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Resumen

Este trabajo aborda varios aspectos algebraicos y geométricos del método global de
promedios para sistemas dinámicos en S1-variedades. Por S1-variedades, entendemos
una variedad diferencial en la que actúa el grupo S1. Se estudian una amplia variedad
de sistemas dinámicos perturbados, en el contexto del método de la transformada
de Lie y en la teoŕıa de formas normales, cuya caract́ıstica principal es que la parte
no perturbada es invariante con respecto a una acción de S1 y siguiendo un enfoque
libre de coordenadas.

Las investigaciones que se desarrollan en esta tesis se centran alrededor de las
siguientes ĺıneas: (i) enfoque algebraico de la ecuación homológica generalizada; (ii)
formas normales globales y el teorema geométrico de promedios; (iii) el método de
promedios en espacios fase con variables lentas y rápidas.

Una de la aportaciones de este trabajo está relacionada con la construcción de
soluciones globales de la ecuación homológica tensorial asociada con flujos periódicos
para el caso de campos tensoriales antisimétricos, covariantes y contravariantes, y
que generalizan las fórmulas que Cushman derivó para el caso de funciones. Estos
resultados son aplicados al problema de normalización de campos vectoriales con
flujo periódico. Mas aún, se formula y se demuestra una versión Riemanniana del
teorema de promedios la cual se usa para aproximar la dinámica real de un sistema
dado, por medio de trayectorias de su sistema promediado en una escala de tiempo
grande. Para este propósito, además de los argumentos de normalización, se uti-
lizan estimaciones de tipo Gronwall para flujos en una variedad Riemanniana y las
propiedades de la operación de levantamiento horizontal en un S1-haz principal.

Otra contribución de esta tesis consiste en presentar un enfoque de normalización
geométrico de una dinámica Hamiltoniana perturbada en espacios con variables
lentas y rápidas. Tales espacios aparecen en la teoŕıa de aproximaciones adiabáticas
y en sus generalizaciones. La principal caracteŕıstica de estos espacios es que se
descomponen como el producto de un factor con variables lentas y otro factor con
variables rápidas; lo cual se encuentra en correspondencia con la dependencia sin-
gular que tiene la forma simpléctica (ó corchete de Poisson) del parámetro de per-
turbación. Como consecuencia de esto, el sistema no-perturbado no hereda una
estructura Hamiltoniana natural y por tanto no es posible aplicar directamente la
teoŕıa regular de perturbaciones para sistemas Hamiltonianos. Sin embargo, asu-
miendo ciertas hipótesis de simetŕıa para la dinámica no perturbada, se derivan
varios resultados de normalización basados en una versión paramétrica del método
de homotoṕıa de Moser y la técnica de promedios para formas (pre)simplécticas y
conexiones no lineales en espacios fibrados, la cual se debe a Marsden, Montgomery
y Ratiu.

Finalmente, en esta disertación se presentan algunos ejemplos, que tienen relación
con problemas de F́ısica-Matemática, en los cuales se ilustran las principales técnicas
y resultados que son el fundamento de esta tesis.
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Abstract

This dissertation is devoted to some algebraic and geometric aspects of the global
averaging method for dynamical systems of S1-manifolds. In the context of Lie
transform perturbation method and normal form theory, we present a free coordi-
nate approach to the study of a wide class of perturbed dynamical systems whose
unperturbed part is invariant with respect to a given S1-action. The thesis research
centers around the following lines: (i) an algebraic approach to generalized homolog-
ical equations; (ii) global normal forms and the geometric averaging theorem; (iii)
the periodic averaging on slow-fast phase space.

The first contribution is related to the construction of global solutions to the
tensor homological equations associated with periodic flows and generalizes the result
by Cushman to the case of covariant and contravariant antisymmetric tensor fields
of arbitrary order. These results are applied to the normalization problem to vector
fields (not necessarily Hamiltonian ) with periodic flow. Moreover, we formulate and
prove a Riemannian version of the S1averaging theorem on the approximation of the
true dynamics by the trajectories of an averaged system on a long time scale.

Another contribution of the thesis is a geometric approach to the normalization
of perturbed Hamiltonian dynamics on the so-called slow-fast phase spaces which
appear in the theory of adiabatic approximation and its generalizations. Such phase
spaces separates into the product of the slow and fast factors according to the singu-
lar dependence of the symplectic form (the Poisson bracket) on a small perturbation
parameter. As a consequence, the unperturbed system does not inherit any natural
Hamiltonian structure and hence the regular perturbation theory for Hamiltonian
systems can not be directly applies to this situation. Under an appropriate S1-
symmetry hypothesis for the unperturbed dynamics, we derive various normaliza-
tion results based on a parameter dependent version of the Moser homotopy method
and the averaging technique for (pre)symplectic forms and nonlinear connections on
fibered spaces due to Marsden, Montgomery and Ratiu. The dissertation concludes
with illustrations of the main results on some examples.
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Introduction

This work is devoted to some algebraic and geometric aspects of the “global” av-
eraging method for dynamical systems due to Moser [58] and Cushman [15] which
refers to the flow on a phase space manifold rather than to a local coordinate de-
scription. A basic tool in the theory of normal forms for dynamical systems is the
Lie transform method which was originally developed in the works by Deprit [21],
Kamel [37], (see also [33, 35, 51]) . According to this method, formal normaliza-
tion transformations of a perturbed system are constructed by means of formal Lie
series. The existence of such transformations is provided by the solvability of lin-
ear nonhomogeneous equations (involving the Lie derivative along the unperturbed
vector field) which are called the homological equations [5]. The “local” traditional
approach (see for example [5, 7, 66, 67]) is based on the construction of solutions
to homological equations and the corresponding normal forms within domains of
local coordinate systems (such as action-angle variables in the Hamiltonian case).
We are interested in a “global” normalization procedure which can be performed
on an arbitrary relatively compact domain in a phase space. In this case, a nor-
malization transformation can be defined as a flow of a time-dependent vector field
where a small perturbation parameter plays the role of time. This setting leads to
the study of the solvability of homological equations globally, on the whole phase
space. We address this question to a class of perturbed dynamical systems on phase
spaces with S1-symmetry, which includes, in particular, systems whose unperturbed
parts have periodic flows. In the Hamiltonian case, a free coordinate formula for
global solutions to a homological equation associated to a periodic flow was derived
by Cushman [15]. Our point is to generalize this result to the case of homological
equations for tensor fields of arbitrary type. The key observation here is that the
averaging procedure with respect to an action of a compact Lie group (in particular,
a circle action) on a manifold is well defined for a wide class of geometric objects
including tensor fields.

A global averaging technique on phase spaces with symmetry was developed by
S. Golin, A. Knauf, S. Marmi [28] and R. Montgomery [55] for the study of slowly
varying integrable systems and extended to Poisson bundles by J. E. Marsden, R.
Montgomery and T. Ratiu [47] in the context of the Hannay-Berry phases and the
reduction method. One of the goals of the present work is to apply the averaging
technique to a class of perturbed Hamiltonian systems [17, 19, 74, 76] which repre-
sents a generalization of the slow-fast Hamiltonian systems known in the theory of
adiabatic approximation [7, 38, 43, 62]. The main feature of such perturbed Hamil-
tonian models is that the unperturbed system is no longer Hamiltonian and hence
one can not apply the standard methods of the regular Hamiltonian perturbation
theory. One of the main points here is to understand a geometric nature of norma-
lization transformations of adiabatic type which is closely related to the averaging

1



2 Introduction

procedure of (pre)symplectic forms [28, 58], and Poisson brackets [75].
Remark also that a global perturbative setting is also important in the quantum

averaging method under construction of the normalization transformation in the
semiclassical approximation [31, 39, 71].

Therefore, the research lines of this thesis are:

1. Algebraic approach to generalized homological equations.

2. Global normal forms and geometric averaging theorem.

3. The periodic averaging on slow-fast phase spaces.

In more details the main results of the thesis are formulated as follows.
1. Algebraic approach to generalized homological equations. Let Aε =
A0 + εA1 + O(ε2) be a perturbed vector on a manifold M . The existence of a
(global) normalization of first order of Aε relative to the unperturbed vector field
A0 is reduced to the existence of two vector fields Z and Ā1 on M satisfying the
homological equation

[A0, Z] = A1 − Ā1 (1)

and the condition
[A0, Ā1] = 0. (2)

If (Z, Ā1) is a solution to this problem, then Z gives an infinitesimal generator of a
normalization transformation and the vector field Ā1 represents the second term in
the normal form. In general, the solvability of this problem is a nontrivial question.
For different approaches see for example, [67]. We assume that the flow of the
unperturbed vector field A0 is periodic with frequency function ω : M → R. In this
case, we have an S1-action (not necessarily free) on M with an infinitesimal generator
Υ = 1

ωA0. To get feeling for an algebraic nature of the homological equation, we
study the problem (1), (2) in a more general setting on the exterior algebras of

k-tensor fields χk(M) = Sec

(
k∧
TM

)
. For a given z ∈ χk(M), we are looking for

k-vector fields Π and z̄ on M satisfying the generalized homological equation

LA0Π = z− z̄ (3)

and the condition
z̄ is S1-invariant. (4)

Here, LA0 : χk(M)→ χk(M) is the Lie derivative along the vector field A0 defined
as the unique differential operator on the tensor algebra of the manifold M which
coincides with the standard Lie derivative on the spaces of functions and vector fields
on M . Moreover, the S1-action on M allows us to define the averaging operator
A : χk(M)→ χk(M) and the resolvent operator S : χk(M)→ χk(M) by

A(z) =
1

2π

∫ 2π

0
(FltΥ)∗zdt, (5)
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S(z) :=
1

2π

∫ 2π

0
(t− π)(FltΥ)∗zdt, (6)

where FltΥ is the flow of Υ.
The operators LΥ,A and S are related by

LΥ ◦ S = id−A (7)

Then, we observe that one can find explicit formulas for solutions to the generalized
homological equation operating only with some algebraic properties of the triple
(LΥ,A,S).

Theorem 1 Problem ( 3),( 4) is globally solvable on M and every solution (Π, z̄)
is represented in the form

z̄ = A(z) +
1
ω
A0 ∧ idωC, (8)

Π =
1
ω
S(z) +

1
ω3
A0 ∧ S2(idωz) + C, (9)

where C is an arbitrary S1-invariant k-vector field on M .

In the particular case when k = 0 and χ0(M) = C∞(M) is the space of smooth
functions, formulas (8), (9) lead to the Cushman result [15]. Moreover, as a con-
sequence of Theorem 1 for k = 1 and z = A1, we derive the following fact: if
the frequency function ω is a first integral of the S1-average 〈A1〉 = A(A1) of the
perturbation vector field, that is,

L〈A1〉ω = 0, (10)

then the formulas (8), (9) give a global solution Ā1 = z̄, Z = Π of the problem
(5), (6). Compatibility condition (10) always holds in the Hamiltonian case, when
the perturbed vector field Aε = XH0+εH1+O(ε2) is Hamiltonian on a (pre) symplectic
manifold. This is a consequence of the so-called period-energy relation due to Gordon
[29] (see also [2, 10]) for the unperturbed Hamiltonian vector field A0 = XH0 with
periodic flow, which says that dω ∧ dH0 = 0.

