− 𝐷𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
) �⃗�(𝑡) 

Systematic  �⃗�𝑐 𝐷𝑐�⃗�(𝑡) = (
𝜕

𝜕𝑡
+ 𝑣𝑖

𝑐 𝜕

𝜕𝑥𝑖
) �⃗�(𝑡) 

Diffusion �⃗⃗� 𝐷𝑠�⃗�(𝑡) = (𝑢𝑖
𝜕

𝜕𝑥𝑖
+ 𝐷𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
) �⃗�(𝑡) 

Table 2. Stochastic velocities. Notation and associated operator 

In their current form, their usefulness is not very clear. In the following section we will see a version 

of these that allows us to study the quasi-local conduct of the state points in the fluctuation space. 
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Figures 5 and 7 lead to a description where the idea of instantaneous velocities, used regularly in 

the context of classical mechanics, has to be abandoned. In the topic under study there is a necessity 

to associate the concepts of velocities to vicinities that are small enough, but without reducing their 

size to an infinitesimal area, as is the standard in differential calculus. 

2.4.3 Stochastic velocities in time dependent Ornstein-Uhlenbeck process 

The stochastic velocities have a practical application in time dependent Ornstein-Uhlenbeck 

stochastic processes because they can be written in terms of the convection, diffusion and self-

correlation matrices of these processes. To make the understanding of the conduct of the state 

point in the fluctuation space more accessible, in this section we obtain the form of these velocities 

for the system under consideration. 

The time dependent Ornstein-Uhlenbeck processes are normally distributed, 𝑃(�⃗�, 𝑡), in which their 

means and self-correlation function change with time. The forward Fokker-Planck equation (FPE) 

that satisfies 𝑃(�⃗�, 𝑡) is written as follows: 

𝜕𝑃(�⃗�, 𝑡)

𝑑𝑡
=
𝜕[𝐹𝜇(�⃗�, 𝑡)𝑃(�⃗�, 𝑡)]

𝜕𝑞𝜇
+
𝜕2[𝐷𝜇𝜈(𝑡)𝑃(�⃗�, 𝑡)]

𝜕𝑞𝜇𝜕𝑞𝜈
(96) 

The factor of 
1

2
 frequently used when writing a FPE has been absorbed by 𝐷𝜇𝜈, and the repeated 

indexes run from 1 to 𝑝, with 𝑝 denoting the number of degrees of liberty of the system. The flux 

term, 𝐹𝜇, is linear in the noise �⃗�, as shown below: 

𝐹𝜇(�⃗�, 𝑡) = −𝐿𝜇𝜈𝑞𝜈 (97) 

where 𝐿𝜇𝜈 is called the convection matrix. 

The probability distribution that satisfies the forward FPE is given in (98) 

𝑃(�⃗�, 𝑡) =
1

(2𝜋)𝑝 2⁄ √𝐷𝑒𝑡(𝛯(𝑡))

𝑒−
1
2
(𝑞𝜇−〈𝑞𝜇(𝑡)〉)[𝛯

−1(𝑡)]𝜇𝜈(𝑞𝜈−〈𝑞𝜈(𝑡)〉) (98)
 

We can identify the exit velocity �⃗�𝑒 with the flux term, thus we have: 

𝑣𝜇
𝑒 = −𝐿𝜇𝜈𝑞𝜈 (99) 

so, we can rewrite the forward FPE as 

𝜕𝑃(�⃗�, 𝑡)

𝑑𝑡
= −𝑣𝜇

𝑒
𝜕𝑃(�⃗�, 𝑡)

𝜕𝑞𝜇
+ 𝐷𝜇𝜈(𝑡)

𝜕2𝑃(�⃗�, 𝑡)

𝜕𝑞𝜇𝜕𝑞𝜈
(100) 

On the other hand, the backward FPE that corresponds to this process takes the following form: 

𝜕𝑃(�⃗�, 𝑡)

𝑑𝑡
= −𝐹𝜇(�⃗�, 𝑡)

𝜕𝑃(�⃗�, 𝑡)

𝜕𝑞𝜇
−𝐷𝜇𝜈(𝑡)

𝜕2𝑃(�⃗�, 𝑡)

𝜕𝑞𝜇𝜕𝑞𝜈
(101) 

In a similar fashion, the backward FPE is related to the operator 𝐷𝑎 and with the entry velocity, 

resulting in 
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𝜕𝑃(�⃗�, 𝑡)

𝑑𝑡
= −𝑣𝜇

𝑎
𝜕𝑃(�⃗�, 𝑡)

𝜕𝑞𝜇
− 𝐷𝜇𝜈(𝑡)

𝜕2𝑃(�⃗�, 𝑡)

𝜕𝑞𝜇𝜕𝑞𝜈
(102) 

There is an analytical solution when the diffusion velocity has zero divergence. Calculating the 

difference between (100) and (102) and multiplying by 
1

2
 

0 =
𝜕

𝜕𝑞𝜇
[𝑢𝜇𝑃(�⃗�, 𝑡) − 𝐷𝜇𝜈(𝑡)

𝜕𝑃(�⃗�, 𝑡)

𝜕𝑞𝜈
] (103) 

The term between brackets is a magnitude with divergence of zero: 

𝐽𝜇 = 𝑢𝜇𝑃(�⃗�, 𝑡) − 𝐷𝜇𝜈(𝑡)
𝜕𝑃(�⃗�, 𝑡)

𝜕𝑞𝜈
(104) 

thus, it can be interpreted as a magnitude that is conserved: 

𝐽𝜇 = 𝑢𝜇𝑃(�⃗�, 𝑡) − 𝐷𝜇𝜈(𝑡)
𝜕𝑃(�⃗�, 𝑡)

𝜕𝑞𝜈
= 𝐶 (105) 

where 𝐶 is a constant that can be taken as equal to zero, then 𝑢𝜇 is given in terms of 𝑃(�⃗�, 𝑡) and 

𝐷𝜇𝜈: 

𝑢𝜇 = 𝐷𝜇𝜈(𝑡)
1

𝑃(�⃗�, 𝑡)

𝜕𝑃(�⃗�, 𝑡)

𝜕𝑞𝜈
= 𝐷𝜇𝜈(𝑡)

𝜕 𝑙𝑛|𝑃(�⃗�, 𝑡)|

𝜕𝑞𝜈
(106) 

From above it results that the diffusion velocity can be obtained if 𝑃(�⃗�, 𝑡) is known. This is the case 

for time dependent Ornstein-Uhlenbeck processes. 

Substituting (98) in (106) and using the short notation of: 𝐺(𝑡) =
1

2
𝑦𝛼(𝑡)[Ξ

−1(𝑡)]𝛼𝛽𝑦𝛽(𝑡), one 

obtains 

𝑢𝜇 = 𝐷𝜇𝜈(𝑡)
𝜕

𝜕𝑞𝜈
𝑙𝑛

{
 

 
1

(2𝜋)𝑝 2⁄ √𝐷𝑒𝑡(𝛯(𝑡))

𝑒−𝐺(𝑡)

}
 

 
(107) 

where we have written 𝑦(𝑡) = 𝑞𝜇(𝑡) − 〈𝑞𝜇(𝑡)〉 to simplify notation. Working (107) some more 

results in: 

𝑢𝜇 = −𝐷𝜇𝜈(𝑡)
𝜕𝐺(𝑡)

𝜕𝑞𝜈
(108) 

Calculating the derivative and using that (Ξ−1)𝛼𝛽 is symmetric results that 

𝑢𝜇 = −𝐷𝜇𝜈(𝑡)[𝛯
−1(𝑡)]𝜈𝛽[𝑞𝛽(𝑡) − 〈𝑞𝛽(𝑡)〉] (109) 

From previous results we have the next relations for the velocities: 

�⃗�𝑐 =
1

2
(�⃗�𝑒 + �⃗�𝑎) (110) 

�⃗⃗� =
1

2
(�⃗�𝑒 − �⃗�𝑎) (111) 



33 
 

Relation (111) leads to 

�⃗�𝑎 = −2�⃗⃗� + �⃗�𝑒 

Substituting this result in (110) gives: 

�⃗�𝑐 = �⃗�𝑒 − �⃗⃗� 

so, the components of the entry velocity have the form: 

𝑣𝜇
𝑎 = −2𝑢𝜇 + 𝑣𝜇

𝑒 = 2𝐷𝜇𝜈[𝛯
−1(𝑡)]𝜈𝛽[𝑞𝛽(𝑡) − 〈𝑞𝛽(𝑡)〉] − 𝐿𝜇𝜈𝑞𝜈 (112) 

and the components of the systematic velocity are: 

𝑣𝜇
𝑐 = −𝐿𝜇𝜈𝑞𝜈 + 𝐷𝜇𝜈(𝑡)[𝛯

−1(𝑡)]𝜈𝛽[𝑞𝛽(𝑡) − 〈𝑞𝛽(𝑡)〉] (113) 

With this, the set of stochastic velocities in terms of the probability density is now complete. The 

results above can be written in matrix notation. Table 3 displays the four stochastic velocities for 

time dependent Ornstein-Uhlenbeck processes: 

Velocity Notation Operator 

entry �⃗�𝑎 2𝐷Ξ−1(𝑡)(�⃗� − 〈�⃗�〉) − 𝐿�⃗� 

Exit �⃗�𝑒 �⃗�𝑒 = −𝐿�⃗� 

Systematic  �⃗�𝑐 𝐷Ξ−1(𝑡)(�⃗� − 〈�⃗�〉) − 𝐿�⃗� 

Diffusion �⃗⃗� −𝐷Ξ−1(𝑡)(�⃗� − 〈�⃗�〉) 

Table 3. Stochastic velocity operators for Ornstein-Uhlenbeck processes. 

The diffusion velocity and the systematic velocity will be used below to describe the behavior of a 

state point in each vicinity ℬ in the fluctuation space. 

2.4.4 Reaching the state of thermodynamic equilibrium 

The analysis of the simulated catalysis reaction allows the determination of when thermodynamic 

equilibrium has been reached. From expression (37), it is evident that the determinant can be used 

for that purpose. The state of equilibrium is reached if det(Ξ(𝑡2)) = det(Ξ(𝑡1)), where 𝑡1 < 𝑡2. In 

numerical calculation it is possible to define a tolerance 

tol =
det (Ξ(𝑡2))

det (Ξ(𝑡1))
< 10−5 

This is the regime called equilibrium state, and it corresponds to the moment when substrate and 

enzyme-substrate complex have been depleted. It is achieved at 𝑡 ≥ 0.013. 

The quasi-stationary process is studied through the numerical solution of equations (32). The 

expressions for the time evolution of the substrate and enzyme-substrate complex presented in 
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Table 6 in section Entropy of Fluctuations are utilized to calculate the autocorrelation functions 

shown in Figure 8 below: 

 

Figure 8. At the end of the quasi-stationary state, all correlations tend to a constant value. (a) is the variance of the 
fluctuations of the substrate concentration, it increases as the reaction progresses. (b) is the enzyme-substrate complex 
concentration, it diminishes as the reaction progresses. (c) shows the correlation between the fluctuations of the substrate 
and enzyme-substrate complex, it increases. 

Figure 8a exhibits the autocorrelation of the fluctuation of the substrate, Figure 8b is the graph of 

the autocorrelation of the fluctuation of the enzyme-substrate complex, and Figure 8c the 

correlation of both. The numerical analysis could be performed up to 𝑡 = 0.015, but the description 

would no longer correspond to the state under study, the quasi-stationary state; instead, it would 

be a state with only the remnants of the noise of the substrate and complex concentrations, which 

is of little practical interest in this work. 

2.4.5 Probability density 

The probability density can be calculated with expression (27). Figure 9 shows its initial form at 𝑡 =

0.0001, and its final form at 𝑡 = 0.0158 once it reaches the end of the quasi-stationary state. At 

first glance the differences between the gaussian distributions at its initial and final states are not 

apparent. But a more careful observation reveals that there has been a clockwise rotation of 

approximately −4°, as shown in Figure 10.  
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Figure 9. Comparison of the probability density at the start and at the end of the quasi-stationary state. 

 

Figure 10. The longest axis of symmetry of the probability density rotates clockwise during the quasi-stationary state. 

An analytical way of detecting a change is by calculating the difference between probability densities 

at 𝑡𝑓 = 0.0158 and 𝑡𝑖 = 0.0001, 𝑃(�⃗�, 𝑡𝑓) − 𝑃(�⃗�, 𝑡𝑖). The result can be seen in Figure 11, where 

there is a region at the center with higher probability, while above and below there is a region with 

lower probability. What this means is that, during the quasi-stationary state of the catalytic process, 

the probability density shifts towards the center. 
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Figure 11. The difference between the last probability density and the initial probability density during the quasi-stationary 
state. It displays the transition of the probability from the upper and lower regions towards the center. It becomes narrower 
due to the decrease of magnitude of 𝛯22(𝑡). 

This is an expected outcome once proper attention is paid to the graphs of Ξ11(𝑡) and Ξ22(𝑡) in 

figure 8, where the former increases as the latter decreases over time. Further details on 

information contained within the quasi-stationary state, that is relevant to the understanding of the 

biochemical process, will be addressed in a later section titled Entropy of Fluctuations. 

Before going to the next section, where we address the topic of the entropy in this model, let us 

focus on the total stochastic velocity, which results from the sum of the systematic velocity and the 

diffusion velocity. Figure 12 shows a comparison between the initial state, at 𝑡 = 0.0001, and a 

state close to equilibrium, at 𝑡 = 0.014, of the total stochastic velocity. 
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Figure 12. The total stochastic velocity at the start and the end of the quasi-stationary state. The state points �⃗� farthest 
from the center move at a greater velocity, while the points in the center are comparatively static. The velocities in the ℬ 
regions indicate the increase in probability at the central region. 

The total stochastic velocity, shown in Figure 12, is a two-dimensional field that plots the tendency 

of the state points �⃗� to move towards a region in the center, which intuitively coincides with the 

plot of the probability density. At the start of the reaction (𝑡 = 0.0001) it is mainly the points from 

the second and fourth quadrant that move at a greater velocity, contributing the most in keeping 

the saturation on the center. In contrast, when very close to the equilibrium (𝑡 = 0.014) the roles 

have reversed, and it is now the first and third quadrants responsible of keeping the saturation in 

the center. 

We calculate the curl of the total stochastic velocity to further explore this behavior, as shown in 

Figure 13. From a geometrical viewpoint, the tendency of the field to rotate suggests that the 

averaged transitions performed by the state points, �⃗�, within each region ℬ occur due to the lack of 

balance between the displacements ±𝑞𝑥, which is something that is also reflected by the averaged 

±𝑞𝑦. This conduct causes the semi-axes of symmetry of the probability distribution to not remain 

static. The magnitude of this phenomenon diminishes over time, corresponding to the end of the 

quasi-stationary stage. 
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Figure 13. The curl of the total stochastic velocities is negative. We associate it with the tendency of the probability 
distribution to rotate clockwise during the quasi-stationary state. 

2.5 About the different terms of the entropy of the Michaelis-Menten model 

In this section we retake the discussion about the entropy of the system left pending in expressions 

(36), (37) and (38). The system under study is a laboratory experiment that progresses through 

time: 

 At an initial stage, at a time interval we label as 𝑡 < 0, the enzyme and substrate molecules 

exist separate from one another. 

 At an instant 𝑡 = 0 both substances get in contact with each other within a fluid that serves 

as a medium, at this point in time the reaction has not started. While the system is at 𝑡 = 0, 

where the reaction is yet to begin, the system can be considered as being in a state of 

thermodynamic equilibrium: It is for this reason that its entropy can be calculated using 

standard methods found in physical statistics. 

 Let us suppose that the physical system is stirred to aid the start of the reaction. Once it 

starts, the time interval is 𝑡 > 0, which corresponds to the random process that has been 

discussed in previous sections. It is then than the entropy of fluctuations given in expression 

(36) makes itself apparent. 
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This section is dedicated to the study of entropy of the substrate and the enzyme-substrate complex. 