Moreover, we obtain similar formulas to (8), (9) for global solutions to the ho-
mological equation on the space Ωk(M) of differential k -forms. As a consequence
of the general results, we derive the following representation for the S1-average of
an arbitrary closed k-form η ∈ Ωk(M):

〈η〉 = η − d(iΥS(η)), (11)

which plays a key role in the averaging procedure for symplectic forms.
Finally, we observe that Theorem 1 remains true in an abstract setting, when

we start with some linear operators LΥ, S on the spaces of vector valued exterior
forms on a Lie algebra which satisfy appropriate properties. In this case, formula
(7) gives us the algebraic definition of the averaging operator A.
2. Global normal forms and geometric averaging theorem. First of all,
Theorem 1 allows us to show that a perturbed vector field Aε whose unperturbed
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part A0 has the period flow with frequency function ω can be reduced to an S1-
invariant normal form of first order on any relatively compact domain for ε small
enough. The corresponding normalization transformation is defined as the time-ε
flow Φε = FltZ |t=ε of the vector field

Z =
1
ω
S(A1) +

1
ω3
S2(LA1ω)A0 (12)

If compatibility condition (10) is satisfied, then Φε is a normalization transformation
of first order for Aε relative to A0. If M is compact, then the normalization transfor-
mation Φε is defined on the whole space M . In the Hamiltonian case, compatibility
condition (10) holds and hence a global normalization always exists [15].

The S1-invariant normalization of Aε is a first step in the coordinate proof of the
classical averaging theorem (see, [7, 62]) which asserts that the true dynamics of Aε

is approximated by the trajectories of the averaged vector field A0+ε〈A1〉 on the long
time scale. We are interested in a geometric (free coordinate) version of this theorem.
Assuming that the action of the circle with infinitesimal generator Υ = 1

ωA0 is free,
we consider the principal S1-bundle ρ : M → O over the orbit space O = M�S1.
Then, there is an S1-invariant splitting TM = H⊕V, where V = Span{Υ} and H are
the vertical and horizontal distributions, respectively. According to this splitting the
S1-average 〈A1〉 of the perturbation vector field admits the decomposition 〈A1〉 =
hor(w)+cΥ, where hor(w) is a horizontal lift of a vector field w ∈ X(O) determining
the (reduced) averaged system on the orbit space. Then, fixing a metric <,>o on O
and the corresponding distance function disto : O ×O → R, we show that

disto(ρ ◦ FltAε
(m0), Flεtw (ρ(m0))) = O(ε)

for small enough ε and t ∼ 1
ε . One can try to prove this statement applying the

local averaging theorem 1 to coordinate charts on M . But instead, we apply a
global approach which allows us to get the estimations in the intrinsic terms of the
Riemannian manifold (M,<,>) (where<,> is an induced metric onM such that the
projection ρ is a Riemannian submersion). Geometrically, the proof of the classical
averaging theorem for one-frequency systems on M = S1 × Rn, besides of standard
Gronwall estimates and the near identity transformation argument, is essentially
based on the properties of minimal geodesic in the Euclidean space Rn. This is just
a main difficulty for the generalization to arbitrary Riemannian manifolds. Our idea
is to associate to the normalized perturbed vector field (Φε)∗Aε and the averaged
vector field A0 + ε〈A1〉 a smooth s-parameter family of vector fields whose flows
induce a (s, t)-parametric surface for each ε ∈ [0, ε0],

σε :
[
0,
T0

ε

]
× [0, 1] 3 (t, s) 7→ σε(t, s)

with properties
∂

∂t
σε(t, s) ∈ Hσε(t,s),

σε(t, 0) = Flεt〈A1〉hor(m0),

ρ ◦ σε(t, 1) = ρ ◦ Flt(Φε)∗Aε
(m0).
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Then, using the properties of the horizontal lift on the principal S1-bundle ρ : M →
O and the properties of the covariant derivative on the Riemannian manifold (M,<
,>), we get the desired Gronwall type estimates for the arc length of the s-curves on
this surface σε. An important consequence of the averaging theorem is the following
criterion: if JO : O → R is a first integral of the averaged vector field w, then the
function J = JO ◦ρ is an adiabatic invariant of Aε that is, | J ◦FltAε

(m0)−J(m0) |=
O(ε) for small enough ε and t ∼ 1

ε .
3. The periodic averaging on slow-fast phase spaces. In the context of the
normal form theory, we study a wide class of perturbed Hamiltonian systems on
the so-called slow-fast phase spaces which appear in the the theory of adiabatic ap-
proximation [62] and its generalizations [16, 19, 74]. In applications, such perturbed
models come from ε-dependent Hamiltonians which are slow or rapidly varying in
some degrees of freedom. Geometrically, the perturbation theory for slow-fast sys-
tems deals with phase spaces equipped with symplectic forms (or Poisson brackets)
depending on the perturbation parameter ε in a singular way at ε = 0. As a conse-
quence, the main feature of our perturbed model is that, in the limit when ε→ 0, the
unperturbed system does not inherits any natural Hamiltonian structure. There-
fore, we deal with a slightly nonstandard setting in the Hamiltonian perturbation
theory where the unperturbed dynamics is not Hamiltonian. This means that one
can not apply to this situation some results of the regular perturbation theory for
Hamiltonian systems.

By a slow-fast phase space we mean the product M = S1×S2 of two symplectic
manifolds (S1, σ1) and (S2, σ2) equipped with rescaled product symplectic form σ =
σ1 ⊕ εσ2. We think of M as the total space of the trivial fiber bundle π1 : M → S1

over the “slow” base with “fast” fiber S2. On such a phase space we consider a
perturbed Hamiltonian system with Hamiltonian Hε = H0 + εH1, whose leading
term H0 depends on the slow variables m1 ∈ S1 and the fast variables m2 ∈ S2

appear only in the perturbation H1. The corresponding Hamiltonian vector field
VHε is of the form VHε = V + εW, where the unperturbed vector field V is no
longer Hamiltonian but projects to the Hamiltonian vector field vf on (S1, σ1). In
particular, when H0 ≡ 0, we arrive at the adiabatic situation [7], [62].

We are interested in two types of normalization related to S1-actions. First,
we show that in the resonant case, when the flow FltV of the unperturbed system is
periodic, the perturbed vector field V+εW admits a first order normalization relative
to V. Our main observation is that, although the unperturbed and perturbation
vector fields V andW are not Hamiltonian, because of a special relationship between
V and W and by the period-energy relation argument for the Hamiltonian vector
field vf , one can show that condition (10) holds . The term “resonance” is motivated
by the following interpretation of the periodicity condition for the flow FltV. Since
the flow FltV is a fiber preserving mapping on the trivial symplectic bundle S1×S2 →
S1, under the periodicity of the flow of vf , one can introduce the monodromy map g :
S1 → Sym(S2, σ2). Then, the flow FltV is periodic if gk(m1) = id for all m1 ∈ S1and
an integer k ≥ 1. In the particular case, when S2 = R2m and H1 is a quadratic
function in the fast variables, this condition is precisely the resonance condition
between the “tangential” and “normal” frequencies of the linearized Hamiltonian
dynamics over S1. Such perturbed models appear in the study of Hamiltonian
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dynamics near an invariant symplectic submanifold (S1, σ1) [39, 74].
The second normalization setting for VHε = V+εW is motivated by the question

on a geometric nature of normalization transformations in the proof of the classical
adiabatic theorem [7, 38, 62]. In this case, the flow of V is not necessarily periodic
and we only assume that V admits a circle first integral J . This means, the vertical
Hamiltonian vector field VJ is an infinitesimal generator of an S1-action. Therefore
we deal with the situation when the unperturbed vector field V is invariant with
respect to the S1-action but not the symplectic form σ nor the Hamiltonian Hε. To
correct this “deffect”, we are looking for a near identity transformation Tε which
brings the original perturbed model to a system which is ε2 close to a S1-symmetric
Hamiltonian system. We show that such a normalization transformation can be
defined as a symplectomorphism between the symplectic structure σ and its S1-
average 〈σ〉. The existence of such symplectomorphism follows from the following
representation

〈σ〉 = σ − εdθo, θo := S(d1J),

which is a consequence of the general formula (11). Here, the 1-form θo induces an
S1-invariant splitting of TM which is related with the notion of the Hannay-Berry
connection on symplectic fiber bundles [55]. To construct a symplectomorphism Tε,
for ε � 1, we use the Moser homotopy argument [30, 58], for a path of symplectic
forms joining σ and 〈σ〉.

In the case of a Hamiltonian system with two degrees of freedom

Hε = f(p1, q1) + εF (p1, q1, p2, q2) (13)

on the standard slow fast space

(M = R2 × R2, σ = dp1 ∧ dq1 + εdp2 ∧ dq2), (14)

our main result is formulated as follows.

Theorem 2 If the unperturbed vector field V admits a circle first integral J : M →
R1, then for any open domain N ⊂ R4 and small enough ε 6= 0, there exists a
symplectomorphism Tε : N → R4 between σinv and 〈σ〉 such that the pull-back of the
original Hamiltonian model ( 13), ( 14) is ε2-close to the Hamiltonian system with
S1-symmetry

(N , 〈σ〉, 〈Hε〉 = f ◦ π1 + ε〈F 〉) (15)

in the sense that Hε ◦Tε = 〈Hε〉+O(ε2). Moreover, the S1-action with infinitesimal
generator Υ is Hamiltonian relative to 〈σ〉 with momentum map εJ0, where

J0 := iΥ〈p2dq2〉.

Therefore, J0 is a first integral of the system (13), (14) related with J by J−J0 =
g ◦ π1, for a certain function g ∈ C∞(R2). According to the reduction theory
[2, 49, 70], restricting the S1-action and the system to a regular level set of J0, we
get a reduced Hamiltonian system with one degree of freedom.

A generalization of Theorem 2 to an arbitrary slow-fast space (M = S1×S2, σ =
σ(1) +εσ(2)) with S1-symmetry associated to a circle first integral J of a Hamiltonian
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system Hε = f ◦ π1 + εF which is related to so called adiabatic condition [47,
55]. The main observation here is that the S1-average 〈d1J〉 is a pull-back of a
1-form ς on S1 whose cohomolgy class is independent of the choice of J . Thus,
if [ς] = 0, then the S1-action is Hamiltonian relative to 〈σ〉 and the approximate
model (N, 〈σ〉, 〈Hε〉) is a Hamiltonian system with S1-symmetry. The corresponding
moment map J0 is just defined by the adiabatic condition 〈d1J

0〉 = 0. Moreover,
in the adiabatic case f ≡ 0, for the slow-fast Hamiltonian system (M = S1 ×
S2, σ = σ1 ⊕ εσ2, εF ), we get the following normalization result which give us a
free action angle proof of the adibatic theorem. The second term of first order
normal form for the corresponding Hamiltonian vector field is represented as follows
idFhor(Π1) + 1

2V
(2)
〈V0〉, where hor(Π1) is the horizontal lift of the Poisson tensor field

Π1 on S1 with respect to the Hannay-Berry connection and V
(2)
〈V0〉 is the vertical

Hamiltonian vector field on M of an S1-invariant function. This together with the
averaging theorem proves the Montgomery conjecture [55]: a momentum map J0

covariantly constant with respect to the Hannay-Berry connection is an adiabatic
invariant of the slow-fast Hamiltonian system.