The working hypothesis is that the substrate and enzyme molecules are diluted in an aqueous 

medium, where they perform irregular motions. The physical system can be illustrated by the 

antibiotic penicillin playing the role of the substrate, and the beta-lactamase acting as the enzyme. 

The latter is used by bacteria to protect itself against the antibiotic. 

At instant 𝑡 = 0 , when the reaction is about to start, we consider the substrate and enzyme 

molecules as if they are two ideal gasses with their respective entropy, which are originated by their 

degrees of freedom: translational, rotational and electronic. At instant 𝑡 ≤ 0 , the entropy of 

equilibrium, denoted as 𝑆𝑒𝑞, contains the terms shown in (114): 

𝑆𝑒𝑞 = 𝑆𝑡𝑟 + 𝑆𝑚𝑖𝑥 + 𝑆𝑣 + 𝑆𝑟 + 𝑆𝑒 (114) 

Where 𝑆𝑡𝑟 is the translational entropy, 𝑆𝑚𝑖𝑥 is the entropy of mixing, 𝑆𝑣 is the vibrational entropy, 

𝑆𝑟 is the rotational entropy, and 𝑆𝑒 is the electronic entropy. Save for 𝑆𝑒, we will calculate estimates 

for the values of the entropy of each contribution mentioned with the purpose of knowing an 

estimated value of 𝑆𝑒𝑞. 

In this work we also add the fluctuation entropy, 𝑆𝑓(𝑡), for substrate and enzyme, which arises due 

to the dynamics of the Michaelis-Menten model. The resulting total entropy is given by (115): 

𝑆𝑇(𝑡) = 𝑆𝑒𝑞 + 𝑆𝑓(𝑡) (115) 

It is compulsory to note the non-uniqueness of the definition of entropy in non-equilibrium systems. 

The definition of 𝑆(𝑡) is based in the one used in the theory of stochastic processes, but it should 

be made clear that there is no expression available for it that is generally accepted. In 2019, de 

Decker [57] demonstrated that, in the case of non-equilibrium systems, there are at least two 

definitions of entropy that, being both physically sound, differ in the time evolution of the 

production of entropy, even if both reproduce the same equilibrium state. However, even though 

the uniqueness of the time evolution is under contention, we consider appropriate the study of the 

special case of entropy in the processes that can be described by the Michaelis-Menten model. 

2.5.1 Requirements for the decrease of entropy 

The second law of thermodynamics establishes that, in the absence of external work being done on 

a system, entropy follows the inequality shown in (116): 

𝛥𝑆 ≥ 0 (116) 

Such that the equal sign is present once the state of equilibrium is reached. 

Instead, entropy can diminish if energy is applied to a system through appropriate processes. We 

see that this is the case in enzymatic catalysis that are studied with the Michaelis-Menten model. 

From the definition of Markov processes [57], it is clear that, in mathematical terms, the decrease 

of entropy through time is not forbidden. For a physical system with microscopic states numbered 

with 𝑛, and its probability is denoted by 𝑃𝑛(𝑡), its entropy can be expressed as seen in (117): 
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𝑆(𝑡) = −∑𝑃𝑛(𝑡) 𝑙𝑛 𝑃𝑛(𝑡)

𝑛

(117) 

Its rate of change is given by (118): 

𝑑𝑆(𝑡)

𝑑𝑡
= −∑

𝜕𝑃𝑛(𝑡)

𝜕𝑡
[𝑙𝑛 𝑃𝑛(𝑡) + 1]

𝑛

(118) 

From 0 ≤ 𝑃𝑛(𝑡) ≤ 1, results that −∞ < ln𝑃𝑛(𝑡) ≤ 0. Therefore, the inequality  
𝑑𝑆(𝑡)

𝑑𝑡
< 0 can be 

fulfilled if either of the conditions (119) or (120) are followed. 

𝜕𝑃𝑛(𝑡)

𝜕𝑡
< 0   and   𝑙𝑛 𝑃𝑛(𝑡) < −1 (119) 

𝜕𝑃𝑛(𝑡)

𝜕𝑡
> 0   and   𝑙𝑛 𝑃𝑛(𝑡) > −1 (120) 

2.5.2 Calculating an estimation of the entropy of equilibrium 

In this section we study the entropy in the time interval 𝑡 ≤ 0 up to equation (135). From that point 

on, the contribution of the entropy of fluctuations is added to the Michaelis-Menten model of the 

penicillin hydrolysis by the beta-lactamase. This is the case when the initial state of equilibrium is 

broken, then begins a process where the most important stage is the quasi-stationary state of the 

reaction, that reaches a state of equilibrium once the substrate has been exhausted. 

The entropy of a system in statistical physics is calculated by 𝑆 = 𝑘𝐵 (
𝜕𝑇 ln𝑄

𝜕𝑇
)
𝑁,𝑉

, where 𝑄 is the 

partition function. But as stated before, we will suppose that the system behaves like an ideal gas 

system. Therefore, for an ideal gas of 𝑁 particles of mass 𝑚, the expression for the entropy is given 

by: 

𝑆𝑖𝑑𝑒𝑎𝑙
(𝑖) = 𝑁𝑖𝑘𝐵 ln [(

2𝜋𝑚𝑖𝑘𝐵𝑇

ℎ2
)
3 2⁄ 𝑞5 2⁄

𝑐𝑖
] 

Where 𝑐𝑖 = 𝑐1, 𝑐2, with 𝑐1 =
𝑁𝑆

Ω
, 𝑐2 =

𝑁𝐸

Ω
, and 𝑁𝑆 the number of substrate particles, 𝑁𝐸  the number 

of enzyme particles, and Ω is the initial number of substrate and enzymes in the system. In this 

expression 𝑚𝑖 denotes the masses, 𝑚1 is the mass of a substrate particle and 𝑚2 is the mass of the 

enzyme particle. 

2.5.2.1 Translation entropy 

For the substrate, let us consider as an example the antibiotic rifampicin, which is part of the family 

of penicillin. The enzyme considered is the beta-lactamase. The data used to model these molecules 

is shown in table 4 next: 

𝑀𝑒𝑛𝑧 = 4.981616763 × 10
−23 kg 𝑀𝑠𝑢𝑠 = 5.73314 × 10

−25 kg 

𝑁𝑒𝑛𝑧 = 100 𝑁𝑠𝑢𝑠 = 4999 

Table 4. Values of the mass and number of molecules for enzyme and substrate. 
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With a temperature of 𝑇 = 36.5°C = 309.65 K, the translation entropy of substrate and enzyme 

are given in (121) and (122), respectively. 

𝑆𝑡𝑟
(𝑠𝑢𝑠)

= 80.3875𝑁𝑠𝑢𝑠𝑘𝐵 (121) 

𝑆𝑡𝑟
(𝑒𝑛𝑧)

= 1.82029𝜂𝑁𝑠𝑢𝑠𝑘𝐵 (122) 

Where 𝜂 =
𝑁𝑒𝑛𝑧

𝑁𝑠𝑢𝑠
=

100

4999
= 0.02. The total translation entropy is given by (123): 

𝑆𝑡𝑟 = 𝑆𝑡𝑟
(𝑠𝑢𝑠)

+ 𝑆𝑡𝑟
(𝑒𝑛𝑧)

= 𝑁𝑠𝑢𝑠𝑘𝐵[80.3875 + 𝜂1.82029] (123) 

2.5.2.2 Mixing entropy 

This contribution to the total entropy exists due to the existence of two gasses mixing inside a 

volume. The mixing entropy can be expressed as: 

𝑆𝑚𝑖𝑥 = −Ω𝑘𝐵(𝑐𝑠𝑢𝑠 ln 𝑐𝑠𝑢𝑠 + 𝑐𝑒𝑛𝑧 ln 𝑐𝑒𝑛𝑧) 

Where 𝑐𝑠𝑢𝑠 =
𝑁𝑠𝑢𝑠

Ω
=

4999

4999+100
=
4999

5099
= 0.98039 and 𝑐𝑒𝑛𝑧 =

𝑁𝑒𝑛𝑧

Ω
= 1.9612 × 10−2. The estimate 

of the mixing entropy is given by (124): 

𝑆𝑚𝑖𝑥 = 0.0984549(1 + 𝜂)𝑁𝑠𝑢𝑠𝑘𝐵 (124) 

2.5.2.3 Vibrational entropy 

Here we study the contribution to the entropy by the vibrations of enzyme and substrate molecules. 

We begin with the substrate. 

2.5.2.3.1 Vibrational entropy of the substrate 

The rifampicin molecule is relatively small when compared to that of the beta-lactamase. For this 

analysis we suppose that the molecules can be considered as oscillating nuclei that can be detected 

by IR spectroscopy, therefore we model the substrate as 𝑝 independent harmonic oscillators, where 

𝜈𝑘  denotes the frequencies, with 𝑘 = 1,2, … , 𝑝 . The contribution to the entropy due to the 

vibrational degrees of freedom of the substrate can be calculated with: 

𝑆𝑣
(𝑠𝑢𝑠) = 𝑘𝐵 {

𝜕

𝜕𝑇
[𝑇 ln(∏(

1

1 − 𝑒−𝛽ℎ𝜈𝑘
)
𝑁𝑠𝑢𝑠

𝑝

𝑘=1

)]} 

This results in (125): 

𝑆𝑣
(𝑠𝑢𝑠)

= 𝑁𝑠𝑢𝑠𝑘𝐵 [−∑ 𝑙𝑛(1 − 𝑒
−
ℎ𝜈𝑘
𝑘𝐵𝑇)

𝑝

𝑘=1

+∑

ℎ𝜈𝑘
𝑘𝐵𝑇

𝑒
−
ℎ𝜈𝑘
𝑘𝐵𝑇 − 1

𝑝

𝑘=1

] (125) 

Ivashchenko [58] provides a set of wave numbers that, when transformed to frequencies, provide 

the following values: 

𝑣 = {3.71, 4.12, 4.30, 4.36, 4.60, 4.68, 4.87, 4.95, 5.16, 8.77, 9.14, 10.04} × 1013Hz 
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For a temperature of 𝑇 = 36.5°C = 309.65 K the vibrational entropy contribution of the substrate 

is shown in (126): 

𝑆𝑣
(𝑠𝑢𝑠)

= 12.0203𝑁𝑠𝑢𝑠𝑘𝐵 (126) 

2.5.2.3.2 Vibrational entropy of the enzyme 

The enzyme is a sizeable molecule, compared to the substrate, but its dimensions are still within the 

order of nanometers. For it we use the oscillatory theory of very small solids with the added 

correction necessary for such scales. The shape also plays an important role, but we will suppose it 

is a sphere of diameter between 3 to 7 nm, with a homogenously distributed mass. 

Bu-Xuan Wang [59] argues that the theory of specific heats of Einstein can be applied to 

nanoparticles, thus, we use the partition function of solids [28] given as: 

𝑄𝑣
(𝑒𝑛𝑧) = −∫ [ln(1 − 𝑒−𝛽ℎ𝜈) +

1

2
𝛽ℎ𝜈]𝑔(𝜈)𝑑𝜈

∞

0

 

Using the hypothesis by Einstein of 𝑔(𝜈) = 3𝑁𝑒𝑛𝑧𝛿(𝜈 − 𝜈𝐸), with 𝜈𝐸 being the Einstein frequency, 

and using the empirical adjustment parameter known as the Einstein temperature, Θ𝐸 =
ℎ𝜈𝐸

𝑘𝐵
, the 

expression for the vibrational entropy of the enzyme can be obtained, as shown in (127): 

𝑆𝑣
(𝑒𝑛𝑧)

= −3𝑘𝐵𝑁𝑒𝑛𝑧 {
𝜕

𝜕𝑇
[𝑇 ln(1 − 𝑒−Θ𝐸 𝑇⁄ ) +

Θ𝐸
2
]} 

= 3𝑘𝐵𝑁𝑒𝑛𝑧 {
𝛩𝐸𝑓(𝑇)

𝑔(𝑇) 𝑙𝑛[𝛩𝐸 + 2𝑇 𝑙𝑛 𝑔(𝑇)]
− 𝑙𝑛 (

𝛩𝐸
2𝑇
) + 𝑙𝑛 𝑔(𝑇)} (127) 

Where 𝑓(𝑇) = 𝑒Θ𝐸 𝑇⁄ + 1 and 𝑔(𝑇) = 𝑒Θ𝐸 𝑇⁄ − 1. 

According to E Gamsjäger [60], Θ𝐸 ≅ √
3

5
Θ𝐷 ≅ 1200 K, for a temperature of 𝑇 = 309.65 K, the 

value of the vibrational entropy contribution of the enzyme is given in (128): 

𝑆𝑣
(𝑒𝑛𝑧)

= 0.0127706𝜂𝑘𝐵𝑁𝑠𝑢𝑠 (128) 

2.5.2.4 Entropy of rotation 

A more precise treatment of the entropy of a large molecule, such as a protein or an enzyme, 

requires knowing its energy levels to be able to calculate its partition function. This has been 

considered a very complicated problem [61], [62], therefore we suggest the approach mentioned 

above, to treat it as a sphere of homogenously distributed mass. 

The substrate, on the other hand, is by comparison a much smaller molecule. This can be modelled 

as if it was a nanometric ellipsoid with a homogeneously distributed mass 𝑀, with its axes denoted 

by 𝑎, 𝑏  and 𝑐 . Taking its principal axes as the coordinated system, the tensor of inertia is 

diagonalized, and only three quantities are needed to describe it [63]: 
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𝐼1 =
1

5
𝑀(𝑏2 + 𝑐2)   ,   𝐼2 =

1

5
𝑀(𝑎2 + 𝑐2)   ,   𝐼3 =

1

5
𝑀(𝑎2 + 𝑏2) 

The partition function resulting from the rotational degrees of freedom is denoted as such: 

𝑄𝑟 = 𝑞𝑟
𝑁 = [

√𝜋

𝜎
(
8𝜋2𝑘𝐵𝑇

ℎ2
)

3 2⁄

√𝐼1𝐼2𝐼3]

𝑁

 

Which, defining 𝛼 =
√𝜋

𝜎
(
8𝜋2𝑘𝐵

ℎ2
)
3 2⁄

√𝐼1𝐼2𝐼3, can be compacted as seen in (129): 

𝑞𝑟 = 𝛼𝑇
3 2⁄ (129) 

The resulting entropy of rotation is of the form (130): 

𝑆𝑟 = 𝑁𝑘𝐵 𝑙𝑛(𝛼𝑒
3 2⁄ 𝑇3 2⁄ ) (130) 

The underlying difference between the contribution from the substrate and from the enzyme is 

contained in the values of 𝑁 and 𝛼. 

2.5.2.4.1 Entropy of rotation of the substrate 

We suggest that, when the substrate molecule rotates, the shape is similar to a spheroidal prolate. 