The thesis is organized as follows. In Chapter 1, we give an overview of the
Lie transform method for perturbed dynamical system on manifolds including the
Deprit and Hori schemes. Chapter 2 is devoted to generalized homological equations
associated to periodic flows. The main results are presented in Theorem 2.4.1, Theo-
rem 2.4.7 , and Proposition 2.4.13. At the end of the chapter we also discuss the
energy-period relation for periodic Hamiltonian flows in the context of the solvabi-
lity of the homological equation for vector fields. In Chapter 3, first, we formulate
results (Theorem 3.1.1 and Theorem 3.1.3) on the global normalization of perturbed
vector fields on a manifold which are based on the results of the previous chapter.
Then, the rest of this chapter, section 3.2 deals with Gronwall types estimates for
flows on a Riemannian manifold, the generalization of the S1-averaging theorem and
its applications (Theorem 3.2.15 and Proposition 3.2.22). In Chapter 4, we present
several normalization results for perturbed Hamiltonian systems on slow-fast phase
spaces which also exploit the results of Chapter 2 and Chapter 3. Some motivations
for possible perturbative settings are given in Section 4.1. In the resonance case, the
results on the Deprit normalization and the structure of normal forms are presented
in Section 4.2 (Theorem 4.2.1 and Theorem 4.2.2). In Section 4.3, we describe appro-
ximate Hamiltonian models with S1-symmetry for a class of Hamiltonian systems
on R4 with slow or fast varying perturbations (Theorem 4.3.1 ). Subsection 4.3.3
details the averaging technique for (pre)symplectic forms and projectable dynamics.
The main results of the chapter are collected in Subsection 4.3.4 and presented in
Theorem 4.3.18 and Theorem 4.3.20. Finally, in Section 4.4 and Section 4.5, we
illustrate the main results by some examples including the Hamiltonian systems of
Yang-Mills type and the particle dynamics with spin in a magnetic field.
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Chapter 1

Overview of the Lie Transform Method

A basic tool in the theory of normal form for dynamical systems is the Lie transform
method which was originally developed in the works of Deprit [21], and extended
by Kamel [37], (see also [33, 35, 51]). According to this method, formal normal-
ization transformations of a perturbed system are constructed by means of formal
Lie series. The existence of such transformations is provided by the solvability of li-
near nonhomogeneous equations (involving the Lie derivative along the unperturbed
vector field) which are called the homological equations [5]. The “local” traditional
approach (see for example [6, 7, 66, 67]) is based on the construction of solutions
to homological equations and the corresponding normal forms on domains of local
coordinate systems (such as action-angle variables in the Hamiltonian case).

1.1 Setting of the Normalization Problem.

Let M be a smooth manifold and X(M) the space of vector fields on M . Let A(ε, x)
be an ε-dependent vector field on M , that is, a smooth map A : R×M → TM such
that A(ε, x) ∈ TxM . In other words, the ε-dependent vector field A is a smooth
family {Aε }ε∈R of vector fields given by

Aε(x) := A(ε, x).

We consider the Taylor expansion of Aε(x) at ε = 0

Aε(x) = A0(x) + εA1(x) + · · ·+ εk

k!
Ak(x) +O(εk+1), (1.1.1)

where A0, ..., Ak are vector fields on M which are defined by the relations

LAsf =
ds

dεs

∣∣∣∣
ε=0

(LAεf), (s = 1, ..., k), (1.1.2)

for every f ∈ C∞(M). Moreover, O(εk+1) denotes an ε-dependent vector field which
has zero at ε = 0 of order k + 1.

In the context of perturbation theory, for ε � 1, we consider the dynamical
system of Aε

dx

dt
= A0(x) + εA1(x) + · · ·+ εk

k!
Ak(x) +O(εk+1), (1.1.3)

9
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which is called the perturbed system. The limiting system as ε→ 0

dx

dt
= A0(x) (1.1.4)

is called the unperturbed system. In practice, the unperturbed system usually has
some“good” properties in the sense of the integrability theory and symmetries.

Definition 1.1.1 An ε-dependent vector field Aε on M is said to be in normal
form of order k relative to the unperturbed vector field A0 if the perturbation
vector fields A1, ..., Ak commute with the unperturbed vector field A0,

LA0As ≡ [A0, As] = 0 (s = 1, ..., k), (1.1.5)

or, equivalently,
As ∈ ker(LA0) (s = 1, ..., k). (1.1.6)

This normalization approach provides a general setting due to Deprit [22].

Remark 1 A more general definition of normal form of order k of an ε-dependent
vector field Aε is obtained under replacing condition ( 1.1.6) by the following

As ∈ ker(LlA0
) (s = 1, ..., k),

for a certain integer l ≥ 1 [66].

Definition 1.1.2 Let N ⊆M be an (nonempty) open domain and δ > 0 a positive
number. A smooth mapping Φ : (−δ, δ) × N → M is said to be a near identity
transformation if for every ε ∈ (−δ, δ) the map Φε : N →M given by

Φε(x) = Φ(ε, x) (1.1.7)

is a diffeomorphism onto its image such and

Φ0 = id . (1.1.8)

The open subset N is called the domain of definition of the near identity trans-
formation, usually denoted by Φε. We have the following important property: the
pull-back (Φε)

∗Aε of the ε-dependent vector field Aε by a near identity transfor-
mation Φε is again an ε-dependent vector field on N such that

(Φε)
∗Aε

∣∣
ε=0

= A0. (1.1.9)

This means that the near identity transformation Φε preserves the unperturbed part
of Aε.

In the case when N is a coordinate chart of M with coordinate functions xi :
N → R (i = 1, ...,dimM), condition (1.1.8) can be expressed in the form

xi ◦ Φ−1
ε = xi +O(ε).

Here, the functions yi = xi ◦ Φ−1
ε define a parameter dependent coordinate system

on the image Φε(N) for every ε ∈ (−δ, δ).
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Example 1.1.1 Let M be a compact manifold and Zε a smooth ε-dependent (time-
dependent) vector field on M . Then, the flow Φε = FlεZε of Zε is a near identity
transformation on N = M for all ε ∈ R. Conversely, every near identity transfor-
mation Φε : M → M can be represented as the flow of the time-dependent vector
field

Zε(x) =
dFlεZε
dε

(Fl−εZε
(x)) x ∈M.

Example 1.1.2 Let M = Rn be the Euclidean space and Z =
∑n

i=1 Z
i(x) ∂

∂xi
be a

vector field on Rn. Then, for any open subset N ⊂ Rn with compact closure, there
exists δ > 0 such that the mapping

xi 7→ xi + εZi(x)

is a near identity transformation with domain of definition N , for ε ∈ (−δ, δ). The
inverse of this mapping is of the form

xi 7→ xi − εZi(x) +O(ε2).

A more general class of near-identity transformation is described in Proposition
1.1.1

Proposition 1.1.1 Let Ψ : R ×M → M be a smooth mapping, (ε, x) 7→ Ψ(ε, x)
such that Ψ0 = id. Then, for any open domain N ⊂ M with compact closure there
exists δ > 0, such that for each ε ∈ (δ, δ) the restriction

Φε(·)
def= Ψ(ε, ·)|N (1.1.10)

is a diffeomorphism onto its image.

Proof. We fix x ∈ N̄ . Since Ψ(0, ·) = id, DxΨ(0, x) is an isomorphism. So, the Im-
plicit Function Theorem implies that there exit a number δx > 0, an open neighbor-
hood Wx of Ψ(0, x) = x in N , and a unique smooth mapping g : (−δx, δx)×Wx →M
such that for all (ε, y) ∈ (−δx, δx)×Wx

Ψ(ε, g(ε, y)) = y.

In other words, for each ε ∈ (−δx, δx) the mapping Φε is a diffeomorphism onto
Φε(Wx).

Since N̄ is compact, it can be covered by a finite number k of neighborhoods
Wx1 ,Wx2 , . . .Wxk . Each one of these neighborhoods has associated a number δxi .
Let δ be the minimum of δx1 , δx2 , . . . , δxk . Then, for each ε ∈ (−δ, δ), Φε(x) is a
diffeomorphism onto its image.

Suppose that for a given ε-dependent vector field Aε, there exits a near identity
transformation Φε such that the pull-back (Φε)

∗Aε is in normal form of order N ,

(Φε)
∗Aε = A0 + εÃ1 + · · ·+ εN

N !
ÃN +O(εN+1), (1.1.11)
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[A0, Ãs] = 0 (s = 1, ..., N). (1.1.12)

In this case, (Φε)
∗Aε is called a normalization transformation of order N . Consider

the truncated vector field

A0 + εÃ(N)
ε (1.1.13)

where

Ã(N)
ε

def= Ã1 +
1
2
εÃ2 · · ·+

εN−1

N !
ÃN . (1.1.14)

Because of (1.1.12) the flow of the truncated vector field can be represented as the
composition of the “slow” and “fast” components

Flt
A0+Ã

(N)
ε

= Flεt
Ã

(N)
ε
◦FltA0

.

Long time scale. To complete this section we recall the following property of the
flow of a perturbed vector field

Proposition 1.1.2 Let Aε = A0 + εRε be an smooth ε-dependent vector field. As-
sume that the unperturbed vector field A0 is complete on M . Then, for any open
domain N ⊆ M with compact closure and any constant δ > 0 there is a constant
L > 0 such that the flow FltAε

of Aε is well-defined on N for all t ∈ [0, Lε ] and each
ε ∈ (0, δ].

Proof. We will use the following fact which follows from standard properties of flows.
The flows of two vector fields X and Y on M are related by

FltX ◦FltPt = FltY . (1.1.15)

where Pt is a time dependent vector field given by

Pt
def= −X + (FltX)∗Y. (1.1.16)

Let

(FltA0
)∗Aε −A0 = εRt(ε). (1.1.17)

where Rt(ε) = (FltA0
)∗Rε depends on t and ε smoothly. Fix δ > 0. The by the

Flow Box Theorem and compactness of N̄ there exists L such that the flow of Rt,ε

is well-defined on N for t ∈ [0, L]. Applying formula (1.1.15) for X = A0, Y = Aε

and Pt = Rt,ε, we get

FltAε
= FltA0

◦FlεtRt,ε
,

and since FltA0
is well-defined for all t ∈ R, we obtain the desired result.
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1.2 Lie Transforms on Manifolds

The idea of the Lie transform method is searching for a normalization transformation
for a perturbed vector field as the flow of a time-dependent vector field where the
small parameter ε plays the role of time. This method allows us to reduce the
normalization problem to the study of the solvability of linear nonhomogeneous
equations, involving the Lie derivative along the unperturbed vector field A0, which
are called the homological equations due to Arnold [5]. Usually, in the context of
the formal normalization problem, the derivation of homological equations is given
by using the formal Lie series and formal near identity transformations (see, for
example [13, 15, 21, 33, 50, 59]). In this Section, we apply the Lie method to
construct normal forms (in the sense of Definition 1.1.1) for perturbed systems of
general type (which are not necessarily Hamiltonian), which consists of two steps:
(1) Taylor expansions of flows and (2) the derivation of homological equations. Our
considerations are based on the basic relationship in differential geometry between
flows and Lie derivatives and is closed to the approach of Hernard and Roels [34].

We describe three ways for the construction of a near identity transformation
Φε:

(I) Deprit’s version: Φε is defined as a flow of a time-dependent vector field Zε,
where the perturbation parameter ε plays the role of time variable.

(II) Hori’s version: Φε is defined as the time-ε flow of an autonomous vector field
Z(ε) smoothly depending on the parameter ε.

(III) Generalized version: Φε is defined as the time-ε flow of a time-dependent vector
field Zλ(ε) smoothly depending on the parameter λ.

1.2.1 Deprit’s method

Let Zε(x) be an smooth ε-dependent (time-dependent) vector field on M . For every
integer K ≥ 0, we have the Taylor expansion of Zε at ε = 0:

Zε =
K∑
n=0

εk

k!
Zk +O(εK+1). (1.2.1)

Let Φε = FlεZε be the flow of Zε,

dFlεZε
dε

= Zε ◦ FlεZε , (1.2.2)

Fl0Zε = id . (1.2.3)

Assume that there exist an open domain N ⊆M and δ > 0 such that the flow FlεZε
is well-defined on N for all ε ∈ (−δ, δ). In other words, the map Φε

def= FlεZε is
a near identity transformation with domain of definition N . In this case, the time
dependent vector field Zε will be called a generator (or generating vector field) of
Φε.
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Suppose we are given an ε-dependent vector field Aε on M ,

Aε = A0 +
K∑
k=1

εk

k!
Ak +O(εK+1). (1.2.4)

Consider the pull-back of Aε by the flow Φε which is an ε-dependent vector field on
N with Taylor expansion at ε = 0:

Ãε
def= (Φε)∗Aε = A0 +

K∑
n=1

εn

n!
Ãn +O(εK+1). (1.2.5)

The point here is to compute the vector field coefficients Ãn ∈ X(N) of this decom-
position in terms of the vector fields Zn and An in (1.2.1) and (1.2.4).