With this in consideration, it is possible to estimate its size based on the length of its 𝑁 −𝑁 bonds 

(1.346 Å); therefore, its semiaxes would be: 

𝑎 = 1.346 × 12 Å = 16.152 × 10−10 m 

𝑏 = 𝑐 = 1.346 × 8 Å = 10.768 × 10−10 m 

With its mass given as: 

𝑀𝑠𝑢𝑠 = 5.73314 × 10
−25 kg 

The moments of inertia are of the form: 

𝐼1 = 𝐼𝑎 =
2

5
𝑀𝑏2 = 5.9858 × 10−43 kg m2 

𝐼2 = 𝐼3 = 𝐼𝑏 =
1

5
𝑀(𝑎2 + 𝑏2) = 4.3209 × 10−43 kg m2 

Since we have no information about its symmetry, we assume 𝜎 = 1, which gives the result: 

𝑆𝑟
(𝑠𝑢𝑠)

= 𝑁𝑠𝑢𝑠𝑘𝐵 𝑙𝑛(𝛼𝑒
3 2⁄ 𝑇3 2⁄ ) (131) 

At a temperature of 𝑇 = 309.65 K , the value of the estimation of the entropy of rotation 

contribution by the substrate is given by (132): 

𝑆𝑟
(𝑠𝑢𝑠)

= 20.8999𝑁𝑠𝑢𝑠𝑘𝐵 (132) 
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2.5.2.4.2 Entropy of rotation of the enzyme 

For the estimation of the contribution to the entropy of rotation by the enzyme we consider the 

beta-lactamase, which will be modelled by a sphere of homogeneously distributed mass 𝑀𝑒𝑛𝑧.  Its 

measurements are presented below: 

𝑀𝑒𝑛𝑧 = 4.981616763 × 10
−23 kg 

𝑅𝑒𝑛𝑧 =
1

2
(5 nm) = 2.5 × 10−9 m 

𝐼 =
2

5
𝑀𝑅2 = 5.1892 × 10−49 kg m3 

The resulting entropy of rotation for the enzyme is: 

𝑆𝑟
(𝑒𝑛𝑧)

= 𝑁𝑒𝑛𝑧𝑘𝐵 𝑙𝑛(𝛼𝑒
3 2⁄ 𝑇3 2⁄ ) (133) 

At a temperature of 𝑇 = 309.65 K, the resulting entropy of rotation contribution by the enzyme is 

given by (134): 

𝑆𝑟
(𝑒𝑛𝑧)

= 0.592884𝑁𝑒𝑛𝑧𝑘𝐵 = 0.592884𝜂𝑘𝐵𝑁𝑠𝑢𝑠 (134) 

2.5.2.5 Entropy of equilibrium 

Summing of all the contributions to the nondimensionalized entropy, (123), (124), (126), (128), 

(132), (134), the resulting expression is given in (135): 

𝑆𝑒𝑞

𝑘𝐵𝑁𝑠𝑢𝑠
= 80.3875 + 𝜂1.82029 + 0.0984549(1 + 𝜂) + 12.0203 + 0.0127706𝜂 + 20.8999 + 0.592884𝜂 (135) 

2.5.3 Entropy of fluctuations 

The entropy of fluctuation is made noticeable in the system once the interaction between enzyme 

and substrate begins. This moment in time will be labelled as 𝑡 = 0. 

According to the Michaelis-Menten model, it is enough to follow the substrate and the enzyme-

substrate complex to have a proper understanding of the system. Under such consideration, we will 

see that there is a decrease in entropy. 

The computer simulation was carried out with the reaction rates shown in Table 5 [64] below. As 

shown in previous sections, the simulation displays three stages of the chemical reaction. Figure 14 

shows the functions fitted to the means of 𝑁2/Ω and 𝑁3/Ω, where, as before, 𝑁2 = 𝑆, 𝑁3 = 𝐸𝑆 and 

Ω = 𝑁10 +𝑁20. 

𝑘1
′  41 × 106 1 mol⁄  

𝑘2 2320 1 s⁄  

𝑘3 3610 1 s⁄  

Table 5. Transitions rates used in the simulation of the penicillin hydrolysis catalyzed by beta-lactamase. 

The method used to calculate the means was the following: 
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1. The simulations were carried out 𝑝 number of times, with 𝑝 = 1000. 

2. Of the 𝑝 realizations, the one with the longest duration was selected. Its time was divided 

into 𝐼 intervals of equal width, with 𝐼 = 100, 1000, 10000. 

3. The datapoints of the 𝑝 realizations that fell in each interval were averaged. 

The curves fitted serve as confirmation of an initial stage when the substrate decreases rapidly as 

the enzyme-substrate complex increases drastically towards the second stage. During the second 

stage, almost all enzymes are in the enzyme-complex state, in other words, the concentration of 

free enzymes fluctuates near zero; this stage is what is called the stationary state in biochemistry. 

The third stage is reached when substrate is depleted, therefore the concentration of enzyme-

substrate complex decreases exponentially. The time duration of each stage and the functions fitted 

for the substrate and enzyme-substrate complex during each of these can be seen in Table 6, the 

curves are shown in Figure 14. 

 Duration (s) 𝑆 fit 𝐸𝑆 fit 

1𝑠𝑡 stage 0 < 𝑡 < 𝑡1 = 3.38985 × 10
−4 𝜓1(1) = 0.980388 − 111.03901𝑡 𝜙1(𝑡) = 57.5649𝑡 

2𝑛𝑑  stage 𝑡1 < 𝑡 < 𝑡2 = 0.013559 𝜓2(𝑡) = 0.966669 − 70.56632𝑡 𝜙2(𝑡) = 0.01951 

3𝑟𝑑  stage 𝑡2 < 𝑡 < 𝑡3 = 0.0169 𝜓3(𝑡) = 0.00983 𝜙3(𝑡) = 𝑒
38−3090𝑡 

Table 6. Time functions that parametrize the substrate and enzyme-substrate complex concentrations in 1st, 2nd and 3rd 
stage. 

 

Figure 14. Time evolution of the substrate (left) and enzyme-substrate concentration (right). 

Equations (32) were solved numerically, then 𝑆(𝑡) 𝑁𝑘𝐵⁄  was found using expression (36). The 

computer simulation allows us to find the entropy of fluctuations Ξjj(0) but, even though we 

consider the precision to not be enough to quantitively determine Ξ𝑗𝑗(𝑡), we can provide an 

approximation using the following initial conditions: 
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Ξ11(0) = 0.377676 Ξ22(0) = 0.377676 Ξ12(0) = 0 

Adding the approximation of the entropy of fluctuations to the previously obtained entropy of 

equilibrium, 𝑆𝑒𝑞 𝑁𝑘𝐵⁄ , the result can be seen in Figure 15. Some relevant values of the time 

evolution of 𝑆𝑒𝑞 𝑁𝑘𝐵⁄  are shown in Table 7. 

 

Figure 15. Left: Time evolution of the entropy of fluctuation. Right: Comparison between total entropy at 𝑡 > 0 (start of 
the reaction), and entropy of equilibrium at 𝑡 ≤ 0. 

𝑆𝑒𝑞 𝑁𝑘𝐵⁄  115.83 

Δ𝑆+ 𝑁𝑘𝐵⁄  0.433 

𝑆𝑇(𝑡 > 0) 𝑁𝑘𝐵⁄  116.265 

𝑆𝑇(𝑡3) 𝑁𝑘𝐵⁄  116.259 

Δ𝑆 𝑁𝑘𝐵⁄  −6.602 × 10−3  

Table 7. Numerical values of the entropy. 𝑆𝑒𝑞: entropy of equilibrium. 𝛥𝑆+: entropy of fluctuation during 0 < 𝑡 < 𝑡3. 

𝑆𝑇(𝑡 > 0): Total entropy at the start of the reaction, 𝑡 > 0. 𝑆𝑇(𝑡3): Total entropy at 𝑡3 (the end of the catalytic reaction). 
𝛥𝑆: Decrease in entropy of fluctuation (𝑆𝑓(𝑡3) − 𝑆𝑓(𝑡 > 0)). 

The intriguing result seen in Figure 15 and Table 7 can be stated in two aspects: 

1) It is clear that the net entropy of the reaction is greater than it was before the start of the 

reaction, therefore it is a spontaneous process. 

2) The curve displayed in Figure 15a shows a decrease in entropy, something that is only 

possible if there is an external energy source. 
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Before the reaction, the value of the total entropy is 𝑆𝑒𝑞/𝑁𝑘𝐵. Once the reaction starts (at 𝑡 > 0), 

the total entropy suffers a change, increasing a quantity of Δ𝑆+ 𝑁𝑘𝐵⁄ , so the total entropy at that 

point is 𝑆𝑇(𝑡 > 0)/𝑁𝑘𝐵. As the reaction takes place, the entropy decreases until the system reaches 

a state of equilibrium once the catalysis has finished (at 𝑡 = 𝑡3); the resulting decrease in entropy 

is Δ𝑆, so the total entropy at that point is 𝑆𝑇(𝑡3)/𝑁𝑘𝐵. It is important to note that the magnitude 

of the decrement in entropy, ΔS, is lower than the increase in entropy due to the reaction taking 

place, Δ𝑆+ ; in other words, ΔS+ > Δ𝑆 . According to the second law of thermodynamics, this 

decrement is evidence of the existence of work during the process of catalysis. 

The value of Δ𝑆 is approximately 1.52% of the initial entropy of fluctuations and it is 6.71% of the 

mixed entropy, this could be (as stated before) because the system is receiving energy in the form 

of work from an external source. A revision of the existing literature leads us to suggest that it comes 

from the vibrational degrees of freedom of the enzyme, which will be discussed below. For 

processes at constant volume, the fundamental equation of thermodynamics establishes: 

Δ𝑈 = 𝑇Δ𝑆 + 𝜇2Δ𝑁2 + 𝜇3Δ𝑁3 

The condition of Δ𝑆 < 0 leads to the following inequality: Δ𝑈 < 𝜇2Δ𝑁2 + 𝜇3Δ𝑁3. Considering the 

quasi-stationary state as representative of the majority of the process of catalysis, then Δ𝑁3 = 0, 

therefore the inequality takes the form of: 

Δ𝑈 < 𝜇2Δ𝑁2 

If Δ𝑆 < 0 one must have 𝐶𝑝 = 𝑇 (
Δ𝑆

Δ𝑇
)
𝑇
< 0 , so that this decrease in the entropy is consistent with 

results previously published: in enzyme catalysis happens that 𝐶𝑝 < 0 [65], [66]. Also, the negative 

value in this heat capacity is a condition to show that in enzyme catalysis there is an optimal 

temperature 𝑇 = 𝑇𝑜𝑝, where the most efficient catalysis occurs. 

The results from our computer simulation of a Michaelis-Menten system allows us to make a 

prediction that points towards the correct direction, since it reproduces the inequality of Δ𝑆 < 0 

for the entropy of fluctuations. 

However, our model has a limitation in its quantitative aspect.  According to Hobbs et al. [65] and 

Arcus et al. [66], the values of the heat capacity at constant pressure are within the range 

−12
kJ

mol K
< 𝐶𝑝 < −1

kJ

mol K
. If one is to take the right-hand value of the range, at 𝑇 = 298.5 K, with 

Δ𝑇 = 1 K, converting to eV per particle, the resulting value of the change in entropy would be: 

Δ𝑆 = 𝐶𝑝
Δ𝑇

𝑇
= −3.4764 × 10−5eV K-1 

Furthermore, according to our results, the entropy of fluctuations per particle is: 

Δ𝑆

𝑁
= −5.6875 × 10−7eV K-1 
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This leads us to conclude that there is some aspect missing in this model. 

2.6 Discussion 

The Michaelis-Menten model partially captures the essence of the catalysis phenomenon in absence 

of cooperativity. It allows the prediction of the existence of a descent in the entropy of fluctuation, 

which corresponds with the experimental observation of the descent in the heat capacity at 

constant pressure, 𝐶𝑝 , during catalytic processes. Nonetheless, the difficulty of producing 

quantitatively precise results constitutes a limitation of the model. Although it has demonstrated its 

usefulness in processes that do not present cooperativity, its simplicity hinders it from capturing a 

wider range of phenomena specific to each reaction. For example, a revision of the mechanism of 

hydrolysis of penicillin by the beta-lactamase enzyme produced by bacillus cereus [67], 

pseudomonas aeruginosa, amongst others, show that the rupture and formation of chemical bonds 

in the process is more complicated than a catalysis reaction where only one enzyme-substrate 

complex participates as intermediary. This is a bigger problem than it may seem, as we argue below. 

A. Holmberg [68] studied the practical difficulties that appear when estimating parameters in 

biological processes. He paid special attention to systems described by the Michaelis-Menten 

equation and proposed a sensibility function to deal with the lack of uniqueness in the results. The 

problem stems from different parameters reproducing the same experimental results. This indicates 

that there can be various physical processes that remain hidden within the parameters, which 

consequently gives way to a set of results being able to model the same substance. This leads one 

to think that, in the model, a compound as the enzyme-substrate complex can, in the real 

phenomenon, be two molecules even though in the Michaelis-Menten formulation appears only 

one. 

J. Kim and J. Lee [69] pick up the topic of the difficulty faced when elaborating mathematical models 

to describe specific phenomena. They explore the case where differential equations with adjustable 

parameters, obtained from experimental data, are used with these purposes. Their suggestion is a 

set of mathematical tools to estimate the quality of the adjusted parameters. It is this complexity in 

the analysis that clearly displays the issues confronted when modelling from experimental data. 

A similar problem appears in systems modelled with the Langevin equation and the Fokker-Planck 

equation. In one dimension both formulations are equivalent, but in two or more dimensions, two 

Langevin equations corresponding to two different physical systems lead to the same Fokker-Planck 

equation. 

In conclusion, while it is praiseworthy that the Michaelis-Menten model sheds light on the 

qualitative understanding of the role of the entropy in the catalytical process, its quantitative 

prediction is a much more complicated field of study. 

2.7 Possible repercussions in pharmaceutical technology 

In recent years, there have been developments in the use of nanostructures as drug carriers [70]. In 

the design of these processes, it is often suggested that drug carriers could accumulate in specific 
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sites where they would then release their load, thus increasing the efficiency of the medicine [71], 

as well as reducing its toxic effects in the patient undergoing treatment. If one supposes that these 

nanocages have a specific size, for example a diameter of 50 nm, it is possible to estimate the 

capacity of each drug carrier: If 𝑅 = 25 nm, and the carrier is spherical, its effective volume would 

be 𝑉𝑒𝑓 = 8.1812 × 10
−24 m3; now, if the volume occupied by a molecule of a drug like amoxicillin 

is that of a square prism of sizes 0.725 × 0.423 × 0.930  nm [72], giving the amoxicillin molecule 

an effective volume of 𝑉𝑎𝑚𝑜𝑥 = 2.8521 × 10
−28. If the volume within the nanocage is occupied by 

this drug, the maximum quantity of molecules it could carry would be 𝑁𝑎𝑚𝑜𝑥 =
𝑉𝑒𝑓

𝑉𝑎𝑚𝑜𝑥
= 28685. 

However, if the nanocage carries an aqueous solution of amoxicillin and clavulanic acid, in 

proportions similar to those found in injectable solutions (0.0472, 0.009, 0.94) [73], the antibiotic 

occupies approximately only 5% of the space, meaning that there are of the order of 1434 molecules 

of antibiotic in the load. This means that purely deterministic models would only offer a partial 

understanding of the system. 

With regard to stochastic mathematical models used to describe the transport and release of drugs 

in living tissue, these tend to focus on the concentration of the drug over time [74] and are based 

on basic equations, like the Fick law of diffusion in different geometries. These can also incorporate 

other relevant details, such as local tissue inflammation and degradation of the polymer drug 

carrier. 

With this in mind, we believe that the inclusion of other thermodynamic magnitudes, beside particle 

concentration, in the description of the process would prove useful. One such magnitude could be 

the elastic properties of the beta-lactamase molecule during the hydrolyzation of the antibiotic. 

The usual approach for studying molecular vibrations consist in supposing that the force constants 

between atoms are independent of the temperature of the medium. This idea is introduced in 

statistical physics through the occupation of energy levels, without considering the possibility that 

the vibration frequency of the particles that give form to the molecule depend on the temperature. 

In contrast with this methodology, Kolesov [75] considers the changes in temperature as a means 

to fine tune atomic bond length and atomic interaction. He suggests that 𝜔(0) is the vibration 

frequency at a temperature of 𝑇 = 0 K, and for increasing values of 𝑇, the relation 𝜔(𝑇) = 𝜔(0) +

𝑓(𝑇) is followed. 

If the approach by Kolesov is true, it could open the way to new processes and techniques that 

would allow the local manipulation of temperature to interfere with the normal vibration modes of 

the molecule, aiding in the transfer of energy towards the process of catalysis. 

2.8 Conclusions 

The treatment by Bartholomay was reformulated by van Kampen through his omega expansion. The 

(𝑁,𝑀) state space, for substrate and enzyme-substrate complex molecules, respectively, was split 

in two spaces: 
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 A state space for the macroscopic concentrations. This reproduces the dynamics of the 

Michaelis-Menten that are found in textbooks. 

 A state space for the fluctuations, known as the fluctuation space. It is studied through time 

dependent Ornstein-Uhlenbeck processes, adding to the understanding of the enzymatic 

reaction kinetics that can be described by the Michaelis-Menten model. 

A simulation based in the Gillespie algorithm allows a clear configuration of the quasi-stationary 

state under study. The theory and the simulation help us demonstrate that the probability density 

in the fluctuation space is a gaussian function that rotates clockwise. The auto-correlation functions 

tend to a constant at the end of this stage. 

The formalism of stochastic velocities proves useful when studying the fluctuations described by 

gaussian probability densities. The curl of the total stochastic velocity is negative, explaining the 

tendency of the probability density to rotate. It is this tendency to rotate that explains the lack of 

detailed balance during the quasi-stationary state 

The estimation of the entropy displays a sudden increase in its value once the reaction starts, and a 

subsequent minor descent as it progresses. Here, two important aspects of the process combine: 

1. The increase in entropy indicates a spontaneous chemical reaction. 

2. Its descent supports the existence of a rearrangement process during catalysis, as well as 

the presence of work being performed on the system. 

We propose that the source of this energy are the normal vibration modes of the enzyme inside a 

medium at a given temperature. This also backs up the negative sign in the change of heat capacity 

at constant pressure, 𝐶𝑝, that has been found by other researchers, who consider it a fundamental 

part for the existence of an optimal temperature in the efficiency of the catalytic ability of enzymes. 

The Michaelis-Menten model has been notably successful in this aspect, but it shows an important 

limitation when quantitatively predicting the magnitude of the descent of 𝐶𝑝. 
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3 Chapter II: A finite Hopfield neural network model for the 

oxygenation of hemoglobin 

3.1 Objective 

In the present chapter we develop a model based in a finite Hopfield neural network to analyze the 

oxygenation process of Hb, to explore the extent of the similarities between experimental ODCs 

(Oxygen Dissociation Curves) and the simulated saturation curves, based in a small set of 

hypotheses. It seeks to simulate the phenomenon within the lung alveoli as a probabilistic process 

governed by the probability that each of the four binding sites of an Hb molecule is occupied or 

vacant. The oxygen partial pressure, 𝑃𝑂2, is introduced as an external field. The influence between 

the binding sites in an Hb molecule is added by a cooperativity parameter 𝐽, which represents an 

interaction between the binding sites. The term used is analogous to a ferromagnetic system that 

can be described by the Ising model of spins, where the spin of a particle can affect the spin of its 

neighbors. The neural network simulation lets us obtain ODCs, which are then analyzed in order to 

explore their possible compatibilities with the ODCs used in scientific literature and medical 

practice. The finite nature of the network grants the possibility of adjusting the model to nanometric 

oxygenation devices. 

This work is organized as follows: Section 2 shows the complexity of the system by means of a brief 

review of the physical and chemical aspects involved in the natural process of oxygenation of Hb. 

The usual reasoning behind obtaining the ODC from the mass action law is revised, as well as the 

properties of the resulting Hill equation from an analysis of the system in equilibrium. Section 3 

presents our probabilistic approach based in neural networks. It is pointed out that this model 

depends on two parameters: the cooperativity parameter, 𝐽 ; and the network temperature 

parameter, 𝑇 . We briefly discuss the usual form of the transition rates, 𝑤±  [42]; and show the 

results of a simulation to explain how these change with the partial pressure of oxygen, 𝑃𝑂2. In the 

fourth section we present the simulation results to clarify how the oxygen saturation in Hb evolves 

with time, given a value of 𝑃𝑂2,  therefore identifying the tendency towards equilibrium. An 

estimation is made to explore the relation between the algorithmic time of the network and the real 

oxygenation time of Hb in the alveoli. We obtain simulated ODCs for different values of 𝐽 and inspect 

their relation to the ODCs found in experiments. In the fifth section we revise qualitative aspects of 

the simulated ODCs and their relation to the 𝑃50 parameter. In the sixth section we obtain values of 

the Hill coefficient, 𝑛𝐻 ; partial pressure at half saturation, 𝑃50; and 𝑘𝐷  (which we define as the 

inverse of the constant equilibrium 𝑘), as well as the values of maximum saturation for various pairs 

of 𝐽  and 𝑇 . In the seventh section the numerical values of the parameters obtained from the 

resulting simulation data is shown. In the eight section the find the relation between parameters 

𝑛𝐻 and 𝑃50 to cooperativity parameter 𝐽. In the ninth section we establish the relation between the 

network temperature 𝑇, and the temperature in Celsius of the medium of the Hb, 𝑇ℎ. In the tenth 

section the connection between 𝐽  and experimental 𝑝𝐻  is revealed. In the eleventh section we 

study the Gibbs free energy, and in the twelfth section the value of the enthalpy for the values of 𝐽 

considered relevant. The behavior of the noise in terms of the model parameters is analyzed in its 
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own section. A brief discussion follows in the further section and conclusions are presented in their 

own section. The appendix provides various tables of simulation data. 

3.2 Complexity of the physical system 

3.2.1 Some physical and chemical aspects of the Hb structure 

The proteins are considered dynamic systems due to their complex structures and because their 

functions depend on their interactions with other particles. These interactions can have subtle 

effects or made very evident in the folding or de-folding of the protein structure, that is to say, their 

conformational changes. Their functions often involve the reversible binding of other particles, 

these are called ligands or substrates, and they may be any kind of particle, from a simple ion to 

another protein. The reversible nature of said interactions are considered critical to life as we know 

it, as they allow organisms to perform a myriad of processes, digestion and DNA replication being 

examples of them. 

A ligand binds to a specific part of the surface of the protein called the binding site or active site, 

which is complementary to the shape, size and charge density of the ligand. This causes the protein 

to display a distinctive property, that of specificity, which is the ability of the protein to discriminate 

among the various particles in the medium and selectively bind to one or a small set of ligands. The 

binding process involves a conformational change of both the ligand and the protein, resulting in a 

tighter binding between the two. In the case of a multi-subunit protein, like the hemoglobin, this 

induced fitting of one subunit often affects the shape of the other subunits; like increasing or 

diminishing the affinity of the protein to the ligand. 

The binding of ligands may be regulated by the binding of effector molecules to sites different than 

the binding or active sites, called allosteric sites; these may cause conformational changes in the 

protein that can either activate or deactivate the protein's binding abilities, thus boosting or 

diminishing the catalytic or transport activity the protein population realizes. 

To have an efficient distribution of oxygen, large multicellular animals depend on proteins 

responsible of oxygen transportation to the various tissues of a living organism. To carry out this 

duty, a heme prosthetic group, which is a protoporphyrin ring with an iron atom in its ferrous (Fe2+) 

state as its core, is often part of a protein structure; this is so the iron atom in the prosthetic group 

binds to the oxygen molecule, and the protein fulfills the role of transporting the oxygen molecule 

through the body to the tissues that require it. 

One kind of oxygen-carrying protein is myoglobin, which is a relatively simple oxygen-binding 

protein primarily found in muscle tissue. Myoglobin is part of the globin family of proteins and is 

constituted a single polypeptide unit of 153 amino acid residues with one heme molecule. 

Hemoglobin, found in erythrocytes, is another oxygen-carrying protein and serves as transport for 

most of the oxygen in the blood in animals. It is a tetrameric protein containing four heme groups 

associated with each subunit, it has a roughly spherical shape with a diameter of approximately 5.5 
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nm. Adult hemoglobin contains two alfa chains, each with 141 amino-acids each, and two beta 

chains, with 146 each. 

Its purpose as a transport protein means that it must bind oxygen efficiently in the lungs and release 

it in the tissues that require it. An important aspect of hemoglobin that allows it to fulfill this purpose 

is its variable affinity, which changes depending on the concentration of dissolved oxygen in the 

medium, of 2,3 biphosphoglycerate (2, 3 BPG), temperature and pH level caused by cellular 

respiration of the tissues; these can affect the affinity of hemoglobin and facilitate the binding or 

release of O2. This aspect makes it a better transport protein than myoglobin, which is relatively 

insensitive to these changes. 

This variability in affinity is given the name of cooperativity, and it is understood as the alteration in 

the ease of binding of subsequent ligands after the binding of an initial ligand. This property can be 

observed in a plot of initial rates as a function of initial substrate concentrations, where the behavior 

displayed is a nonhyperbolic curve. For hemoglobin, this means that upon the binding of an oxygen 

molecule to one of its four binding sites, the next O2 will have an easier time binding to one of the 

remaining three, then the third molecule will experience the same phenomenon, as does the fourth. 

This kind of cooperativity is called positive cooperativity, and it involves a series of complex 

conformational changes of the protein. 

It is thought there are two major states: the R (relaxed) state and the T (tense) state; although it is 

possible for oxygen to bind to both states, it has a significantly higher affinity to the R state of 

hemoglobin. When an O2 binds weakly to one of the subunits in the T state, it triggers a change to 

the R state, this in turn changes the affinity of the other subunits, facilitating the binding of other 

oxygen molecules. The last O2 molecule to bind is thought to do so to a subunit already in the R 

state, which has a higher affinity than the first subunit. 

There are two models that suggest mechanisms explaining the cooperative binding of ligands to 

multi-subunit proteins: 

 Concerted model: It assumes that all subunits undergo the transition from T to R state 

simultaneously. The ligand can bind to any conformation but binds more readily to the R 

state. The successive binding of a ligand makes a transition from the low-affinity state to 

the high-affinity state more likely. 

 Sequential model: The binding of a ligand can induce a conformational change in an 

individual subunit, subsequently this subunit can trigger one such change in an adjacent 

subunit as well as increasing the likelihood of the binding a second ligand. 

It is worth mentioning that these are not mutually exclusive. 

Hb is a complex macromolecule, thus small changes in its structure can cause blood disorders; as is 

the case of sickle-cell anemia, a genetic disease caused by a substitution of a Glu6 to Val6 in each 

beta subunit. This change produces a hydrophobic patch on the macromolecule's surface, causing 

it to aggregate into fibers. Another is the oxidation state of the iron core of at least one of the heme 



54 
 

groups in Hb, if it's in the ferric state (Fe3+) instead of the ferrous state (Fe2+) the oxygen affinity of 

the remaining hem sites is increased, leading to a reduced ability of the Hb to release the O2 to the 

surrounding medium, causing tissue hypoxia. 

3.2.2 Obtaining the oxygen-hemoglobin dissociation curve (ODC) through the law of mass 

action 

The Hill equation is a simple expression often used to fit experimental data to an ODC. With the 

purpose of clarifying the theoretical foundation of this method, we proceed with an examination of 

the usual manner with which it is obtained in the literature. 

The oxygenation process of a Hb is realized in four stages, one for each of the four Fe atoms seated 

at the center of a porphyrin ring. Schematically it is represented as follows: 

 𝐻𝑏 + 𝑂2  
𝑘𝑓
⇌
𝑘𝑟
𝐻𝑏𝑂2 

𝐻𝑏𝑂2 +𝑂2  
𝑘𝑓
⇌
𝑘𝑟
𝐻𝑏𝑂4 

𝐻𝑏𝑂4 +𝑂2  
𝑘𝑓
⇌
𝑘𝑟
𝐻𝑏𝑂6 

𝐻𝑏𝑂6 +𝑂2  
𝑘𝑓
⇌
𝑘𝑟
𝐻𝑏𝑂8 

(136) 

Where 𝑘𝑖, 𝑖 = 1,… , 4, are the equilibrium constants. From now on, [𝑋] denotes the concentration 

of a chemical substance 𝑋. Using the law of mass action, the next expressions will follow: 

 [𝐻𝑏𝑂2]

[𝐻𝑏][𝑂2]
= 𝑘1 

[𝐻𝑏𝑂4]

[𝐻𝑏𝑂2][𝑂2]
= 𝑘2 

[𝐻𝑏𝑂6]

[𝐻𝑏𝑂4][𝑂2]
= 𝑘3 

[𝐻𝑏𝑂8]

[𝐻𝑏𝑂6][𝑂2]
= 𝑘4 

(137) 

Operating on them and defining 𝑘 = 𝑘1𝑘2𝑘3𝑘4, results: 

𝑘 =
[𝐻𝑏𝑂8]

[𝐻𝑏]([𝑂2])
4

(138) 

From this expression, (139) can be obtained 

[𝐻𝑏𝑂8] = 𝑘[𝐻𝑏]([𝑂2])
4 (139) 

If one is to suppose that the four reactions occur so rapidly that all Hb molecules are found in their 

oxygenated state 𝐻𝑏𝑂8, so that all other intermediate states are irrelevant for the analysis, it can 

be established that 

[𝐻𝑏]𝑡𝑜𝑡 = [𝐻𝑏] + [𝐻𝑏𝑂8] (140) 
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Now defining the oxygen saturation in hemoglobin, 𝑆𝑎𝑂2, as 

𝑆𝑎𝑂2 =
[𝐻𝑏𝑂8]

[𝐻𝑏]𝑡𝑜𝑡
(141) 

From (139) and (140), (141) becomes 

𝑆𝑎𝑂2 =
𝑘[𝐻𝑏]([𝑂2])

4

[𝐻𝑏] + [𝐻𝑏𝑂8]
=

𝑘[𝐻𝑏]([𝑂2])
4

[𝐻𝑏] + 𝑘[𝐻𝑏]([𝑂2])
4

(142) 

𝑆𝑎𝑂2 =
𝑘([𝑂2])

4

1 + 𝑘([𝑂2])
4

(143) 

Expression (143) bears a close resemblance to the Hill equation found in literature. The Hill equation 

for the hemoglobin is shown below 

𝑆𝐻𝑏𝑂2 =
𝑘([𝑂2])

𝑛𝐻

1 + 𝑘([𝑂2])
𝑛𝐻

(144) 

Where 𝑛𝐻 is given the name of Hill coefficient. The form with which it will be utilized in this work is 

𝑆𝐻𝑏𝑂2 =
([𝑂2])

𝑛𝐻

𝑘𝐷 + ([𝑂2])
𝑛𝐻

(145) 

With 𝑘𝐷 =
1

𝑘
. 

Therefore, it is clear that there are two hypotheses sustaining (145): 

 The law of mass action is applicable. 

 The intermediate oxygenation states are irrelevant. 

3.2.3 Analysis of the sigmoid function 

Next is shown the expression for the ODC, and the importance of parameters 𝑘𝐷 and 𝑛𝐻 will be 

made evident further below 

𝜃(𝑥) =
𝑥𝑛𝐻

𝑘𝐷 + 𝑥
𝑛𝐻

(146) 

It is easily demonstrable that lim
𝑥→∞

𝜃(𝑥) = 1 and lim
𝑥→0

𝜃(𝑥) = 0 are satisfied, from these it follows 

that for 𝑥 ≥ 0 it is true that 0 ≤ 𝜃 ≤ 1. Also, if we are to define the midpoint of 𝜃(𝑥) as 𝜃𝑚 =

𝜃(𝑥𝑚) =
1

2
 it is straightforward to demonstrate that 

𝑥𝑚 = 𝑘𝐷

1
𝑛𝐻 (147) 

Where it is plain to see that the value of 𝑥𝑚 is determined by the Hill coefficient 𝑛𝐻 and by 𝑘𝐷. 