By formulas (1.1.2), the coefficients Ãn in the Taylor expansion (1.2.5) are given
by

Ãk =
dk

dεk

∣∣∣∣
ε=0

((Φε)∗Aε) , on N. (1.2.6)

We have the following basic formula which describes the relationship between the
Lie derivative and the flows of time-dependent vector fields

d

dε
((Φε)∗Aε) = (Φε)∗

(
LZεAε +

∂

∂ε
Aε

)
, (1.2.7)

where LZε is the Lie derivative along the vector field LZε . Denote by X(R ×M)
the space of all ε-dependent vector fields on M . Introduce the linear differential
operator ∂Zε : X(R×M)→ X(R×M) given by

∂Zε
def= LZε +

∂

∂ε
.

Lemma 1.2.1 For every integer k ≥ 1, the following identity holds

Ãk = (∂kZεAε) |ε=0, (1.2.8)

where ∂kZε = ∂Zε ◦ . . . ◦ ∂Zε (k-times).

Proof. By formula (1.2.6), we just need to prove that

dk

dεk
[(Φε)∗Aε] = (Φε)∗

(
∂kZεAε

)
, (1.2.9)

for every k ≥ 1. We proceed by induction. If k = 1, equation (1.2.8) coincides with
basic formula (1.2.7). Then, we assume that (1.2.9) is true for k = n− 1. By direct
computation, we get

dn

dεn
[(Φε)∗Aε] =

d

dε

(
dn−1

dεn−1
[(Φε)∗Aε]

)
,=

d

dε

(
(Φε)∗

(
∂n−1

Zε
Aε

))
= (Φε)∗ ∂Zε

(
∂n−1

Zε
Aε

)
= (Φε)∗

(
∂nZεAε

)
.
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On the other hand, the vector fields ∂kZεAε(x) also depend smoothly on ε. Let us
suppose that ∂kZεAε(x) has the following Taylor expansion at ε = 0:

∂kεAε =
K∑
m=0

εm

m!
A(k)
m +O(εK+1). (1.2.10)

Now we prove a result which establishes a recursive relation between the coefficient
of the Taylor expansion of vector fields (1.2.10).

Lemma 1.2.2 The vector fields A(k)
m ∈ X(M) in ( 1.2.10) satisfy the recurrent rela-

tions

A(k)
n = A

(k−1)
n+1 +

n∑
m=0

CnLZmA
(k−1)
n−m , ∀ k ≥ 0. (1.2.11)

Here Cn
m =

n!
m!(n−m)!

.

Proof. In order to prove this lemma, we will use the following algebraic fact. For
any two linear operators T and D on a vector space, we have the identity

[Dn, T ] =
n−1∑
i=0

Cn
i adn−iD (T ) · Di, (1.2.12)

where adD(T ) = [D, T ]. Equation (1.2.10) and formula (1.1.2) implies that

A(k)
n =

{(
∂n

∂εn
◦ ∂kZε

)
Aε

}∣∣∣∣
ε=0

. (1.2.13)

By direct computation, we obtain

∂n

∂εn
◦ ∂Zε =

∂n

∂εn
◦
(
LZε +

∂

∂ε

)
=
(
LZε +

∂

∂ε

)
◦ ∂n

∂εn
+
[
∂n

∂εn
, ∂Zε

]
,

= LZε ◦
∂n

∂εn
+

∂n+1

∂εn+1
+
[
∂n

∂εn
,LZε

]
.

Taking into account that
[
∂n

∂εn ,LZε
]

= L ∂n

∂εn
Zε

, and applying formula (1.2.12) to

operators D = ∂n

∂εn and T = LZε , we obtain[
∂n

∂εn
,LZε

]
=

n−1∑
k=0

Cn
kL ∂n−k

∂εn−k
Zε

∂k

∂εk
.

Thus, we have ∂n

∂εn ◦ ∂Zε = ∂n+1

∂εn+1 +
∑n

k=0 Cn
kL ∂n−k

∂εn−k
Zε

∂k

∂εk
. Therefore, we get(

∂n

∂εn
◦ ∂kZε

)
=

(
∂n

∂εn
◦ ∂Zε

)
◦ ∂k−1

Zε
,

=
(
∂n+1

∂εn+1
◦ ∂k−1

Zε

)
+

n∑
k=0

Cn
kL ∂n−k

∂εn−k
Zε
◦
(
∂k

∂εk
◦ ∂k−1

Zε

)
.(1.2.14)
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A0y
A1 −−−−→ A

(1)
0y y

A2 −−−−→ A
(1)
1 −−−−→ A

(2)
0y y y

A3 −−−−→ A
(1)
2 −−−−→ A

(2)
1 −−−−→ A

(3)
0y y y y

...
...

...
...

Figure 1.1: Deprit’s Triangle

Applying (1.2.14) to vector field Aε and evaluating at ε = 0 we obtain (1.2.11).
The recursive formula (1.2.11) can be illustrated in Deprit’s triangle, shown in figure
1.1, ( see also [21, 50]).

Given an ε-dependent vector field Aε, the coefficients of its Taylor expansion
(1.2.4) are located in the first column of the Deprit’s triangle. We suppose that we
have already calculated the terms of the first (k-1) rows and we want to compute the
terms of the k-th row. We start with the computation of A(1)

k−1. This computation
involves only the terms on the first column which are above Ak (Ak itself, see formula
(1.2.11)). Next, we compute A(2)

k−2 using the term of the second column above A(1)
k−1.

We can continue with the computations of the terms of the k-th rows using formula
(1.2.11).

We observe that the coefficients in the Taylor expansion of vector field Ãε (1.2.5)
are in the diagonal of Deprit’s triangle. That is, Ãk = A

(k)
0 . It follows by formula

(1.2.11) that
Ãk = A

(k)
0 = A

(k−1)
1 + LZ0A

(k−1)
0 .

Finally, we can derive formulas for vector fields Ãk in terms of the coefficients of
Taylor expansion of vector fields Aε and Zε.

Proposition 1.2.3 ([21]) The coefficients Ãk are given by the formulas

Ãk = Ak + LZk−1
A0 +RDk−1 (1.2.15)

for k = 1, 2,..., where the vector fields RDk−1 = RDk−1{Z0, ..., Zk−2;A0, ..., Ak−1} are
determined in terms of vector fields Z0, ..., Zk−2 and A0, ..., Ak−1 by mean of recur-
sive formulas ( 1.2.11).

Proof. We just need to prove that

A(k)
n = An+k + LZn+k−1

A0 + SDn,k, (1.2.16)
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where the vector fields SDn,k = SDn,k{Z0, Z1, . . . , Zn+k−2;A0, A1, . . . , An+k−1} are de-
termined in terms of vector fields Z0, ..., Zn+k−2 and A0, ..., An+k−1 by means of
(1.2.11) for every non-negative integers k ≥ 1, n. We proceed by induction over k.
For k = 1, formula (1.2.11) reduces to

A(1)
n = An+1 +

n∑
m=0

CnmLZmAn−m = An+1 + LZnA0 +
n−1∑
m=0

A0C
n
mLZmAn−m.

Hence, we have SDn,1{Z0, Z1, . . . , Zn;A0, A1, . . . , An+1} =
∑n−1

m=0C
n
mLZmAn−m. Now,

we assume that (1.2.16) hold for k = d and all integer n, that is

A(d)
n = An+d + LZn+d−1

A0 + SDn,d. (1.2.17)

Formula (1.2.11) gives A(d+1)
n = A

(d)
n+1 +

∑n
m=0C

n
mLZmA

(d)
n−m. Since the vector fields

A
(d)
n are given by (1.2.17) for all n, we have

A(d+1)
n = An+d+1 + LZn+d

A0 + SDn,d

+
n∑

m=0

CnmLZm
(
An+d−m + LZn+d−m−1

A0 + SDn−m,d
)
.

Taking

SDn,d+1
def= SDn,d +

n∑
m=0

CnmLZm
(
An+d−m + LZn+d−m−1

A0 + SDn−m,d
)
, (1.2.18)

we have that (1.2.16) also hold for k = d + 1 and for all n. Finally, Ãk = A
(k)
0 and

equations (1.2.16) reduce to (1.2.15), where RDk−1 = SD0,k.

As illustration of the recursive formulas (1.2.15), we compute some vector fields
Ãk.

First order:
Ã1 = LZ0A0 +A1, and RD0 = 0.

Second order:

Ã2 = A2 + LZ1A0 +RD1 , and RD1 = L2
Z0
A0 + 2LZ0A1.

Third order:

Ã3 = A3 + LZ2A0 +RD2 ,

RD2 = 3LZ0A2 + 3L2
Z0
A1 + L3

Z0
A0 + (2LZ0LZ1 + LZ1LZ0)A0 + 3LZ1A1.

In summary, if Φε is the flow of the vector field Zε (1.2.1), then the coefficients of
the Taylor expansion at ε = 0 of Ãε = Φ∗εAε = A0 + εÃ1 + 1

2!ε
2Ã2 + 1

3!ε
3Ã3 +O(ε4),

are given by
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Ã1 LZ0A0 +A1

Ã2 L2
Z0
A0 + 2LZ0A1 + LZ1A0 +A2

Ã3
3LZ0A2 + 3L2

Z0
A1 + L3

Z0
A0 + 2LZ0LZ1A0+

LZ1LZ0A0 + 3LZ1A1 + LZ2A0 +A3

We remark that these formulas remain true if we replace the vector field Aε

by any ε-dependent tensor field on M . In particular, for an ε-dependent function
Hε = H0 + εH1 + 1

2ε
2H2 we have

Hε ◦ Φε =H0 + ε (LZ0H0 +H1) +
ε2

2
(
L2
Z0
H0 + 2LZ0H1 + LZ1H0 +H2

)
+O(ε3).

1.2.2 Hori’s method

Let Z(ε) be a ε-dependent vector field on a manifold M with Taylor expansion at
ε = 0

Z(ε) =
K∑
n=0

εk

k!
Zk +O(εK+1). (1.2.19)

We consider Z(ε) as an autonomous vector field on M smoothly depending on the
parameter ε, let FlλZ(ε) be the time-λ flow of Z(ε),

d FlλZ(ε)

dλ
= Z(ε) ◦ FlλZ(ε), (1.2.20)

Fl0Z(ε) = id . (1.2.21)

We define the family of diffeomorphisms

Φε
def= FlλZ(ε)

∣∣∣
λ=ε

. (1.2.22)

It is clear that Φ0 = id. Therefore, the mapping Φε (1.2.22) is a near identity
transformation which is called Hori’s transformation.

Assume that we are given an ε-dependent vector field Aε on M

A(ε) =
K∑
n=0

εk

k!
Ak +O(εK+1), (1.2.23)

and Φε is a Hori’s transformation well-defined on an open subset N ⊂ M and
generated by the family of autonomous vector fields Z(ε) given by (1.2.19). We
define the ε-dependent vector field Ãε by

Ãε := Φ∗εAε = A0 +
K∑
n=1

Ãn +O(εK+1). (1.2.24)
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Our goal is to get an expression for the vector fields Ãn of the decomposition above
in terms of the coefficients Zn and An. For every fixed ε, formulas (1.1.2) and (1.2.7)

imply the following decomposition of vector field
(

FlλZ(ε)

)∗
Aε at λ = 0

(FlλZ(ε))
∗A(ε) =

K∑
m=0

λm

m!
LmZ(ε)A(ε). (1.2.25)

Putting λ = ε into (1.2.25) and using the Taylor expansion (1.2.23) of Aε, we get

Φ∗εAε =
K∑
n=0

εn

n!

n∑
m=0

Cn
mLmZ(ε)An−m +O(εK+1).