Studying the derivative of 𝜃(𝑥) 
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𝜃′(𝑥) =
𝑛𝐻𝑥

𝑛𝐻−1

𝑘𝐷 + 𝑥
𝑛𝐻
−

𝑥𝑛𝐻

(𝑘𝐷 + 𝑥
𝑛𝐻)2

(148) 

 one can see that it has an asymptotic conduct: a) lim
𝑥→∞

𝜃′(𝑥) = 0, b) lim
𝑥→0

𝜃′(𝑥) = 0. Hence, 𝜃′(𝑥) 

must have an extreme point 𝑥2 that can be found by setting to zero de derivative: 

𝑥2 = [
𝑘𝐷(𝑛𝐻 − 1)

𝑛𝐻 + 1
]

1
𝑛𝐻

(149) 

This is the point where the sigmoid curve 𝜃(𝑥) reaches its highest slope. By calculating 𝜃′(𝑥2) one 

can find the highest value that the Hill curve can take. 

In this work the independent variable will be 𝑥, which is the partial pressure, 𝑃𝑂2, divided by 100: 

𝑥 =
𝑃𝑂2

100
, with range 0 ≤ 𝑥 ≤ 1. The saturation 𝑆𝑎𝑂2, is the dependent variable. It will be denoted 

as 𝜃(𝑥) and can be in the range 0 ≤ 𝜃 ≤ 1, or with percentage to connect with the language used 

in medical practice. 

This work calls into question the validity of the hypotheses that arrive to expression (146), due to 

the following reasons: 

 It rests on the law of mass action which, according to statistical physics, is only valid if the 

process is in dynamic equilibrium. Instead, we set out from the fact that there is a gradient 

of 𝑃𝑂2 between the interior of the erythrocyte and the surrounding medium that influences 

the oxygenation process of Hb, and this gradient is such that it transfers 𝑂2 molecules from 

the exterior into the erythrocyte and eventually towards the Hb bindings sites. Therefore, 

this is an out of equilibrium process where oxygenation occurs when the system is 

proceeding towards equilibrium. 

 It also supposes that the intermediate states of Hb oxygenation are irrelevant, when it is 

not necessarily true since the erythrocyte remains in the lung alveoli between 0.2 and 0.75 

seconds. It is sound to assume that the forms 𝐻𝑏𝑂2𝑟, with 𝑟 = 0,1,2,3 are also present. 

3.3 Probabilistic approach and neural network method 

The phenomenon of 𝑂2 capture by an iron atom located at the core of a porphyrin ring is of a 

stochastic nature that depends on many factors. Some of these have already been mentioned 

above, in the section that addresses the complexity of the system. In essence, this problem is a 

process of diffusion of an ensemble of 𝑂2 gas molecules that come near an erythrocyte, penetrate 

it, and then follow a random path among many Hb molecules with which they can collide with. A 

collision between an 𝑂2 and an Hb can happen at any part of the geometry of the Hb molecule, 

some of which could occur where there is a Fe atom with which they can bind to, but also against 

parts where binding cannot happen. Therefore, every 𝑂2 molecule bound to an iron core is the 

result of a successful collision that does not occur with a probability of 1. 

What has been said thus far can be synthesized as the need to formulate a model that contemplates 

the stochastic nature of 𝑂2 binding to an Hb. The probabilistic focus being developed in this work 
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seeks to attend this problem. By doing so it tries to simplify all fortuitous aspects that influence this 

process into a single fact: that the binding either happens or it does not. This approach consists in 

considering that each binding site has a probability of becoming occupied or vacant. The simplicity 

of this model arises from the use of only two parameters in the description of the transition rates: 

The parameter 𝐽, related to the cooperativity; and the parameter 𝑇, called the temperature of the 

neural network, which is related to the temperature of the medium of the hemoglobin, 𝑇ℎ. 

The optimization method for the transport of oxygen in blood is based on the affinity of the Hb 

molecule towards 𝑂2, but affinity can change rapidly when erythrocytes pass through blood vessels. 

This is due to allosteric effects caused by substances acting on the Hb, such as 2,3-

Bisphosphoglyceric acid, hydrogen ions and 𝐶𝑂2. 

This model supposes that all external agents can be represented by the cooperativity parameter 𝐽, 

regardless of the number of different types of compounds involved. The challenge is determining 

how much information can be elucidated from these simplifications. 

Statistical conclusions are taken in this work by using 500 or 100 realizations. This criterion is based 

on the central limit theorem. According to this, if one has a population with mean 𝜇, from where a 

sample of size 𝑛 and mean 〈𝑥〉 is taken, the theorem describes how the distribution of the difference 

in the sample and population means (〈𝑥〉 − 𝜇) changes with respect to the sample size. Pfanzagl 

and Sheynin [76] show that the error decreases as ±√
𝜋−2

2(𝑛−1)
, so that for 𝑛 = 30 one finds that this 

goes from ±0.53 if 𝑛 = 3 to ±0.14 when 𝑛 = 30. The significance of this is that the convergence 

happens fairly quickly, and for this reason the practice has been to consider that 𝑛 ≥ 30 is sufficient. 

On the other hand, for small samples these results do not hold and the t-distribution is more 

appropriate. 

3.3.1 Transition rate and its behavior during the simulation 

We consider a physical system comprised of 𝑀 macromolecules, each with 𝑛 binding sites; making 

up a total of 𝑁 = 𝑛𝑀 binding sites, each of which can be modeled by a bivalued variable 𝜎𝑖, with 

𝑖 = 1,… ,𝑁. When the i-th binding site is vacant 𝜎𝑖 = −1, and when it captures an 𝑂2 molecule 𝜎𝑖 =

+1. Considering that the Hopfield neural network is based on the Ising spin model, it is possible to 

make an analogy between a neuron that sends a +1 or −1 signal, a binding site that is occupied or 

vacant, and a spin that is aligned with or against an external magnetic field ℋ⃗⃗⃗. The interconnection 

of the neurons in the network can be understood as the interaction between neighboring spins; this 

interaction generates a field that adds to the external field that represents 𝑃𝑂2. Such a system can 

be described as a vector state: 

�⃗� = (𝜎1, 𝜎2, … , 𝜎𝑁) 

In statistical physics, a system at a temperature 𝑇 with 𝑁 distinct states, each with energy 𝐸𝑖  is said 

to follow that the probability for a state to be occupied can be described by 
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𝑃(𝐸𝑖) =
𝑒−𝛽𝐸𝑖

𝑄
 

where 𝑄 = ∑ 𝑒−𝛽𝐸𝑗𝑗  is the partition function. For a system with two states such that its energies 

are 𝐸 = ±𝜇𝐻, 𝑃(𝐸𝑖) takes the form of 

𝑃± =
𝑒±𝛽𝜇𝐻

𝑒𝛽𝜇𝐻 + 𝑒−𝛽𝜇𝐻
 

Two transition rates can be proposed, each taking the form 

𝑤± =
1

2
[1 ± tanh𝛽𝜇𝐻] 

such that each state 𝜎𝑖 has a probability rate 𝑤+ of its spin to point upwards, aligned parallel to an 

external field 𝐻 , or 𝑤−  to point downwards, aligned antiparallel to 𝐻 . For a neural network 

operating at a temperature 𝑇, the external field 𝐻 is given by the next expression: 

𝐻 = ℎ + ℎ𝑟  

where ℎ is the field resulting from a parameter that controls the experiment, which in this work is 

the oxygen partial pressure divided over 100, and ℎ𝑟 = ∑ 𝐽𝑖𝑗𝜎𝑗
𝑟
𝑗=0 , that corresponds to the mutual 

influence between the 𝑟  neighboring states that give rise to cooperativity. The factor 𝐽𝑖𝑗  is a 

measure of this mutual influence between states 𝑖 and 𝑗. 
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Figure 16. Three model analogies. An occupied site is assigned the value of +1 and −1 if it is vacant. 

Each +1 is a spin aligned with external field �⃗⃗⃗� and −1 aligned against it. 

This model was adapted to the case of one hemoglobin, with 4 binding sites each capable of binding 

to an 𝑂2 molecule. The simplest model consists in supposing that all interactions between these 

four sites is equal. We propose: 

ℎ1 = 0, ℎ𝑟 = 𝐽∑𝜎𝑗

𝑟

𝑗=0

, 𝑟 = 2,3,4 

So that the argument of the hyperbolic tangent is modified during the process of capturing 𝑂2 of 

the hemoglobin. 

In order to understand the change in the transition rates during the simulation, we studied the 𝑤± 

in the neural network when 𝐽 = 0.35 and 𝑇 = 0.75. Five hundred realizations were carried out and 

the mean and standard deviations were calculated for each value of 𝑥 =
𝑃𝑂2

100
. The resulting plots are 

shown in Figure 17: 
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Figure 17. Values of 𝑤± as function of 𝑃𝑂2 for sufficiently long times. 𝑤+ tends to 1, while 𝑤− tends to 

zero. Black dots represent mean values, vertical bars are standard deviations. The latter tends to zero 

at the extremes and take higher values in the transition between vacant to occupied states. Statistical 

calculations were performed over 500 realizations. 𝐽 = 0.35, 𝑇 = 0.75. 

One can observe that 𝑤+  asymptotically grows towards 1, while 𝑤−  decreases towards 0. The 

vertical bars indicate the magnitude of the standard deviation of the probabilities; these make 

evident the relevancy of the random nature of the process. From this it results that the probabilities 

of occupation, 𝑤+, tend towards 1, while that of vacancy, 𝑤−, tend towards 0. 

3.4 Computer simulation and its methodological significance 
In this section we present the results from the simulations and explain their meaning. The scenario 

that is being sought to simulate is that of an ensemble of deoxygenated Hb molecules that enter a 

lung alveolus. Once there they find themselves within a medium with a high concentration of 𝑂2. 

The 𝑂2 molecules travel between many Hb molecules and are subject to collisions, some of these 

will be against iron atoms from an Hb, and some of these will have enough energy for the 𝑂2 to bind 

to an iron atom. From the perspective of one of the Hb molecules, an iron atom from one of its four 

porphyrin rings will suddenly bind to an 𝑂2. This is a stochastic phenomenon that can occur with 

probability 𝑤+. Similarly, the process of a loss of an 𝑂2 can occur with probability 𝑤−. It is notable 

that both 𝑤+ and 𝑤− are equal only in two cases: when 𝑃𝑂2 = 0, and when all binding sites are 
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vacant. When 𝑃𝑂2  increases, so does 𝑤+  but 𝑤−  decreases; when that happens, 𝑂2  molecules 

begin to bind to Hb binding sites, triggering the phenomenon of cooperativity, which also affects 

the increase in 𝑤+. If 𝑃𝑂2 is kept constant, the saturation reaches a level where the fluctuations of 

saturation are around a stable value. 

This oxygenation phenomenon develops in real time while the Hb is inside the lung alveoli. This real 

time is related to an algorithmic time of the neural network. This algorithmic time is the time that 

transpires during the iteration of the network, such that, given a 𝑃𝑂2 value, the oxygen saturation 

increases until reaching a stable value. 

Due to the fact that each erythrocyte carries approximately 2.7 × 108  Hb molecules [77], it is 

possible to apply the limit when the number of neurons tend to infinity, nonetheless, beside the 

increase in computational demands, they leave out the effects that may appear if there is intention 

of designing nanometric artificial oxygenator devices. These could consist of cylindrical gas 

exchangers, or other artificial nanostructures, of which Hb molecules are made to flow through. In 

the case of small devices, these could be placed inside intravenous catheters used in the treatment 

of patients with acute or chronic lung deficiencies [78]. A mathematical model that studies this 

phenomenon can be consulted in [79]. In extremely small devices what will happen is that the 

reduction in participating molecules will increase the presence of the random nature of the 

phenomenon, giving way to the presence of noise that must be accounted when designing such 

devices. 

The presence of noise due the reduction in size can be replicated by a neural network model if it is 

finite in size, with the advantage of preserving the macroscopic properties by means of calculating 

the averages of the participating quantities. 

3.5 Results and interpretation 

3.5.1 Algorithmic time and real time 

When a neural network is updated through a sequential dynamic process, it is considered that one 

unit of time corresponds to 𝑁 update cycles; thus, a single cycle is associated to a time step of Δ𝑡𝑎 =
1

𝑁
. Here we call this the algorithmic time 𝑡𝑎. In a process of 2 × 104 iterations, the final algorithmic 

time is 𝑡𝑎 = 10. The units of 𝑡𝑎 don’t have a direct physical meaning, but it is possible to draw a 

relation between them and the real oxygenation process. For this purpose, it is considered that each 

red blood cell remains within the lung alveoli 0.2 𝑠 < 𝑡𝑎 < 0.75 𝑠. Therefore, 1 𝑡𝑎 = 7.5 × 10
−2 𝑠 

for the case of the largest value in the range of 𝑡𝑎. 

In Figure 18 the reader can see the evolution process of a neural network with the cooperativity 

parameter 𝐽 = 0.35 and network temperature 𝑇 = 0.75, which, as will be demonstrated later in 

this chapter, corresponds to a hemoglobin temperature 𝑇ℎ = 36.59 °C. The update process of the 

neural network simulates the binding of 𝑂2 to a portion 𝑀 = 500 hemoglobin molecules (making a 

total of 𝑁 = 2000 binding sites. This system, as previously mentioned, is about the transit of Hb 

molecules through the lung alveoli that causes them to undergo a non-equilibrium process 
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Figure 18. Hemoglobin saturation percentage as a function of algorithmic time. 𝑃𝑂2  is a fixed 

parameter for each curve. The saturation increases asymptotically until an equilibrium value is 

reached. 𝐽 = 0.35, 𝑇 = 0.75. 

This system, as previously mentioned, is about Hb molecules undergoing a non-thermodynamic 

equilibrium process as a consequence of being carried through the lung alveoli, where there exists 

a transference of 𝑂2 molecules from the surrounding medium towards the Hb binding sites. Figure 

18 shows the time evolution of one realization of five cases with different 𝑃𝑂2. Dynamic equilibrium 

is reached once the evolution curves asymptotically approach a horizontal line. The final values of 

partial pressure of oxygen and saturation are shown in Table 8, where it can be appreciated that 

higher 𝑃𝑂2 correspond to higher saturation values. Going forward, the focus of this study will be 

the end state of the system, in other words, the equilibrium state. 

𝑃𝑂2 (torr) 𝜃𝑒𝑛𝑑 (%) 

10 6.1 

25 45.4 

50 88.4 

75 95.7 

100 97.25 

Table 8. Asymptotic values (long times) of oxygen saturation for the given partial pressures. The left-

hand column is the partial pressure of oxygen. The right-hand column is the saturation value at the 

given partial pressure. 
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3.5.2 Equilibrium state 

The next step in the simulation process was the study of the equilibrium states. For this purpose, a 

list of the 𝑃𝑂2 values used by Severinghaus [80] was created, then picked the first 𝑃𝑂2 value from 

the list,  set the network temperature 𝑇  and  the cooperativity parameter 𝐽 . One hundred 

realizations were carried out, each with 2 × 104 iterations. In each realization the final value of the 

normalized occupation number was recorded, and from the 100 realizations simple statistical 

calculations were performed, producing a set of three data values: the mean occupation number 

〈𝑠〉 , where −1 ≤ 〈𝑠〉 ≤ 1 ; the standard deviation, 𝜎𝑠 ; and the 𝑃𝑂2  value. Each value of 〈𝑠〉  is 

transformed using 𝜃 =
⟨𝑠⟩+1

2
, where 0 ≤ 𝜃 ≤ 1. This way 39 (𝑥, 𝜃) data pairs can be generated for 

any given pair of (𝐽, 𝑇). The values of 𝐽 considered were 𝐽 = 0.35 + 0.5𝑗, with 𝑗 = 0,… ,10; and the 

range of 𝑇 that were used for the majority of simulations was 0.55 ≤ 𝑇 ≤ 0.80, with a Δ𝑇 = 0.5 

between each value of T. 

The end products were sigmoidal curves of which properties are studied in further sections. These 

are compared with the properties displayed by the ODCs utilized in medical practice and scientific 

research. We then show that these are compatible with the results of the simulations in this work. 

3.5.3 Affinity 

In this section we review the relation between the parameter 𝐽 introduced in this model with the 

concept of affinity used in physical chemistry studies of hemoglobin. Figure 19 shows that as 𝐽 

increases the ODC shifts to the left and vice versa. This phenomenon related to the pH in the 

medium surrounding the Hb, as well as the aspects of the values of 𝑃50 of the simulation, will be 

discussed in sections below. 
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Figure 19. Hemoglobin oxygenation percentage as a function of 𝑃𝑂2 . Statistical calculations were 

performed over 100 realizations. The curves take a sigmoidal shape. When affinity grows the curve 

shifts to the left. 𝑇 = 0.75, 𝐽 = 0.34, 0.5, 0.36. 

It is possible to compare the results from the simulation with parameters 𝐽 = 0.35 and 𝑇 = 0.75 

with that of adult hemoglobin. Figure 20 displays data measured by Severinghaus [80], along with 

the simulation with 𝑁 = 2000 neurons organized in 𝑀 = 500 Hb molecules using the parameters 

of 𝐽 and 𝑇 mentioned earlier, and with a curve fitted using the Hill equation with parameters 𝑛𝐻 

and 𝑘𝐷 . The simulated curve is the result of averaging 100 realizations, the red and blue dashed 

curves indicate the region of random fluctuations of 𝜃; the curve of Severinghaus falls within this 

region. 
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Figure 20. Hemoglobin oxygenation percentage 𝜃  as a function of normalized 𝑃𝑂2 . Mean curve 

contained within the region demarcated by the standard deviation. Fluctuations are greater in the 

transition between vacant binding sites to occupied binding sites. 

The difference between these three curves is small enough to have grounds for believing that a 

neural network may be of use to simulate an ODC. 

3.6 Qualitative aspects based on the 𝑃50 value 

In this section we explore the relation between the 𝑃50 obtained through the simulation with a 

variety of 𝑃50 values found in the medical practice. Figure 21 presents which values of the pair (𝐽, 𝑇) 

give simulated OCDs with 𝑃50 values that lie within regions known in the literature to be associated 

with fetal Hb (19.8 𝑡𝑜𝑟𝑟), Hb from infants younger than 10 months of age (30 𝑡𝑜𝑟𝑟), and adult Hb 

(26.8 𝑡𝑜𝑟𝑟). 
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Figure 21. Hemoglobin oxygenation percentage as a function of 𝑃𝑂2 . Statistical calculations were 

performed over 100 realizations. Modifications in the values of 𝐽 and 𝑇 qualitatively replicate cases of 

hemoglobin found in fetal, adult and infant younger than 10 months subjects. 

Figure 21 illustrates the manner with which this model operates. Fetal hemoglobin differs from adult 

hemoglobin in two 𝛽  subunits being substituted by two 𝛾  subunits, in other words, adult 

hemoglobin is formed by 𝛼2𝛽2 chains and fetal hemoglobin by 𝛼2𝛾2 chains. The space where 2,3-

Bisphosphoglyceric acid (2,3-BPG) would fit in adult hemoglobin also differs in fetal hemoglobin; 

while in the adult form the residues in this space are positively charged, in the fetal form these are 

neutral. Due to the negative charge of 2,3-BPG, it can easily bind to adult Hb, causing allosteric 

changes in the molecule that result in a decrease in affinity to 𝑂2; in fetal Hb these changes do not 

take place, hence affinity remains unchanged, this way the hemoglobin of the fetus can compete 

with that of the mother in the capturing of oxygen. The model presented here condenses these 

aspects of the physical system into parameters 𝐽 and 𝑇. 

3.7 Obtaining parameters 𝑛𝐻, 𝑃50, 𝑘𝐷 and 𝜃𝑚𝑎𝑥 

Denoting saturation as 𝜃 and 𝑥 = 𝑃50, the Hill equation can be written as 

𝜃(𝑥) =
𝑥𝑛𝐻

𝑘𝐷 + 𝑥
𝑛𝐻

(150) 

with 𝑘𝐷 =
1

𝑘
. This saturation parameter 𝜃 provides the saturation percentage when multiplied by 

100. 

The method of obtaining 𝑛𝐻 is delineated next: 

1. The 39 ordered pairs (𝑥, 𝜃)  were used to compile a list of 39 data pairs of the form 

(ln 𝑥 , ln
𝜃

1−𝜃
). 



67 
 

2. Of the pair compiled in point 1, the numerical derivative was calculated using a finite 

difference method. 

3. Finally, the mean of the local derivatives was found. 

In Figures 22 and 23 are shown the curves obtained when 𝐽 = 0.35 and 𝑇 = 0.75 in points 1 and 2 

respectively, where the obtained value was 𝑛𝐻 = 2.82864 

 

Figure 22. Values of 𝑙𝑛
𝜃

1−𝜃
 as function of normalized 𝑃𝑂2. Statistical calculation were performed over 

100 realizations. Process for obtaining the parameters for a Hill curve. Shown here is for 𝐽 = 0.35, 𝑇 =

0.75. 
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Figure 23. Numerical derivative of the curve shown in Figure 22. Statistical calculations performed over 

100 realizations. Its mean is interpreted as the Hill coefficient 𝑛𝐻. 

To calculate the 𝑃50, the method used is delineated next: 

1. A pair (𝑥1, 𝜃1) is taken such that 𝜃1 is the value immediately before 𝜃 = 0.5, and a pair  

(𝑥2, 𝜃2) is taken such that 𝜃2 is the value immediately after 𝜃 = 0.5. 

2. The slope of the line joining (𝑥1, 𝜃1) and (𝑥2, 𝜃2) was calculated. 

The value of 𝑘𝐷 was calculated by the expression 𝑘𝐷 = 𝑃50
𝑛𝐻. These values were plugged into the Hill 

equation and plotted along with a simulated ODC, as shown in Figure 24.  
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Figure 24. Comparison between the Hill curve produced by 𝑘𝐷  and 𝑛𝐻 and the mean curve given by the 

neural network simulation. Statistical calculations were performed over 100 realizations. 𝐽 = 0.35, 

𝑇 = 0.75. 

The curves match closely in the region with 50% saturation and in the asymptotic growth towards 

𝜃𝑚𝑎𝑥, which occurs when 𝑥 = 1, or 𝑃𝑂2 = 100 𝑡𝑜𝑟𝑟. 

3.8 Analysis of simulations 

The results offered by this Hopfield neural network model for the ODC are discussed in this section. 

Simulations were carried out for the ordered pair (𝐽, 𝑇)  with the values 𝐽 =

{0.30, 0.32, 0.34, 0.35, 0.36, 0.38, 0.40} and from 𝑇 = 0.50 to 𝑇 = 0.80, or from 𝑇 = 0.60 to 𝑇 =

0.90 as the case may require. For each (𝐽, 𝑇) 100 realizations were carried out to obtain pairs of 

(𝑥, 𝜃), where x is the normalized 𝑃𝑂2. The saturation variable was also normalized to maintain it 

within the interval 0 ≤ 𝜃 ≤ 1. The resulting data was then scaled to recover the ranges used to 

measure 𝑃𝑂2 (𝑡𝑜𝑟𝑟) and saturation in percentage. As previously explained, once obtaining the data 

set of each realization, the mean and standard deviation were calculated, forming a three-element 

data set {𝑥, 𝜃, 𝜎𝜃}. 

With this analysis we composed seven tables, of which one of them is shown below, the remaining 

six are in the appendix: 

𝑇 𝑛𝐻 𝑃50 𝑘𝐷 𝜃𝑚𝑎𝑥 𝐽 

0.55 4.07487 28.087 0.00565865 99.33 0.35 
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0.60 3.73575 27.292 0.00781959 98.95 0.35 

0.65 3.40201 26.712 0.0112116 98.52 0.35 

0.70 3.07437 26.266 0.0164068 97.89 0.35 

0.75 2.82864 26.095 0.0223698 97.1 0.35 

0.80 2.59123 25.783 0.0298295 96.34 0.35 

Table 9. Cooperativity parameter, 𝐽 = 0.35, network temperature, 𝑇, is on the leftmost column. The 

calculated values are for: Hill coefficient (𝑛𝐻), partial pressure at half saturation (𝑃50), dissociation 

constant (𝑘𝐷), and maximum saturation achieved (𝜃𝑚𝑎𝑥). 

In a later section will be demonstrated that the network temperatures 𝑇 = {0.65, 0.70, 0.75} 

correspond to temperatures 𝑇ℎ = {37.23 °C, 36.90 °C, 36.59 °C}, which are the temperatures were 

the hemoglobin is found within a living human. Table 9 lets us reach the next conclusions: 

 The method used to calculate the Hill coefficient, 𝑛𝐻, allows the interpretation of it being 

the average of occupied states over all the points in the ODC. Therefore, the result obtained 

at 𝑇 = 0.55  lacks any physical meaning. Also, the Hill coefficient is a dimensionless 

parameter that has been used as a measure of cooperativity, originally obtained by A. V. Hill 

in 1910 and brought back by J. Wyman in 1964 [81]. This aspect will be further discussed at 

another section. 

 The network temperature range 𝑇 = 0.60 + 0.5𝑗 , where 𝑗 = 0,1,2,3,4 , offers the 𝑃50 

values considered as normal for human adult hemoglobin. It will later be demonstrated that 

these correspond to hemoglobin temperatures within the range 36.59 ≤ 𝑇ℎ ≤ 37.23 , 

which are the temperatures measured in healthy human adults. 

 From temperatures 𝑇 and 𝑇ℎ presented here it is clear that when 𝑇 increases 𝑇ℎ decreases. 

This lets us affirm that if 𝑇ℎ is to decrease, 𝑛𝐻 will decrease as well. 

3.9 Dependence of 𝑛𝐻 and 𝑃50 of cooperativity 𝐽 
The relation between the parameters 𝑛𝐻 and 𝑃50 as functions of parameter 𝐽 is presented in this 

section. For this it was taken the temperature 𝑇 = 0.75 as a case study and the data found in Tables 

9, 16, 17, 18, 19, 20 and 21 were used with the values for the cooperativity parameter 𝐽 found there. 

The values for 𝑛𝐻, 𝑃50 and 𝜃𝑚𝑎𝑥 found were compiled in the next table: 

𝐽 𝑛𝐻 𝑃50 𝜃𝑚𝑎𝑥 

0.30 2.52804 30.977 94.946 

0.32 2.66238 28.829 95.968 

0.34 2.77168 26.873 96.876 
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0.35 2.82864 26.095 97.100 

0.36 2.87214 25.092 97.480 

0.38 2.98723 23.559 98.048 

0.40 3.08659 22.083 98.465 

Table 10. Cooperativity parameter (𝐽) is on the leftmost column. The calculated values are the Hill 

coefficient (𝑛𝐻), partial pressure at half saturation (𝑃50), and maximum saturation achieved (𝜃𝑚𝑎𝑥). 

It was found that the values nearest to the healthy adult human vitals are within 0.34 ≤ 𝐽 ≤ 0.36 

with 𝑇 = 0.75. Further below Δ𝑝𝐻  and other parameters are calculated 𝐽 = 0.35 and 𝑇 = 0.75 

using as reference. 

Comparing the first and second columns in Table 10, it is evident that 𝑛𝐻 linearly increases with 𝐽. 

The equation of the line fitted to this data is shown next: 

𝑛𝐻(𝐽) = 0.886388 + 5.52344𝐽 

From this it results that the derivative 𝑑𝑛𝐻 = 𝐶(𝑇)𝑑𝐽, where 𝐶(𝑇) is a function only of the network 

temperature 𝑇, demonstrating that 𝑛𝐻  depends on the cooperativity parameter 𝐽. For this case 

𝐶(𝑇) = 5.52344. 

Comparing the first and third columns, it can be seen the value of 𝑃50 diminishes linearly with 𝐽. This 

relation supports the affirmation presented in a previous section that 𝑃50 is a function of 𝐽. The 

equation of the line fitted is: 

𝑃50(𝐽) = 57.2436 − 88.6521𝐽 

This means that an increase in the cooperativity parameter triggers a faster oxygenation process, 

which can also be seen in the differential equation 𝑑𝑃50 = 𝐷(𝑇)𝑑𝐽. In other words, they are directly 

proportional. For this case 𝐷(𝑇) = −88.6521. 

Comparing the first and fourth columns shows that the maximum saturation, 𝜃𝑚𝑎𝑥, increases with 

𝐽. This relation can be described by a quadratic expression of the form: 

𝜃𝑚𝑎𝑥(𝐽) = 62.5505 + 162.888𝐽 − 182.815𝐽
2 

From Table 9 one can arguably conclude that the ODC obtained with parameters (𝐽 = 0.75, 𝑇 =

0.35) is closest to what the measures of a healthy adult would be like. In the next section will be 

shown that the Hb temperature for this case is 𝑇ℎ = 36.59 °C, which is close to body temperature 

of a healthy person. Below we present a comparison between the simulated ODC, the resulting 

curve from fitting (150) and the data from Severinghaus. 
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Figure 25. Comparison between the mean curve obtained from the neural network simulation, the Hill 

curve and the data from Severinghaus [80]. 𝐽 = 0.35 , 𝑇 = 0.75 . The curves shown share strong 

similarities. 

3.10 Relation between network temperature and hemoglobin temperature 

In this section we establish the relation between the neural network temperature 𝑇  and the 

hemoglobin temperature 𝑇ℎ. The process consists in: 

1. Obtaining a functional relation between 𝑃50 and 𝑇ℎ through experimental studies found in 

the scientific literature. 

2. Use the simulation data from this work to find another functional relation between 𝑃50 and 

𝑇. 

3. Match both expressions and establish the relation between 𝑇 and 𝑇ℎ. 

To relate 𝑃50 and 𝑇ℎ we assume that the expression studied by Samaja et al. [82] is true: 
𝑑(log10 𝑥)

𝑑𝑇ℎ
=

𝑐, with 𝑥 = 𝑃50, and for the conditions considered in the reference 𝑐 = 0.0229. Taking the limit, we 

obtain the differential equation: 

𝑑(𝑙𝑜𝑔10 𝑥)

𝑑𝑇ℎ
= 𝑐 (151) 

with 𝑇ℎ measured in Celsius. Considering that log𝑏 𝑥 =
ln 𝑥

ln 𝑏
, it is possible to write (151) as: 

𝑑 (
𝑙𝑛 𝑥
𝑙𝑛 10

)

𝑑𝑇ℎ
= 𝑐 (152) 
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Rearranging and integrating (152), it is possible to rewrite it as 

𝑙𝑛 𝑥 = (𝑐 𝑙𝑛 10)𝑇ℎ + 𝑐1 (153) 

where 𝑐1  is an integration constant. Elevating an exponential in both sides and imposing the 

conditions: 𝑃50 = 10.3 𝑡𝑜𝑟𝑟 if 𝑇ℎ = 19 °C, it results: 

𝑥(𝑇ℎ) = 𝑃50(𝑇ℎ) = 3.7821𝑒
(𝑐 𝑙𝑛 10)𝑇ℎ (154) 

A numerical approximation for the exponent is 𝑐 ln 10 = 0.0527292. 

From the results reported in Table 9 above and Tables 18 and 19 in the appendix, it is possible to do 

a line fitting for 𝑃50 and 𝑇: 

𝑃50 = 𝑎(𝐽) − 𝑏(𝐽)𝑇 

where 𝑎(𝐽) and 𝑏(𝐽) take the values shown in the table below: 

𝐽 𝑎(𝐽) 𝑏(𝐽) 

0.34 41.996 6.52 

0.35 41.3315 6.32571 

0.36 42.9142 9.64571 

Table 11. Cooperativity parameter (𝐽) is on the leftmost column. Values of the coefficients of the line 

equation fitted to obtain the dependence of the partial pressure at half saturation (𝑃50) as a function 

of 𝐽. 