In term of the coefficients of Taylor decomposition of Z(ε), the Lie derivative ope-
rator LmZ(ε) takes the form

LmZ(ε) = (LZ0 + εLZ1 +
ε2

2!
LZ2 +

ε3

3!
LZ3 + ...)m.

The Lie operators LmZ(ε) depend smoothly on ε. So, we have the following decompo-
sition

LmZ(ε) =
∑
j=0

εj

j!
L̂(m)
j , (1.2.26)

where the differential operators L̂(m)
j are defined by the recurrent relations

L̂(m)
j =

j∑
i=0

Ck
iLZi ◦ L̂

(m−1)
j−i (1.2.27)

with

L̂(0)
0 = id, L̂(m)

0 ≡ 0,

L̂(1)
j = LZj , and L̂(m)

0 = LmZ0
.

Proposition 1.2.4 Vector fields Ãn in ( 1.2.24) are given by the recursive formulas

Ãn =
n∑

m=0

n−m∑
i=0

Cn
mCn−m

i L̂(m)
i An−m−i. (1.2.28)

Proof. By (1.1.2), we have Ãn = dn

dεn

∣∣
ε=0

(Φ∗εAε) . By direct computation, we obtain

dn

dεn
(Φ∗εAε) =

K∑
m=0

dn

dεn

(
εm

m!
LmZ(ε)Aε

)
=

K∑
m=0

n∑
i=0

Cn
i

εm+i−n

(m+ i− n)!
di

dεi
(
LmZ(ε)Aε

)
.

Thus

Ãk =
n∑

m=0

Cn
n−m

dn−m

dεn−m

∣∣∣∣
ε=0

(
LmZ(ε)Aε

)
.
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By (1.2.23) and (1.2.26), we have

LmZ(ε)Aε =
K∑
k=0

εk

k!

k∑
i=0

Ck
i L̂

(m)
i Ak−i.

Hence,
dn−m

dεn−m

∣∣∣∣
ε=0

(
LmZ(ε)Aε

)
=

n−m∑
i=0

Cn−m
i L̂(m)

i A(n−m)−i.

Therefore, we have

Ãn =
n∑

m=0

n−m∑
i=0

Cn
mCn−m

i L̂(m)
i An−m−i.

Analogously to Deprit’s method, formulas (1.2.28) of vector fields Ãk (1.2.24) can
be written as

Ãk = Ak + kLZk−1
A0 +RHk−1,

where the vector fields RHk−1 = RHk−1{Z0, ..., Zk−2;A0, ..., Ak−1} are determined in
terms of vector fields Z0, ..., Zk−2 and A0, ..., Ak−1 by mean of recurrent formulas
(1.2.27) and (1.2.28). Therefore, if Φε is the near transformation (1.2.22), then the
coefficients of the Taylor expansion at ε = 0 of Ãε = Φ∗εAε = A0 + εÃ1 + 1

2!ε
2Ã2 +

1
3!ε

3Ã3 +O(ε4), are given by

Ã1 LZ0A0 +A1

Ã2 L2
Z0
A0 + 2LZ0A1 + 2LZ1A0 +A2

Ã3
3LZ0A2 + 3L2

Z0
A1 + L3

Z0
A0 + 3LZ0LZ1A0+

3LZ1LZ0A0 + 6LZ1A1 + 3LZ2A0 +A3

1.2.3 Generalized scheme

Now, we suppose that a vector field Zλ(ε) is given, and it is smoothly depending on
the parameters λ and ε. Computing the Taylor expansion at λ = 0 and ε = 0

Zλ(ε) =
K∑
k=0

K∑
m=0

λkεm

k!m!
Zk,m +O(λK+1) +O(εK+1), (1.2.29)

where Zk,m = ∂k+mZλ(ε)
∂λk∂εm

∣∣∣
λ=0,ε=0

. Let FlλZλ(ε) be the flow of Zλ(ε),

dFlλZλ(ε)

dλ
= Zλ(ε) ◦ FlλZ(ε),

Fl0Zλ(ε) = id .
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Define the map

Φε
def= FlλZλ(ε)

∣∣∣
λ=ε

(1.2.30)

with Φ0 = id. Assuming that Φε is well-defined on an open subset in M for all
sufficiently small ε, we arrive at the following generalized version formulas of Deprit’s
method and Hori’s method.

Proposition 1.2.5 For any open domain N ⊂M with compact closure there exists
δ > 0 such that for all ε ∈ (−δ, δ) , the mapping Φε in ( 1.2.30) is well-defined on
N and gives a diffeomorphism from N onto its image. Moreover, the coefficients
of Taylor expansion of third order at ε = 0 of the pull-back Φ∗εAε = A0 + εÃ1 +
1
2!ε

2Ã2 + 1
3!ε

3Ã3 +O(ε4) are given by

Ã1 LZ0,0A0 +A1

Ã2 L2
Z0,0

A0 + 2LZ0,0A1 + 2LZ0,1A0 + LZ1,0A0 +A2

Ã3

3LZ0,0A2 + 3L2
Z0,0

A1 + 3LZ1,0A1 + L3
Z0,0

A0+

3LZ0,0LZ0,1A0 + 3LZ0,1LZ0,0A0 + 6LZ0,1A1 + 3LZ0,2A0+

LZ2,0A0 + 2LZ0,0LZ1,0A0 + LZ1,0LZ0,0A0 + 3LZ1,1A0 +A3

Proof. By the flow box theorem for and compactness argument, there exists a δ > 0
such that the flow FlλZλ(ε) is well defined on N̄ for all λ ∈ (−δ, δ) and ε ∈ [−1, 1].

Now, we fix ε and consider the following decomposition Zλ(ε) =
∑K

k=0
λk

k! Zk(ε) +
O(λK+1). Using formulas of Deprit, we obtain

(
FlλZλ(ε)

)∗
A(ε) = A(ε) + λLZ0(ε)A(ε) +

λ2

2!
(LZ1(ε) + L2

Z0(ε))A(ε)

+
λ3

6!
(LZ2(ε)) + L3

Z0(ε) + 2LZ0(ε)LZ1(ε) + LZ1(ε)LZ0(ε)) +O(λ4).

Putting λ = ε and using formulas (1.2.23), (1.2.29), we derive the desired formulas.

Proposition (1.2.5) gives a general approach of Deprit’s method and Hori’s
method, respectively. Indeed,

• in the Deprit case, vector field Zλ(ε) = Zλ is independent of ε. Thus, Zk,m =
0 if m ≥ 1 and formulas of Proposition (1.2.5) coincides with formulas of
Deprit’s method;

• in the Hori case, Zλ(ε) = Z(ε) is independent of λ. It follows that Zk,m =
0 if k ≥ 1 and formulas of Proposition (1.2.5) reduce to formulas of Hori’s
method.
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1.2.4 Homological equations

Now, we return to the normalization problem for a given vector field Aε. If we
suppose that Aε admits a normalization of order K and that normalization trans-
formation Φε : N →M given as the flow of a vector field Zε =

∑K−1
i=0

εi

i!Zi +O(εK),
we obtain that vector fields Ak and Zk satisfy certain equations called homological
equations.

Proposition 1.2.6 Assume that an ε-dependent vector field Aε admits a near iden-
tity transformation Φε : N →M (ε ∈ (−δ, δ)) associated to an infinitesimal genera-
tor Zε which brings Aε to normal form ( 1.1.11). ( 1.1.12) of order K for a certain
vector fields Ã1, ..., ÃK . Then, the coefficients Z0, ..., ZK−1 of the Taylor expansion
of Zε must satisfy the following equations on N :

LA0Zk−1 = Ak − Ãk +RDk−1{Z0, ..., Zk−2;A0, ..., Ak−1}, (1.2.31)

LA0Ãk = 0, (1.2.32)

for k = 1, ...,K. Here, the vector fields RDk−1 are described in Proposition 1.2.3.

Proof. We assume that Φε is well defined on N and is the normalization transfor-
mation of Aε with generating vector field

Zε = Z0 + εZ1 + . . .+
εK − 1

(K − 1)!
ZK−1 +O(εK).

So, vector field

Φ∗εAε = A0 + εÃ1 + . . .+
εK

K!
AK +O(εK),

is in normal form of order K relative to vector field A0. That is,

LA0Ãs = 0, s = 1, 2, . . . , N.

Furthermore, Proposition 1.2.3 asserts that coefficients Zk of Taylor expansion of Zε
satisfy the following equations on N

Ãk = Ak + LZk−1
A0 +RDk−1, (1.2.33)

for k = 1, 2, . . . ,K, where vector fields RDk−1 = RDk−1{Z0, ..., Zk−2;A0, ..., Ak−1} are
determined in terms of vector fields Z0, ..., Zk−2 and A0, ..., Ak−1 by mean of recur-
rent formulas (1.2.11). Taking into account that LZK−1

A0 = −LA0ZK−1, formulas
(1.2.33) are equivalent to (1.2.31).
The converse statement of Proposition above is true.

Proposition 1.2.7 Assume that there exist an open domain N ⊆ M and δ > 0
such that the following conditions hold

(a) there are vector fields Z0, ..., ZK−1 and Ā1, ..., ĀK satisfying on N equations
( 1.2.31),( 1.2.32) on N for k = 1, ...,K.
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(b) the flow Flε
Z

(K)
ε

of the ε-dependent vector field

Z(K)
ε =

K∑
n=0

εk

k!
Zk (1.2.34)

is well defined on N for all ε ∈ (−δ, δ).

Then, the near identity transformation

Φε = Flε
Z

(K)
ε

(1.2.35)

brings the ε-dependent vector field Aε to normal form of order O(εK) on N relative
to A0. In particular, if M is compact, then condition (b) holds on N = M.

Proof. Let Ãε := Φ∗εAε = A0 +εÃ1 + . . .+ εK

K! ÃK . By Proposition 1.2.3, vector fields
Ãk are given by

Ãk = Ak + LZk−1
A0 +RDk−1.

Hence, we have that Ãk = Āk for all k = 1, 2, . . . ,K. Since, vector fields Āk satisfy
equations (1.2.32), the ε-dependent vector field Ãε is in normal form and Φε is a
normalization transformation.
If M is compact then the unperturbed vector field A0 is complete. Proposition 1.1.2
implies that the near identity transformations Φε is well defined in any open domain
N ⊂ M with compact closure. Since M is compact, we have M̄ = M . So, Φε in
well defined in N = M.

Proposition 1.2.7 states that the normalization problem for a given ε-dependent
vector Aε depends on the solvability of equations (1.2.31), (1.2.32). It means that if
we want to find an infinitesimal generator (1.2.34) of normalization transformation
(1.2.35) then we have to solve , on several steps, the equations for vector fields Z
and W̄ on N of the form

LA0Z = W − W̄ , (1.2.36)

LA0W̄ = 0, (1.2.37)

where W is a given vector field.
Indeed, on the first step we have to find vector fields Z0 and Ã1 satisfying the

equations
LA0Z0 = A1 − Ã1, (1.2.38)

LA0Ã1 = 0.

On the second step, we need to find the vector fields Z1 and Ã1 satisfying the
equations

LA0Z1 = A2 − Ã2 + L2
Z0
A0 + 2LZ0A1,

LA0Ã2 = 0,

where the vector fields Z0 and Ã1 are given from the previous step. If after (k − 1)
steps, we have the vector fields Z0, ..., Zk−2 and Ã1, ..., Ãk−1, then on the k-th step
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we have to find the solutions Z = Zk−1 and W̄ = Ãk of equations (1.2.36),(1.2.37),
where

W = Ak +Rk−1{Z0, ..., Zk−2;A0, ..., Ak−1}.

In the context of averaging method, equation (1.2.36) is called a homological equa-
tion, [5]. The solvability conditions of equations (1.2.36),(1.2.37) clearly depends on
the properties of the unperturbed vector field A0.

By Proposition 1.2.7 and Proposition 1.1.2, we have the following facts.