The line equations were matched with the right-hand side of equation (154), obtaining: 

𝑎(𝐽) − 𝑏(𝐽)𝑇 = 𝐴𝑒𝐵𝑇ℎ  

with 𝐴 = 3.7821 and 𝐵 = 𝑐 ln 10 = 0.0527292. Rearranging results the relation between 𝑇 and 

𝑇ℎ: 

𝑇ℎ =
1

0.0527292
ln (

𝑎(𝐽) − 𝑏(𝐽)𝑇

3.7821
) 

This equation produces the next relations between 𝑇 and 𝑇ℎ: 

 𝐽 = 0.34 𝐽 = 0.35 𝐽 = 0.36 

𝑇 𝑇ℎ 𝑇ℎ 𝑇ℎ 

0.55 38.40 37.84 37.59 

0.60 38.09 37.54 37.13 
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0.65 37.76 37.23 36.66 

0.70 37.44 36.91 36.18 

0.75 37.11 36.59 35.68 

0.80 36.77 36.26 35.18 

Table 12. Network temperature (𝑇) is on the leftmost column. Values of the temperature of the 

medium of the hemoglobin (𝑇ℎ) when the cooperativity parameter is 𝐽 = 0.34, 0.35, 0.36, 

respectively. 

We have found that there is an inverse proportionality between 𝑇 and 𝑇ℎ; in other words, as the 

network temperature 𝑇 increases, the temperature of the medium of the hemoglobin 𝑇ℎ decreases. 

Compiling a table of 𝑃50 as a function of 𝑇ℎ is straightforward, as is fitting a curve. This was done for 

𝐽 = 0.5, and the quadratic equation is: 

𝑃50(𝑇ℎ) = 1028.1 − 55.4675𝑇 + 0.767422𝑇
2 

This result matches qualitatively with Figure 5 of Samaja et al. [82], as it shows the increase of 𝑃50 

with temperature from 10 °C to 40 °C. 

3.11 Relation of 𝑝𝐻 to the cooperativity parameter 𝐽 

In this section we show the relation between the cooperativity parameter 𝐽 with the experimental 

hydrogen potential 𝑝𝐻. 

In humans, the normal blood 𝑝𝐻 levels are found within 7.35 and 7.45. If 𝑝𝐻 < 7.0 it is considered 

severe acidosis, and if 𝑝𝐻 > 8.0 it is considered severe alkalosis; either of these could be fatal. This 

indicates that if one is to find a normal value of 𝑝𝐻 and there is a Δ𝑝𝐻 = 0.55 or Δ𝑝𝐻 = −0.35, it 

is classified as abnormal. With this in mind, in this section we establish a relation between parameter 

𝐽  and Δ𝑝𝐻 , predicted by the neural network simulation. For this purpose, we set off from the 

expression found by Reeves [83]: 

Δ(log10 𝑃50)

Δ(𝑝𝐻)
= 𝐵 

where 𝐵 is a numerical value within the range −0.53 ≤ 𝐵 ≤ −0.41. Taking the limit, it gives us the 

following differential equation: 

𝑑(log10 𝑃50)

𝑑(𝑝𝐻)
= 𝐵 

Integrating and solving for 𝑝𝐻 results: 

𝑝𝐻(𝐽) =
1

2.3𝐵
ln (

𝑃50(𝐽)

𝑃50(𝐽0)
) 
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Considering the network temperature 𝑇 as constant, then taking the average value of 𝐵 = −0.47 

and 𝐽0 = 0.35 as reference, Tables 9, 16, 17, 18, 19 and 20 were used to compile Table 13. This 

should not be mistaken with this meaning that the temperature of the medium of Hb, 𝑇ℎ , is 

constant. 

𝐽 Δ𝑝𝐻 

0.30 -0.370 

0.32 -0.215 

0.34 -0.071 

0.35 0 

0.36 0.062 

0.38 0.204 

0.40 0.328 

Table 13. Change in hydrogen potential (𝛥𝑝𝐻) as a function of the cooperativity parameter (𝐽). The 

value of 𝐽 = 0.35 is taken as a point of reference. 

In all cases studied, the result is that the selected range of variation of parameter 𝐽, 0.30 ≤ 𝐽 ≤

0.40, one obtains |Δ𝑝𝐻| ≤ 0.4; this ensures that the variations of 𝑝𝐻 catalogued as normal appear 

as consequence of the neural network simulation with a fixed 𝑇. 

3.12 Gibbs free energy 

In this section we present the calculations for the change in the Gibbs free energy, Δ𝐺. This result 

lets us locate a limitation of this model. Δ𝐺  is obtained from 𝑛𝐻  and 𝑘𝐷 , where 𝑘𝐷 =
1

𝑘
, with 𝑘 

denoting the equilibrium constant for the change of deoxyhemoglobin, 𝐻𝑏, into oxyhemoglobin, 

𝐻𝑏𝑂8. We borrow the expression for the change in the free Gibbs energy from Bordbar et al. [84]: 

𝛥𝐺 = −𝑅𝑇𝛥𝑛𝐻 𝑙𝑛(𝑘) + 𝑅𝑇(1 − 𝑛𝐻) 𝑙𝑛(𝑥) (155) 

with 𝑥 = 𝑃50. The result of this was plotted and is shown in Figure 26: 
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Figure 26. Change in the Gibbs energy as a function of normalized 𝑃𝑂2. Negative values indicate a 

spontaneous process. When 𝑃𝑂2  increases, 𝛥𝐺  takes more negative values, indicating a more 

spontaneous process of 𝑂2 binding in the alveoli. 

The curves show that Δ𝐺  is negative, which means that the process of oxygenation of Hb is a 

spontaneous reaction. Also, Δ𝐺  decreases as 𝑃𝑂2  increases. Although the calculations of the 

parameter 𝑥 =
𝑃𝑂2

100
 increase up to 1.5, it has physical significance until 𝑥 = 1 𝑡𝑜𝑟𝑟, which is the 

pressure that can be reached by the lung alveoli. In other words, when 𝑃𝑂2 increases, Δ𝐺 tends to 

a minimum. 

From Figure 26, it is clear that Δ𝐺 is more negative when the cooperativity parameter 𝐽 increases. 

Also, Δ𝐺 is less negative when the network temperature 𝑇 increases. 

Expression (155) was used to calculate Δ𝐺 for 𝑥 = 1, which is the maximum pressure in the lung 

alveoli. The network temperatures 𝑇 were converted to 𝑇ℎ measured in Celsius as established in 

Table 12, then converted to Kelvin to plug them in (155). The studied values of Δ𝐺 were for 𝐽 =

0.34, 0.35, 0.36, 0.38. The results are shown in Figure 27 below. 
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Figure 27. 𝛥𝐺  as a function of 𝑇ℎ . When the cooperativity parameter 𝐽  increases, the curves shift 

toward more negative values. 

The obtained values are found within the range found by Bordbar et al. [84] in their Figure 3, but 

they are between 39.5% and 48.5% off the value discussed by Holt and Ackers [85]. In the current 

state of development of this model, it does not have enough elements to obtain the equilibrium 

constants 𝑘1, 𝑘2, 𝑘3, 𝑘4 and distinguish the free energies that accumulate during the oxygenation 

process. 

3.13 Enthalpy of the model 

In a past section, we presented curves in the state space for the Hb saturation as function of 𝑃𝑂2 (𝜃 

vs 𝑥). These curves display characteristics that make them compatible with the ODCs utilized in 

medical practice. Each of these curves can be understood as an isotherm in the space 𝜃 − 𝑥 and 

associate to it a network temperature 𝑇, which has a direct relation to the temperature of the 

medium of the hemoglobin, 𝑇ℎ. The maximum reachable pressure within the lung alveoli is 𝑥 = 1, 

therefore, we associate to this parameter the state of thermodynamic equilibrium where the flow 

of 𝑂2 towards Hb molecules is contained within an erythrocyte. We will show that it is possible to 

associate a value of enthalpy to a value of 𝐽 in this model. 
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In the topic under study, it is not possible to interpret the enthalpy as an exchange of heat in the 

formation of 𝐻𝑏𝑂8 from 𝐻𝑏. Considering the expression Δ𝐻 = 𝑇Δ𝑆 + 𝑉Δ𝑃, valid when the number 

of moles of matter in the system is constant, one can reach the conclusion that Δ𝐻 is the heat 

exchange only if the pressure is held constant. As has been presented above, this is not the case in 

the Hb oxygenation, as the ODC is obtained by picking values of saturation 𝜃 as a function of partial 

oxygen pressure 𝑥. 

The calculations are done following the usual procedure found in the literature. First the 

cooperativity parameter 𝐽 is set, next one obtains its Δ𝐻 value by using the van ‘t Hoff equation: 

𝑑 ln 𝑘𝑒𝑞

𝑑𝑇
=
Δ𝐻

𝑅𝑇2
  

Denoting 𝛾 =
1

𝑇
, differentiating and solving for Δ𝐻: 

Δ𝐻 = −𝑅
𝑑 ln 𝑘𝑒𝑞

𝑑𝛾
 

Our study focuses on the values of 𝐽 = 0.34, 0.35, 0.36. Using the data from Table 14 below, line 

equations can be fitted via a standard method. 

𝐽 = 0.34 

𝑇ℎ 38.09 37.76 37.44 37.11 36.77 

ln 𝑘𝑒𝑞 4.64135 4.28352 3.94605 3.64216 3.33725 

𝐽 = 0.35 

𝑇ℎ 37.54 37.23 36.91 36.59 36.26 

ln 𝑘𝑒𝑞 4.85112 4.49081 4.11006 3.80004 3.51226 

𝐽 = 0.36 

𝑇ℎ 37.13 36.66 36.18 35.68 35.18 

ln 𝑘𝑒𝑞 5.04329 4.66891 4.32786 3.97106 3.66578 

Table 14. Cooperativity parameters 𝐽 = 0.34, 0.35, 0.36. For each value of 𝐽 , the first row is the 

temperatura of the medium of the hemoglobin (𝑇ℎ) and the second is the natural logarithm of the 

equilibrium constant (𝑘𝑒𝑞). 

The fitted lines for ln 𝑘𝑒𝑞 vs 𝛾 have the form ln 𝑘𝑒𝑞 = 𝐴(𝐽) − 𝐵(𝐽)𝛾. The value of the enthalpy for 

each line in the space 𝜃 − 𝑥, shown in Figure 28, can be obtained by calculating their slope. The 

result is shown in the table 15: 
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𝐽 Δ𝐻 (kcal) 

0.34 -22.7616 

0.35 -24.1678 

0.36 -16.1677 

Table 15. Cooperativity parameter (𝐽) is on the left column. The calculated change in enthalpy (𝛥𝐻) is 

on the right column. 

 

 

Figure 28. 𝑙𝑛 𝑘𝑒𝑞 as a function of 𝛾 =
1

𝑇ℎ
. The slope is the value of 𝛥𝐻. Each point has a simulated ODC 

associated to it. 
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The results obtained for Δ𝐻 are of the order reported in the literature, but they do not match 

quantitively. 

3.14 About the noise 

The simulation process presented in this work allows us to obtain the noise that exists as 

consequence of the finite nature of the number of binding sites in the Hb molecules. The model 

reflects this trait in the finite nature of the neural network. This phenomenon could be present in 

small, nano-scaled artificial oxygenators. The uncertainty can be estimated by using the standard 

deviation, it is possible to draw results shown in Figure 29: 

 

Figure 29. Dependence of the standard deviation respect to 
𝑃𝑂2

100
. To the left hand-side, 𝐽 = 0.35; to the 

right hand-side, 𝐽 = 0.3. The maximum noise values are in the vicinity of 𝑃50. When 𝑇ℎ increases, the 

curve’s height increases and becomes narrower. 

For 𝐽 = 0.35 and 𝐽 = 0.36 we present two network temperatures, such that their 𝑃50 values are 

near what is considered as normal for healthy human Hb. Both cases display a rapid increase, 

reaching a maximum in the region associated with a greater value of the slope in the ODC curve. 

The noise tends to decrease as the system reaches equilibrium for the highest 𝑃𝑂2 values. It can 

also be appreciated that the curve of the standard deviation turns narrower and higher as 𝑇ℎ 

increases. On the other hand, this behavior contrasts with the lower noise levels that are reached 

at maximum saturation. This is more evident when plotting the standard deviation vs. mean Hb 

saturation: 
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Figure 30. Dependence of the standard debiation respect to the mean Hb saturation. 𝐽 = 0.36 with 

𝑇 = 0.70, 0.75, 0.80. The noise reaches its maximum value in the vicinity of 𝑃50. The noise decreases 

to very small values when maximum saturation is reached. 

All curves with 𝐽 = 0.36  and 𝑇 = 0.70, 0.75, 0.80  tend to zero as the saturation reaches its 

maximum. The highest value of the standard deviation occurs when 𝑆𝑎𝐻𝑏 take values between 0.4 

and 0.6; that is to say, near 𝑃50. As before, the highest noise levels are reached with the highest 

values of 𝑇ℎ. 

Finally, we analyzed the dependence of the standard deviation with respect to cooperativity, which 

is introduced by the parameter 𝐽. The results indicate that the standard deviation shows very little 

sensibility to changes in parameter 𝐽. Table 22 is added to the appendix to show that the changes 

are, at most, of the order of 10−3, which is not representative of current measurements of oxygen 

saturation. 

3.15 Discussion 

The oxygenation of Hb is a process that begins from its T-state and evolves towards its saturated 

state, called R-state, through an out of equilibrium process. To our knowledge, this topic has been 

studied since at least 1968 [29]. However, due to their short duration, measurements to monitor 

the relaxation time of these processes is complicated. To describe these, it is common to see 

modified diffusion equations, where their exact solutions are difficult to find and instead 

researchers often opt for numerical methods. Experimental approaches have advanced in the last 

decades, with the development of techniques that allow the measurement of concentration of 𝑂2 
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and other substances beside Hb molecules, even if the times involved are very short. There has also 

been progress in the numerical methods used to solve differential equations. The problem now 

resides in the fact that the proposed partial differential equations follow the assumption that the 

quantities involved are continuous. This leaves out stochastic processes that are present and 

assume greater importance in cases when it is necessary to consider the number of participating 

molecules, such as miniaturized oxygenators and other devices. In such situations, discrete 

processes made evident by the finite size of the system may present themselves. 

As was mentioned in the introduction of this work, up to now the method of approach to the 

understanding and control of 𝑂2  transport by biological or artificial means with different 

geometrical settings, has been in a lot of cases the use of a modified version of expression (145) in 

this work, or by models like that of Adair. As expressed above, the equilibrium state predicted by 

some of these approaches coincides with the results obtained here. Comparatively, our model 

presents an apparent weakness against much of the referenced literature because many of these 

scientific publications offer a complex and detailed understanding of the physical and chemical 

phenomena involved. However, one of the relevant aspects in this work is that all of those complex 

details are reduced to a simple probabilistic problem: the capture or loss of 𝑂2 in each of the four 

binding sites of an Hb. It is significant that this simplification allows us to reproduce a curve with 

similar properties to an ODC. On the other hand, although we reference lung alveoli, this model is 

applicable to any other device where Hb is present in a system where PO2 increases. In addition, 

since no special geometry or particular material is required for this model, it is applicable in various 

situations: from living organisms to mechanical systems designed for the oxygenation of Hb-like 

molecules. 

3.16 Conclusions 

Using a finite Hopfield neural network, we developed a stochastic model that simulates the 

oxygenation process of the hemoglobin. The curves obtained through the simulation of the 

saturation of the Hb have similar properties to the oxygen-hemoglobin dissociation curve, ODC, that 

are measured in medical practice and used in scientific research. The process initiates out of 

equilibrium and evolves towards equilibrium with the passing of the algorithmic time of the 

network. Each Hb binding site corresponds to a neuron in the network. A number 𝑀 of Hb molecules 

give rise to 𝑁 = 4𝑀 binding sites, which correspond to a network of 𝑁 neurons. The model depends 

only on two parameters and depends only on transition rates between the states (+1,−1) of each 

neuron. Figure 19 shows that 𝑂2  saturation, as it evolves, it asymptotically tends towards a 

horizontal straight line. This horizontal line marks the equilibrium state. The asymptotic values of 

the 𝑂2 saturation, denoted as 𝜃𝑒𝑛𝑑, depend on 𝑃𝑂2 as shown in Table 8. 