Corollary 1.2.8 Suppose that homological equations ( 1.2.31),( 1.2.32) are solvable
on an open domain N0 ⊆ M for k = 1, ..., N and let Z0, ..., ZN−1 and Ã1, ..., ÃN
be solutions. Then, for every open domain N ⊆ N0 with compact closure, formula
( 1.2.35) defines a near identity transformation which is well defined on N and takes
the ε-dependent vector field Aε into normal form of order O(εN ) on N .

Corollary 1.2.9 (Normalization of first order ) Let Aε(x) be an ε-dependent
vector field with Taylor expansion at ε = 0 is Aε = A0 + εA1 +O(ε2). If there exists
a vector field Z0 such that

(a) the flow FltZ0
of Z0 is well defined on an open domain N ⊂M ,

(b) satisfies on N the equation

LA0 (LA0Z0 −A1) = 0. (1.2.39)

Then, the near identity transformation Φε = FltZ0
sends the vector field Aε to normal

form of first order on N relative to A0, that is, Φ∗εAε = A0 + Ã1 + O(ε2), where
Ã1 = A1 − LA0Z0.

1.2.5 The Hamiltonian case

Here, we shall express the homological equation and recursive formulas (1.2.15) in
terms of the Poisson bracket.

Recall that a Poisson bracket on a smooth manifold M is a R-bilinear antisym-
metric operation {, } : C∞(M)×C∞(M)→ C∞(M) compatible with the pointwise
product of smooth functions by the Leibnitz rule and satisfying the Jacobi identity,

{F,GH} = {F,G}H + {F,H}G, (1.2.40)

S
(F,G,H)

{F, {G,H}}} = 0,

where S denotes the cyclic sum.
The pair (M, {, }) is called a Poisson manifold and (C∞(M), {, }) is a Lie al-

gebra. For every H ∈ C∞(M), we define the adjoint operator adH : C∞(M) →
C∞(M) given by adH(·) = {H, ·}. A smooth vector field X on a Poisson manifold
(M, {, }) is said to be Hamiltonian relative to the Poisson bracket {, } if there exists
a function H ∈ C∞(M) such that the Lie derivative along X coincides with the
adjoint operator of H,

LX = adH . (1.2.41)
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By the Leibnitz identity (1.2.40), every function H ∈ C∞(M) admits a unique
Hamiltonian vector field in (1.2.41) which is denoted by X = XH . In local coor-
dinates, Hamiltonian dynamical system generated by XH is written in the bracket
form by

ẋi = {H,xi}, i = 1, 2, . . . , 2n.

The set Ham(M) of all Hamiltonian vector fields is a Lie subalgebra in X(M) and
the correspondence H 7→ XH is a Lie algebra homomorphism,

[XH1 , XH2 ] = X{H1,H2}. (1.2.42)

whose kernel is just Casim(M). A vector field P on the Poisson manifold M is said
to be an infinitesimal Poisson automorphism (or, a Poisson vector field) if its Lie
derivative is a derivation of the Poisson algebra (C∞(M), {, }),

LP {F1, F2} = {LPF1, F2}+ {F1,LPF2},

for any F1, F2 ∈ C∞(M). It is clear that every Hamiltonian vector field is Poisson.
The space of all Poisson vector fields form a Lie algebra, denoted by Poiss(M). It
follows from (1.2.42) that

[P,XH ] = XLPH (1.2.43)

for any P ∈ Poiss (M) and H ∈ C∞(M). This property says that Ham(M) is an
ideal of Poiss(M).

The Poisson bracket is called nondegenerate if every Casimir function K ∈
Casim(M) is a constant function. In this case there exists a unique nondegenerate
closed 2-form σ on M , which is compatible with Poisson bracket by the condition

σ(XF1 , XF2) = {F1, F2}.

The pair (M,σ), where σ is a nondegenerate closed 2- form, is called a symplectic
manifold. In terms of the symplectic structure σ, condition (1.2.41) tells that a
vector field X is Hamiltonian if there exists H ∈ C∞(M) such that

iXσ = −dH.

Suppose that the ε-dependent vector field Aε is Hamiltonian relative to Hε = H0 +
εH1 + ..., that is,

Aε = XHε = XH0 + εXH1 + ...,

If Z0 = XG0 , Z1 = XG1 , ..., Zk−2 = XGk−2
are Hamiltonian vector fields of func-

tions G0, G1, ..., Gk−1 ∈ C∞(M), Proposition 1.2.6 implies that the vector field

RDk−1{XG0 , ..., XGk−2
;XH0 , ..., XHk−1

} = XRk−1
,

described in Proposition 1.2.3 are also Hamiltonian relative to the functions Rk−1 =
RDk−1{G0, ..., Gk−2;H0, ...,Hk−1}. In particular,

R0 = 0, R1 = 2{G0, H1{G0, H0}},
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and

R2 = {G0, 3H2 + {G0, 3H1 + {G0, H0}}}+ {G1, 2H0}+ {G1, 3H1 + {G0, H0}}.

An advantage of the Hamiltonian case is that the problem (1.2.36),(1.2.37) can
be reduced to the study of homological equations for functions. Assume that vector
fields A0 = XH0 , W = XF are Hamiltonian on a Poisson manifold (M, {, }). If there
exist smooth functions G and F̄ satisfying the equations

{H0, G} = F − F̄ , (1.2.44)
{H0, F̄} = 0, (1.2.45)

then the Hamiltonian vector fields Z = XG and W̄ = XF̄ are solution to the problem
(1.2.36),(1.2.37).

Consider the following generalization of the Hamiltonian case. Suppose we have
a perturbed vector field of the form

Aε = P + εXH1 +
ε2

2
XH2 ...,

where P is a Poisson vector field on M , which plays the role of the unperturbed
vector field. But the perturbation vector field remains Hamiltonian corresponding to
an ε-dependent function εH1 + ε2

2 H2 + .. . Then, A0 = P, W = XH1 . Putting again
Z = XG, W̄ = XF̄ into (1.2.36),(1.2.37) and using (1.2.43), we get the following
equations for functions G, F̄ :

LPG = H1 − F̄ ,

LP F̄ = 0.

1.3 Normalization Transformations Around Invariant Sub-
manifolds

According to Proposition 1.2.7, the normalization of an ε-dependent vector field can
be proceeded in two steps: (a) solving homological type problems (1.2.36), (1.2.37)
and (b) studying the domain of definition of the flow of time-dependent vector field
(1.2.34).

Here, we consider a class of perturbed systems on a manifold M (not necessarily
compact) for which condition (b) of Corollary 1.2.7 holds.

Suppose we are given an ε-dependent vector field Aε onM which has an invariant
submanifold S ⊂M (dimS < dimM) and the restriction of Aε to S does not depend
on ε,

Aε(x) ∈ TxS ∀x ∈ S, ε ∈ R, (1.3.1)

v
def
= Aε|S is independent of ε. (1.3.2)

In terms of the coefficients Ak of Taylor expansion (1.2.4) these conditions can be
reformulated as follows: the submanifold S is invariant with respect to the flow of
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the unperturbed vector field A0 and the perturbation vector fields A1, A2, ... vanish
at S, that is,

A0(x) ∈ TxS ∀x ∈ S, (1.3.3)

Ak|S = 0 (k = 1, 2, ...). (1.3.4)

Definition 1.3.1 We say that a near identity transformation Φε : N → M (ε ∈
(−δ, δ)) is compatible with submanifold S ⊂ M (or, shortly S-compatible ) if Φε is
a diffeomorphism from N onto another open neighborhood of S in M

S ⊂ Φε(N) (1.3.5)

and
Φε |S= id (1.3.6)

for all ε ∈ (−δ, δ).

An important class of S-compatible near identity transformations can be obtained
in the following way.

Lemma 1.3.1 Let Zε be an ε-dependent vector field on M vanishing at the sub-
manifold S ⊂ M , Zε|S = 0, ∀ε ∈ R. Then, for every δ > 0 there exists an open
neighborhood N = Nδ of S in M such that the flow FlεZε of Zε is well defined on
N for all ε ∈ (−δ, δ). Moreover, FlεZε : N → M is a near identity transformation
compatible with S.

Proof. We fix δ > 0. By the flow box theorem, for every ξ ∈ S there exists an
open neighborhood Uξ of ξ on M such that the flow FlεZε is well defined on Uξ for all
ε ∈ (−δ, δ). Let Nδ =

⋃
ξ∈S Uξ be an open neighborhood of S. Thus, FlεZε : Nδ →M

is well defined for all ε ∈ (−δ, δ) and a diffeomorphism onto its image . Since FlεZε
vanishes at S, we have that FlεZε(ξ) = ξ for all ε. It follows that FlεZε

∣∣
S

= id and
S ⊂ FlεZε(Nδ), for ε ∈ (−δ, δ). Therefore, FlεZε is a S-compatible near identity trans-
formation.

Definition 1.3.2 We say that the perturbed vector field Aε satisfying ( 1.3.1), ( 1.3.2)
admits a normalization of order K around the invariant submanifold S if there exists
a S-compatible near identity transformation Φε such that the pull-back (Φε)

∗Aε is
in normal form ( 1.1.11), ( 1.1.12).

We denote by C∞S (M) and XS(M) the Lie subalgebra of smooth functions vector
fields on M vanishing at S. It is clear that the Lie derivative LA0 along A0 leaves
invariant these subalgebras. Moreover, XS(M) is a C∞S (M)-module.

If Z0, ..., Zk−2 are vector fields vanishing at S. Then, the vector field

RDk−1{Z0, ..., Zk−2;A0, ..., Ak−1},

where the vector fields RDk−1 are described in Proposition 1.2.3, also vanishing at S.
Therefore, if there exists S-compatible normalization then the vector field (Φε)

∗Aε

automatically vanish at S, that is,

Ã1|S = ... = ÃK |S = 0.
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Proposition 1.3.2 Let Aε = A0+. . .+ εK

K! be an ε−dependent vector field vanishing
at S. Assume that there exist vector fields Z0, ..., ZN−1 ∈ XS(M) and Ã1, ..., ÃK ∈
XS(M) satisfying the recurrent equations

LA0Zk−1 = Ak − Ãk +Rk−1{Z0, ..., Zk−2;A0, ..., Ak−1} (1.3.7)

LA0Ãk = 0 (1.3.8)

for k = 1, ..., N . Then, Aε admits normalization of order K, where the S-compatible
near identity transformation Φε is defined as the flow of the time-dependent vector
field Zε = Z0 + εZ1 · · ·+ εK−1

K! ZK−1 ∈ XS(M),

Φε = Flε
Z

(K)
ε

. (1.3.9)



Chapter 2

Homological Equations for Tensor Fields

associated to Periodic Flows

The so-called homological equations usually appear in the context of normal forms
and the method of averaging for perturbed dynamical systems (see, for example,
[67]). According to the Lie transform method [21, 33], the infinitesimal generators
of normalization transformations for perturbed dynamics systems are defined as the
solutions to homological equations for vector fields. In the Hamiltonian case, the
normalization problem for vector fields with periodic flow is reduced to the solvability
of homological equations for functions, [15].

Our goal is to study homological equations of tensor type associated to periodic
flows on a manifold. We generalize the Cushman intrinsic formula [15] to the case
of multivector fields and differential forms. Applications of this formula to normal
forms and the averaging method for perturbed Hamiltonian systems on slow-fast
phase spaces can be found in Chapter 4.

2.1 Lie Group Actions. Basic Notions

Here, we recall some necessary definitions and facts about the actions of Lie groups
on manifolds (for more details, see, for example, [2, 49, 52]).

Let G be a Lie group and g its Lie algebra. A left action of G on a manifold M is
a smooth mapping Ψ : G×M →M such that Ψ(g,Ψ(h,m)) = Ψ(gh,m) for all g, h ∈
G and m ∈ M . This implies that the mapping g 7→ Ψg (where Ψg(m) = Ψ(g,m)
is a homomorphism between the groups G and Diff(M). In this case, the triple
(M,G,Ψ) is called a G-space. An infinitesimal generator Υa ∈ X(M) of the G-action
associated to a ∈ g is a complete vector field given by Υa(m) = d

dt

∣∣
t=0

Ψexp(ta)(m).
The map a 7→ Υa is linear but not necessarily a Lie algebra homomorphism. A
tensor field Ξ on M is said to be G-invariant if Ψ∗gΞ = Ξ ∀g ∈ G. In infinitesimal
terms, this condition reads LΥa Ξ = 0 ∀a ∈ g. Let D ⊂ TM be a distribution and
XD(M) the subspace of vector field which is tangent to D. Then, D is G-inviariant
if (dmΨg)Dm = DΨg(m) or equivalently [Υa,XD(M)] ⊂ XD(M).

Consider the orbit G ·m = {Ψg(m)|g ∈ G} through m ∈M . Then, the quotient
M/G is called the orbit space. The isotropy of m ∈ M is the closed subgroup
Gx = {g ∈ G|Ψg(m) = m} of G. The action Ψ is said to be (i) transitive if there is
only one orbit; (ii) effective (or faithful) if Φg = idM implies g = e; and (iii) free if
there are no fixed points, that is, Φg(m) = m implies g = e, or equivalently, if for
each m ∈M , the mapping g 7→ Φg(x) is one to one. For example, if G = S1 = R/2πZ

29
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is the circle , then the S1-action is free if and only if the flow of the infinitesimal
generator Υ is minimally 2π-periodic.

Now suppose that G is connected compact Lie group. Then, for every tensor
field Ξ on M one can define its G-average as [47]

〈Ξ〉 :=
∫
G

Ψ∗gΞdg

which is again well-defined tensor field on M of the same type as Ξ. Here, dg denotes
the normalized Haar measure on G,

∫
G dg = 1. A tensor field Ξ is G-invariant if and

only if 〈Ξ〉 = Ξ. If the action Ψ is free, then the orbit space M/G inherits a C∞

manifold structure such that the canonical projection ρ : M → M/G is a smooth
surjective submersion. In this case, the G-invariance of a tensor field Ξ means that
Ξ is a pull back by ρ of a certain tensor field on the orbit space M/G.

Let (M,σ) be a symplectic manifold. A G-action Ψ is called a symplectic or
canonical on (M,σ) if it acts by symplectomorphism, LΥa σ = 0 ∀a ∈ g. A sym-
plectic action Ψ admits a momentum map if there exists a smooth vector valued
function J : M → g∗ such that iΥaσ = −dJa,∀a ∈ g, where Ja(m) =< J(m), a >.
We say that a Hamiltonian system (M,σ,H) is G-symmetric if the Lie group G acts
canonically on (M,σ) and the Hamiltonian H is G-invariant. A symplectic action
Ψ with momentum map J is said to be Hamiltonian if the mapping a 7→ Ja is a
Lie algebra homomorphism from g to the Poisson algebra C∞(M) associated to the
symplectic form σ. Let (M,σ,H) be a Hamiltonian system which is G-symmetric
relative to a Hamiltonian action of G with momentum map J. Then, we say that
we have a Hamiltonian system with G-symmetry. In this case, we can apply to the
Hamiltonian system the reduction procedure due to [2] for example in the situation
when G is compact and the action is free.

2.2 Generalized Homological Equations

Let M be a smooth manifold and X a vector field on M . Recall that we denote by
T ks (M) to the space of tensor fields of type (k,m) on M . In particular, T 0

0 (M) =
C∞(M) and T 1

0 (M) = X(M). Moreover, we denote by LX : T ks (M) → T ks (M) the
Lie derivative along X, that is, the unique differential operator on the tensor algebra
of the manifold M which coincides with the standard Lie derivative LX on C∞(M)
and X(M) (see, for example [2]). We assume that X is a complete vector field on
a manifold M with periodic flow. This means that there exists a smooth positive
function T : M → R, called period function, such that

Flt+T (x)
X (x) = FltX(x),

for all t ∈ R and x ∈M.

We are interested in the following problem: given a tensor field Ξ ∈ T ks (M),
determine under which conditions there exist tensor fields η, Ξ̄ ∈ T ks satisfying the
homological equation

LXη = Ξ− Ξ̄, (2.2.1)
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and the condition
LX Ξ̄ = 0. (2.2.2)

This problem is arisen in the context of normalization problem for vector fields
(tensor field of type (0, 1)) treated in Chapter 1. We have generalized equations
(2.2.1), (2.2.2) to tensor fields of arbitrary type because the Lie derivative of X is
a differential operator which can be extended to the full tensor algebra T (M) and
left invariant each tensor space T ks (M). In order to study this type of problems, we
review the algebraic properties of the S1-averaging.

2.3 Algebraic Properties of the S1-Averaging

Given Ξ ∈ T ks (M), we get a curve through Ξ(m) in the fiber on m by using the flow
of X. The derivative of this curve is the Lie derivative,

d

dt

(
(FltX)∗Ξ

)
= (FltX)∗(LY Ξ). (2.3.1)

Now, suppose that we are given an action of the circle S1 = R/2πZ on M with
infinitesimal generator Υ. Therefore, Υ is a complete vector field on M whose flow
FltΥ is 2π-periodic. We admit that the S1-action is not necessarily free.

Definition 2.3.1 For every tensor field Ξ ∈ T ks (M), its average with respect to the
S1-action is a tensor field 〈Ξ〉 ∈ T ks (M) of the same type which is defined as

〈Ξ〉 :=
1

2π

∫ 2π

0
(FltΥ)∗Ξdt. (2.3.2)

A tensor field Ξ ∈ T ks (M) is said to be invariant with respect to the S1-action (or
S1-invariant) if (FltΥ)∗Ξ = Ξ (∀t ∈ R) or, equivalently, LΥΞ = 0.

Proposition 2.3.1 For every Ξ ∈ T ks (M), the following properties holds:

(i) Ξ is invariant under the flow of Υ if and only if 〈Ξ〉 = Ξ,

(ii) LΥ〈Ξ〉 = 0.

(iii) 〈〈Ξ〉〉 = 〈Ξ〉,

Proof. We assume that
(
FltΥ
)∗ Ξ = Ξ, then it is clear from the definition of averaging

that 〈Ξ〉 = Ξ. Conversely, if 〈Ξ〉 = Ξ, it follows from basic properties of flows and
vector fields (see [1]) that LΥΞ(x) = Ξ(Fl2πΥ (x)) − Ξ(x), for all x on M . Since the
flow of Υ is 2π-periodic, we have that LΥΞ = 0. Hence, item (i) holds. By the basic
relation of pull-back and flows (2.3.1), it is possible deduce that LΥ〈Ξ〉 = 0. Item
(ii) implies that 〈Ξ〉 is invariant under the flow of Υ. By item (i), we get 〈〈Ξ〉〉 = 〈Ξ〉.

From Proposition 2.3.1, S1-invariance condition reads Ξ = 〈Ξ〉.

Corollary 2.3.2 The kernel of the linear operator LΥ : T ks (M)→ T ks (M) is given
by

kerLΥ = {Ξ ∈ T ks (M)|〈Ξ〉 = Ξ}.
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We shall denote by A : T ks (M) → T ks (M) the averaging operator, A(Ξ) = 〈Ξ〉
which is an R-linear operator. By Proposition 2.3.1, the operator A has the following
properties:

• A2 = A (projection map),

• the image of A consists of all S1-invariant tensor fields,

• a tensor field belongs to KerA if its S1-average is zero.

Therefore, we have the S1-invariant splitting

T ks (M) = ImA⊕KerA. (2.3.3)

We introduce also the R-linear operator S : T ks (M)→ T ks (M) given by

S(Ξ) :=
1

2π

∫ 2π

0
(t− π)(FltΥ)∗Ξdt. (2.3.4)

It is easy to see that if η ∈ T pq (M) is S1-invariant, (FltΥ)∗η = η, then

A(η ⊗ Ξ) = η ⊗A(Ξ) (2.3.5)
S(η ⊗ Ξ) = η ⊗ S(Ξ), ∀Ξ ∈ T ks . (2.3.6)

It follows directly from definitions that the operators LΥ,A and S pairwise commute
and satisfy the relations

A ◦ LΥ = LΥ ◦ A = 0, (2.3.7)

A ◦ S = S ◦ A = 0. (2.3.8)

Moreover, we have the following important property.

Proposition 2.3.3 The following identity holds

LΥ ◦ S = id−A, (2.3.9)

Proof. For every tensor field Ξ ∈ T ks (M), by definition (2.3.4), we have

(FlτΥ)∗S(Ξ) =
1

2π

∫ 2π

0
(t− π)(Flt+τΥ )∗Ξdt

=
1

2π

∫ 2π+τ

τ
(t− τ − π)(FltΥ)∗Ξdt

Differentiating the both sides of this equality in τ and using the 2π-periodicity of
the flow FlτΥ, we get

d

dτ
(FlτΥ)∗S(Ξ) =

1
2π

[(t− τ − π)(FltΥ)∗Ξ]
∣∣∣∣2π+τ

τ

− 1
2π

∫ 2π+τ

τ
(FltΥ)∗Ξdt

= (FlτΥ)∗(Ξ− 〈Ξ〉)

Comparing this equality with the identity

d

dτ
(FlτΥ)∗S(Ξ) = (FlτΥ)∗(LΥS(Ξ)) (2.3.10)

gives LΥ(S(Ξ)) = Ξ− 〈Ξ〉.
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Corollary 2.3.4 For every tensor field Ξ ∈ T ks (M), the following assertions are
equivalent

• S(Ξ) = 0;

• S(Ξ) is S1-invariant;

• Ξ is S1-invariant.

Proof. The equivalence of the first two conditions follows from property (2.3.8) which
says that 〈S(Ξ)〉 = 0. Property (2.3.9) implies the equivalence of the last two asser-
tions.

Proposition 2.3.5 The following relations hold

KerS = KerLΥ = ImA, (2.3.11)

ImS = ImLΥ = KerA. (2.3.12)

Proof. Taking into account that the kernel of the Lie derivative LΥ : T ks (M) →
T ks (M) consists of all S1-invariant tensor fields and by the Corollary 2.3.4, we derive
(2.3.11). By (2.3.7), we have ImLΥ ⊆ KerA. On the other hand, it follows from
(2.3.9) that

LΥS(Ξ) = Ξ ∀Ξ ∈ KerA (2.3.13)

and hence KerA ⊆ ImLΥ. Therefore, ImLΥ = KerA. By (2.3.7)-(2.3.9) we have
the identities S = LΥ ◦ S2 and LΥ = S ◦ L2

Υ which say that ImS = ImLΥ.

As a consequence of (2.3.3) and (2.3.11), (2.3.12), we get also the decomposition

T ks (M) = KerLΥ ⊕ ImLΥ (2.3.14)

which together with (2.3.13) implies that the restriction of LΥ to ImLΥ is an iso-
morphism whose inverse is just S.

Finally, we notice that operators A, S and are natural with respects to operation
of pull-back. This means that for any diffeomorphism Φ : M →M , we have Φ∗◦A =
A◦Φ∗, Φ∗ ◦ S = S ◦Φ∗. This follows directly from definition and properties of pull-
back.

Remark 2 Actually, the definition of operators A, S ( 2.3.2), ( 2.3.4) are not so
important for the results present in the next section. These results can be obtained
in a general setting where the operators the operators A, S and LΥ satisfies the
conditions ( 2.3.5), ( 2.3.6), ( 2.3.9), ( 2.3.11) and ( 2.3.12).