The influence of the oxygen partial pressure was introduced through the field ℎ that affects equally 

every neuron. The phenomenon of cooperativity is considered by field ℎ𝑟  where the interaction 

between binding sites is included. The magnitude of this interaction grows whenever a binding site 

is occupied; with this the cooperative behavior, which appears when an 𝑂2 molecule binds to one 

of the sites of an Hb, is incorporated in the model. 
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A list of 39 pairs of (𝜃 vs 𝑥)  for each pair of (𝐽, 𝑇)  was generated. The (𝜃 −  𝑥)  plot shows a 

sigmoidal shape, which is to be expected for ODCs. The pairs (𝑃𝑂2, 𝜃𝑚𝑎𝑥) produce a sigmoidal curve 

very similar to ODCs. This suggests that the neural network can be used to simulate it. The proper 

variations in parameters 𝐽 and 𝑇 let us replicate the 𝑃50 values of fetal Hb, early infant Hb and adult 

Hb. The results were compared satisfactorily with the ODC resulting from the data from 

Severinghaus; given the simulation data, Figure 21 shows that a Hill curve with 𝐽 = 0.35 and 𝑇 =

0.75 produces a sigmoid curve very similar to the curve by Severinghaus. The curves obtained 

maintain their shape for different values of (𝐽, 𝑇), but their extremes differ slightly. The most 

notable differences appear in the rapid increase of oxygen saturation. A leftward shift of the ODC 

was observed when the magnitude of cooperativity parameter was increased. 

The simulation results were treated as if they were experimental data. For this, from the 39 pairs of 

(𝜃 −  𝑥) , the values were calculated for: the Hill coefficient, 𝑛𝐻 ; the partial pressure at half 

saturation, 𝑃50; and the equilibrium constant 𝑘 = 𝑘𝐷
−1. With these parameters a Hill curve was 

plotted, then compared with the simulation result, finding a satisfactory fitting. The maximum 

saturation 𝜃𝑚𝑎𝑥 = 𝜃(𝑥 = 1)  was also obtained. For each  (𝐽, 𝑇)  pair, the quartet of values 

(𝑛𝐻, 𝑃50, 𝑘𝐷 , 𝜃𝑚𝑎𝑥) can be obtained; these are reported in Tables 9, 16, 17, 18, 19, 20, 21. We also 

established a functional relation between the network temperature, 𝑇, and the medium of the Hb, 

𝑇ℎ. Two algebraic relations were found: one between 𝑛𝐻, 𝑃50 and 𝐽, and another between 𝜃𝑚𝑎𝑥 

and 𝐽. The following relations were found: 𝑛𝐻(𝐽) and 𝑃50(𝐽), such that, calculating the derivative, it 

is possible to find the proportionality relations of 𝑑𝐽 with 𝑑𝑃50(𝐽), and 𝑑𝑛𝐻(𝐽) with 𝑑𝐽. In other 

words, the cooperativity parameter 𝐽 determines the variability of 𝑑𝑛𝐻(𝐽) and 𝑑𝑃50. 

A relation between the network temperature, 𝑇, and hemoglobin temperature measured in Celsius, 

𝑇ℎ, was established; it occurs that when 𝑇 increases, 𝑇ℎ decreases. The values obtained for 𝑇ℎ are 

within the temperature ranges of healthy human beings. A relation between 𝑝𝐻 and parameter 𝐽 

was also found, where the difference between the maximum 𝑝𝐻 value and the minimum 𝑝𝐻 value 

are similar to the range of variation considered as normal in the medical practice, meaning, above 

the state of acidosis and below the state of alkalosis. In qualitative terms, the results are as follows: 

 𝑛𝐻, 𝑃50, 𝜃𝑚𝑎𝑥 and 𝑘 increase when 𝑇ℎ increases. 

 The change in 𝑝𝐻, Δ𝑃ℎ, is a function that increases as 𝐽 increases, meaning that an alkaline 

medium benefits cooperativity. 

This last result is consistent with the fact that 𝐶𝑂2 increases acidity, which impacts negatively in 

cooperativity, in other words, the concentration of 𝐶𝑂2 decreases the cooperative behavior of Hb. 

This is also consistent with the increase of 2,3-BPG, which decreases affinity of Hb to 𝑂2 , 

contributing with the liberation of oxygen from Hb molecules to tissues in need of oxygenation 

The change in Gibbs free energy, Δ𝐺, was calculated in terms of the value of 𝑥 and it can be seen 

that, as the oxygen partial pressure increases, the value of Δ𝐺  becomes more negative. This 

indicates that there is a tendency towards a minimum when 𝑃𝑂2 increases. The sign of the results 

of Δ𝐺 indicate that the oxygenation of hemoglobin is a spontaneous reaction. The values of Δ𝐺 are 

within the range of those predicted by Bordbar et al., but they do not match quantitatively with the 
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results discussed by Holt and Ackers. In fact, the model does not provide elements to obtain 𝑘1, 𝑘2, 

𝑘3 and 𝑘4 separately. 

The value of the change in enthalpy, Δ𝐻, was also obtained for each value of 𝐽. It was noted that 

this cannot be related with the heat exchange, Δ𝑄, due to each ODC corresponding to a range of 

pressures, so that the basic condition for identifying Δ𝐻 as Δ𝑄 is not met. The values obtained are 

of the order as those found in experiments, but in the case that was calculated, it does not 

correspond to the heat of reaction for the reasons put forward in this body of work. 

Currently, it is possible to observe the effects of finite size. Some of these experiments are carried 

out in devices capable of studying properties of single cells by making them flow through structures 

that can register them individually. Di Caprio et al. [86] show in their Figure 3A the ODC and its 

standard deviation of a single erythrocyte. They indicate that the initial standard deviation is zero, 

reaches a maximum near 𝑃50, and decreases to very small values when 𝑃𝑂2 reaches its highest 

values. 

Their experimental result matches with those obtained in this work. Figure 17 shows how the 

standard deviation of 𝑤+ and 𝑤− are zero for 𝑃𝑂2 = 0, reach a maximum near 𝑃50, then decreases 

when approaching the maximum value of 𝑃𝑂2 achievable in the alveoli. This behavior is due to the 

finite nature of the neurons in the network, and the finite number of the realizations performed. 

This noise translates into the simulation data used to plot the simulated ODC curves shown in Figure 

20. In both Figure 17 and Figure 20 the standard deviation reaches it minimum when 𝑃𝑂2 is very 

low and when it is very high, while the maximum value is reached when Hb transitions from its T 

state to R state. 

According to experimental observations, when oxyhemoglobin reaches tissues that metabolize 𝑂2 

it reduces its affinity and releases its cargo with more ease. Instead, the behavior in this model is 

that affinity increases with 𝑇ℎ, which agrees with kinetic theory of gasses. This theory states that 

the number of collisions between reactants, in this case Hb binding sites and 𝑂2, increases with 

temperature, in this case 𝑇ℎ; giving way to an increase in the probability of some of these collisions 

to be in the correct place and with enough energy for the 𝑂2 molecule to bind to the Fe of the 

porphyrin ring. This conflicts with medical observations and biochemical analysis shows a limitation 

of our model but could also indicate that 𝑇ℎ has influence over chemical mechanisms that are not 

being considered in the model due to the simplicity of the hypothesis this model is based upon. 

4 Significance in nanoscience and nanotechnology 
From the results in this work can be drawn functional understanding that can potentially prove 

useful for future research and development. 

In the realm of nanotechnology, both approaches developed here, for non-cooperative and 

cooperative enzymatic reactions, allow for the replication of simulated experiments that could be 

strenuous and costly if performed in a chemistry laboratory. Instead, in the span of minutes or 

seconds, this effort can be performed hundreds or thousands of times, change the reaction under 



85 
 

study by simply modifying the parameters involved, and repeat the process as many times as 

needed. 

Their rapid data generation and versatility can aid in the design of nano-scaled devices focused in 

catalyzing reactions occurring within small volumes, where the participating substances are in the 

order of tens, hundreds or thousands; causing the stochastic component of the phenomenon to 

become a key factor that cannot be neglected. The theoretical knowledge and understanding of this 

stochastic component could allow discrimination between the noise inherent of these scales, and 

noise coming from other sources. This in turn would allow for adequate filtering and averaging of 

the measurements, granting more refined data to be studied. 

In the specific case of the hemoglobin simulation, the reproduction of the ODC (Oxygen Dissociation 

Curve) could aid in the miniaturization of oxygen concentrators already in the market today; their 

reduction in size bringing some relief to the burden on patients who must use them in a daily basis. 

In the realm of nanoscience, for the non-cooperative reactions, we have the ability to know the 

conduct of the entropy during the reaction. The reduction of its value over time suggests the 

existence of an energy source fueling the reactions, which we propose comes from the normal 

vibration modes of the enzymes. The fact that enzymes are flexible, allowing for the oscillation of 

their structure, means that their vibrations have specific frequencies. They are these frequencies 

that, we propose, are related to the specificity observed in enzymes. In other words, substrate 

molecules must resonate with the active site of the enzyme for the reaction to be catalyzed. This 

aspect, if correct, deserves further exploration because it would mean that physical chemistry could 

prove an invaluable asset in the understanding and design of artificial catalysts for specific substrate 

molecules. 
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6 Appendix 
𝑇ℎ 𝑇 𝑛𝐻 𝑃50 𝑘𝐷 𝜃𝑚𝑎𝑥 × 100 𝐽 

40.0109 0.70 2.75961 31.251 0.0403667 96.946 0.30 

39.9253 0.75 2.52804 30.9768 0.0516794 94.946 0.30 

39.8392 0.80 2.31153 30.8963 0.0662074 93.7525 0.30 

39.7528 0.85 2.13256 30.7449 0.080844 92.532 0.30 

39.666 0.90 1.96491 30.6643 0.0980124 91.197 0.30 

Table 16. Cooperativity parameter 𝐽 = 0.30. Value of the temperature of the hemoglobin (𝑇ℎ) is on the 

first column, the network temperature (𝑇) is on the second column. The calculated values are for: Hill 

coefficient (𝑛𝐻), partial pressure at half saturation (𝑃50), dissociation constant (𝑘𝐷), and maximum 

saturation achieved (𝜃𝑚𝑎𝑥) multiplied by 100. 

 

𝑇ℎ 𝑇 𝑛𝐻 𝑃50 𝑘𝐷 𝜃𝑚𝑎𝑥 × 100 𝐽 

38.6345 0.70 2.90031 29.063 0.0277664 96.998 0.32 

38.5344 0.75 2.66283 28.8286 0.0364422 95.9685 0.32 

38.4337 0.80 2.43348 28.6407 0.0477066 96.027 0.32 

38.3325 0.85 2.22959 28.4973 0.0608744 93.8795 0.32 

38.2308 0.90 2.06889 28.4649 0.0743068 92.7555 0.32 

Table 17. Cooperativity parameter 𝐽 = 0.32. Value of the temperature of the hemoglobin (𝑇ℎ) is on the 

first column, the network temperature (𝑇) is on the second column. The calculated values are for: Hill 

coefficient (𝑛𝐻), partial pressure at half saturation (𝑃50), dissociation constant (𝑘𝐷), and maximum 

saturation achieved (𝜃𝑚𝑎𝑥) multiplied by 100. 

 

𝑇ℎ 𝑇 𝑛𝐻 𝑃50 𝑘𝐷 𝜃𝑚𝑎𝑥 × 100 𝐽 

37.9702 0.60 3.65432 0.280804 0.00964469 98.7835 0.34 

37.724 0.65 3.33201 0.276494 0.013794 98.234 0.34 

37.4744 0.70 3.02678 0.271522 0.0193309 97.607 0.34 
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37.2216 0.75 2.77168 0.268726 0.0261957 96.876 0.34 

36.9654 0.80 2.52454 0.266622 0.0355345 95.91 0.34 

Table 18. Cooperativity parameter 𝐽 = 0.34. Value of the temperature of the hemoglobin (𝑇ℎ) is on the 

first column, the network temperature (𝑇) is on the second column. The calculated values are for: Hill 

coefficient (𝑛𝐻), partial pressure at half saturation (𝑃50), dissociation constant (𝑘𝐷), and maximum 

saturation achieved (𝜃𝑚𝑎𝑥) multiplied by 100. 

 

𝑇ℎ 𝑇 𝑛𝐻 𝑃50 𝑘𝐷 𝜃𝑚𝑎𝑥 × 100 𝐽 

36.8534 0.60 3.80378 0.265573 0.00645246 99.121 0.36 

36.5543 0.65 3.45201 0.258589 0.00938253 98.6365 0.36 

36.2505 0.70 3.16779 0.255073 0.0131958 98.1855 0.36 

35.9417 0.75 2.87214 0.250922 0.0188535 97.4805 0.36 

35.6277 0.80 2.63478 0.24875 0.0255841 96.773 0.36 

Table 19. Cooperativity parameter 𝐽 = 0.36. Value of the temperature of the hemoglobin (𝑇ℎ) is on the 

first column, the network temperature (𝑇) is on the second column. The calculated values are for: Hill 

coefficient (𝑛𝐻), partial pressure at half saturation (𝑃50), dissociation constant (𝑘𝐷), and maximum 

saturation achieved (𝜃𝑚𝑎𝑥) multiplied by 100. 

 

𝑇ℎ 𝑇 𝑛𝐻 𝑃50 𝑘𝐷 𝜃𝑚𝑎𝑥 × 100 𝐽 

35.7881 0.60 3.92597 0.25135 0.00442092 99.311 0.38 

35.4424 0.65 3.58229 0.244274 0.00641504 98.942 0.38 

35.0902 0.70 3.2894 0.238651 0.00897867 98.4805 0.38 

34.7314 0.75 2.98723 0.235589 0.0133195 98.0485 0.38 

34.3657 0.80 2.74719 0.233145 0.0183127 97.326 0.38 

Table 20. Cooperativity parameter 𝐽 = 0.38. Value of the temperature of the hemoglobin (𝑇ℎ) is on the 

first column, the network temperature (𝑇) is on the second column. The calculated values are for: Hill 

coefficient (𝑛𝐻), partial pressure at half saturation (𝑃50), dissociation constant (𝑘𝐷), and maximum 

saturation achieved (𝜃𝑚𝑎𝑥) multiplied by 100. 
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𝑇ℎ 𝑇 𝑛𝐻 𝑃50 𝑘𝐷 𝜃𝑚𝑎𝑥 × 100 𝐽 

34.2256 0.65 3.75959 0.230285 0.00424512 99.1775 0.40 

33.8661 0.70 3.38239 0.225159 0.00645461 98.8455 0.40 

33.4995 0.75 3.08659 0.220834 0.00944935 98.4655 0.40 

33.1258 0.80 2.83299 0.217335 0.0132473 97.876 0.40 

Table 21. Cooperativity parameter 𝐽 = 0.40. Value of the temperature of the hemoglobin (𝑇ℎ) is on the 

first column, the network temperature (𝑇) is on the second column. The calculated values are for: Hill 

coefficient (𝑛𝐻), partial pressure at half saturation (𝑃50), dissociation constant (𝑘𝐷), and maximum 

saturation achieved (𝜃𝑚𝑎𝑥) multiplied by 100. 

 

J  at T=0.70  at T=0.75  at T=0.80 

0.30 0.034 0.034 0.031 

0.32 0.035 0.034 0.034 

0.34 0.036 0.034 0.036 

0.35 0.037 0.034 0.035 

0.36 0.040 0.035 0.033 

0.38 0.037 0.038 0.038 

0.40 0.037 --  -- 

Table 22. Standard deviation for 𝐽 = {0.30, 0.32, 0.34, 0.35, 0.36, 0.38, 0.40}. Network temperatures 

𝑇 = 0.70, 0.75, 0.80. The noise displays very little sensibility to changes in 𝐽. 

 