2.4 The Global Solvability of Generalized Homological
Equations

Let X be a vector field with periodic flow. We shall introduce the frequency function
ω : M → R given by ω = 2π

T . It is clear that ω is a first integral of X.
Here, we present the solvability condition of equations (2.2.1), (2.2.2) and for-

mulas for the solutions for k-vector fields and k-forms on M
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2.4.1 Homological equations for k-vector fields.

Let χk(M) = Sec(
∧k TM) be the space of all k-multivector fields on M . In partic-

ular, χ0(M) = C∞(M) and χ1(M) = X(M). It is clear that the operators LΥ,S
and A leave invariant the subspaces χk(M) ⊂ T k0 (M). For every k-vector field
A ∈ χk(M) and an arbitrary 1-form α on M , denote by iαA ∈ T k−1

0 (M) a (k − 1)-
vector field defined by

(iαA)(α1, ..., αk−1) = A(α, α1, ..., αk−1)

for all 1-forms α1, ..., αk−1 on M . By definition, iαA = 0, for every 0-vector field A,
(smooth function on M).

Consider the S1-action on M associated to the periodic flow FltX . Denote by

χkinv(M) = KerLΥ

the subspace of all S1-invariant k-vector fields on M . Then, according to (2.3.14),
we have the splitting

χk(M) = χkinv(M)⊕ χk0(M), (2.4.1)

where χk0(M) = ImLΥ denotes the subspace of all k-vector fields on M with zero
average.

Theorem 2.4.1 Let X be a vector field on M with periodic flow and frequency
function ω. Then, for a given B ∈ χk(M), all k-vector fields A and B̄ on M
satisfying the homological equation

LXA = B − B̄ (2.4.2)

and the condition
B̄ is S1-invariant (2.4.3)

are of the form

B̄ = 〈B〉+
1
ω
X ∧ idωC, (2.4.4)

A =
1
ω
S(B) +

1
ω3
X ∧ S2(idωB) + C, (2.4.5)

where C ∈ χkinv(M) is an arbitrary S1-invariant k-vector field. Here, the average 〈·〉
is taken with respect to the S1-action on M associated to the flow of X.

We shall use the following identity. Let f ∈ C∞(M), X ∈ X(M), and A ∈ χk(M);
then

LfXA = fLXA−X ∧ idfA, (2.4.6)

see [52].
Proof of Theorem 2.4.1 By (2.4.6), we get

LXA = LωΥA = ωLΥA−Υ ∧ idωA. (2.4.7)



2.4 The Global Solvability of Generalized Homological Equations 35

We rewrite equation (2.4.2) in the form

LΥA−
1
ω

Υ ∧ idωA =
1
ω

(B − B̄). (2.4.8)

Applying the averaging operator to the both sides of this equation and taking into
account conditions (2.3.7) and (2.4.3), we get

B̄ = 〈B̄〉 = 〈B〉+ Υ ∧ idω〈A〉. (2.4.9)

According to decomposition (2.4.1), we have

A = 〈A〉+A0, 〈A0〉 = 0, (2.4.10)

B = 〈B〉+B0, 〈B0〉 = 0.

Putting these representations together with (2.4.9) into (2.4.8), we see that the
original problem (2.4.2), (2.4.3) is reduced to the following equation for A0 ∈ χk0(M):

LΥA0 −
1
ω

Υ ∧ idωA0 =
1
ω
B0.

Looking for A0 in the form A0 = 1
ωS(B0) + Ã0 and using property (2.3.9), we

conclude that Ã0 ∈ χk0(M) must satisfy the equation

LΥÃ0 −
1
ω

Υ ∧ idωÃ0 =
1
ω2

Υ ∧ idωS(B0). (2.4.11)

Next, taking into account that idωΥ = 0 and putting Ã0 = Υ∧D, we reduce (2.4.11)
to the following equation for D ∈ χk−1

0 (M):

Υ ∧ LΥD =
1
ω2

Υ ∧ idωS(B0).

By property (2.3.9), the (k − 1)-vector field D = 1
ω2S2(idωB0) satisfies the relation

LΥS(D) = 1
ω2 idωS(B0) . Therefore, the solutions to problem (2.4.2), (2.4.3) are

given by (2.4.9) and (2.4.10), where

A0 =
1
ω
S(B0) +

1
ω3
X ∧ S2(idωB0) (2.4.12)

and 〈A〉 is an arbitrary S1-invariant k-vector field on M . Finally, property (2.3.8)
says that S(B0) = S(B) and hence formulas (2.4.4) and (2.4.5) follow from (2.4.9)
and (2.4.12) with C = 〈A〉.
As a straightforward consequence of Theorem 2.4.1, we get the following results.

Corollary 2.4.2 The kernel of the Lie derivative LX : χk(M)→ χk(M) is

Ker(LX) = χkinv(M) ∩ {C ∈ χk(M) | X ∧ idωC = 0}. (2.4.13)
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Corollary 2.4.3 For a given B ∈ χk(M) (k ≥ 1), the homological equation

LXA = B (2.4.14)

is solvable relative to a k-vector field A on M if and only if

〈B〉 = X ∧ idωP (2.4.15)

for a certain S1-invariant k-vector field P ∈ χkinv(M). Under this condition, every
solution of ( 2.4.14) is given by ( 2.4.5), where C = P + C ′, C ′ ∈ ker(LX).

It follows from (2.4.15) that the necessary conditions for the solvability of (2.4.14)
are the following

X(m) = 0 → 〈B〉(m) = 0, (2.4.16)

X ∧ 〈B〉 = 0, (2.4.17)

idω〈B〉 = 0. (2.4.18)

Therefore, if one of these conditions does not hold, then equation (2.4.14) is unsolv-
able.

Corollary 2.4.4 There exist k-vector fields A and B̄ on M satisfying the equations

LXA = B − B̄, (2.4.19)

LXB̄ = 0 (2.4.20)

if and only if
X ∧ idω〈B〉 = 0. (2.4.21)

Under this condition, all solutions (A, B̄) to ( 2.4.19),( 2.4.20) are given by formulas
( 2.4.4), ( 2.4.5). Moreover, the k-vector field A in ( 2.4.5) can be represented in the

form A =
1
ω
S(B) + (S1-invariant k-vector field ) if and only if Υ ∧ idωB = 0.

The Case of C∞(M). We apply the results on solvability of homological equation
to the tensor space T 0

0 (M) = C∞(M). For a given function G ∈ C∞(M), we are
looking for smooth functions F and Ḡ satisfying the homological equation

LXF = G− Ḡ, (2.4.22)

and the condition
LXḠ = 0. (2.4.23)

By identity (2.4.42), the solvability condition (2.4.21) for C∞(M) is equivalent to
LX〈G〉 = 0 which always holds for every smooth function G. From this observation
and Corollary 2.4.12 the global solutions of the homological equation (2.4.22) and
the condition (2.4.23) always exist and are given by

Ḡ = 〈G〉, (2.4.24)
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and
F = S(G). (2.4.25)

In terms of time averaging, this formula can written as follows

F (m) =
1

T (m)

∫ T (m)

0
(t− T (m)

2
)G(FltX(m))dt.

We remark that formulas (2.4.24) and (2.4.25) were obtained in [15] by Cushman.
The Case of Vector Fields. Now, we study the particular case of vector fields.
By Theorem 2.4.1 , Corollary 2.4.2 and Corollary 2.4.4 (where A = Z and B = W
are vector fields on M) we deduce the following facts.

Proposition 2.4.5 Let X be a vector field with periodic flow and frequency function
ω. Then, for a given W ∈ X(M), all vector fields Z ∈ X(M) and W̄ ∈ Xinv(M) on
M satisfying the equation

LXZ = W − W̄ , (2.4.26)

and the condition
W̄ is S1-invariant (2.4.27)

are given by the formulas

W̄ = 〈W 〉+
1
ω
LY (ω)X, (2.4.28)

Z =
1
ω
S(W ) +

1
ω3
S2(LWω)X + Y, (2.4.29)

where Y ∈ Xinv(M).

Proof. By Theorem 2.4.1, the solutions of equations (2.4.26), (2.4.27) are given by

W̄ = 〈W 〉+
1
ω
X ∧ idωY, (2.4.30)

Z =
1
ω
S(W ) +

1
ω3
X ∧ S2(idωW ) + Y, (2.4.31)

where Y ∈ χ1(M) = X(M) is an arbitrary S1-invariant vector field. Now, for every
vector field Y , we have

idωY = dω(Y ) = LY ω.

Thus,
X ∧ idωY = (LY ω)X,

and
X ∧ S2(idωW ) = S2(LWω)X.

Therefore, formulas (2.4.30) and (2.4.31) reduce to (2.4.28), (2.4.29).
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Corollary 2.4.6 Given a vector field W , there exist vector fields Z and W̄ on M
satisfying the equations

LXZ = W − W̄ , (2.4.32)

LXW̄ = 0 (2.4.33)

if and only if
L〈W 〉ω = 0. (2.4.34)

Under this condition, all solutions (W̄ , Z) to ( 2.4.32),( 2.4.33) are given by formulas
( 2.4.28), ( 2.4.29). Moreover, the vector field Z in ( 2.4.29) can be represented in

the form Z =
1
ω
S(W ) + (S1-invariant vector field ) if and only if LWω = 0.

Proof. Corollary 2.4.4 asserts that equations (2.4.32), (2.4.33) are solvable and their
solutions are given by (2.4.28), (2.4.29) if and only if condition condition (2.4.21)
holds. For vector fields, we have

X ∧ idω〈W 〉 = (L〈W 〉ω)X

Since X 6= 0, we get that condition (2.4.21) is equivalent to (2.4.34).
One direct consequence of Corollary 2.4.6 is the solvability of the homological equa-
tion

LXZ = W. (2.4.35)

for given W . Equation (2.4.35) is solvable for Z if and only if 〈W 〉 = LỸ (ω)X for a
certain S1-invariant vector field Ỹ .

Let Reg(X) = {m ∈ M | X(m) 6= 0} be the set of points regular of X. If
Reg(X) is everywhere dense in M , Corollary 2.4.2 implies that the kernel of the Lie
derivative LX : X(M)→ X(M) is

Ker(LX) = Xinv(M) ∩ {Y ∈ X(M) | LY ω = 0}. (2.4.36)

2.4.2 Homological equations for k-forms.

Consider the space Ωk(M) = Sec(
∧k T ∗M) of k-forms on M . Then, subspace

Ωk(M) ⊂ T 0
k (M) is invariant with respect to the action of the operators LΥ,S

and A. By iY α ∈ Ωk−1(M) we denote the interior product of a vector field Y and
a k-form α on M which is defined by the usual formula:

(iY α)(Y1, ..., Yk−1) = α(Y, Y1, ..., Yk−1).

Let Ωk
inv(M) = KerLΥ and Ωk

0(M) = ImLΥ. Then, we have the S1-invariant
splitting

Ωk(M) = Ωk
inv(M)⊕ Ω0.

k(M), (2.4.37)

There is the following covariant analog of Theorem 2.4.1.

Theorem 2.4.7 For a given η ∈ Ωk(M), all k-forms θ and η̄ on M satisfying the
homological equation

LXθ = η − η̄ (2.4.38)
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and the condition
η̄ is S1-invariant, (2.4.39)

are represented as

η̄ = 〈η〉 − 1
ω

dω ∧ iXµ, (2.4.40)

θ =
1
ω
S(η)− 1

ω3
dω ∧ S2(iXη) + µ, (2.4.41)

where µ ∈ Ωk
inv(M) is an arbitrary S1-invariant k-form.

The proof of this theorem goes in the same line as the proof Theorem 2.4.1, where
instead of identity 2.4.6 we have to use its covariant analog result: Let f ∈ C∞(M),
X ∈ X(M) and α ∈ Ωk(M); then,

LfXα = fLXα+ df ∧ iXα. (2.4.42)

Proof of Theorem 2.4.7 Applying formula (2.4.42) to left hand side of equation
(2.4.38), we get

LωΥθ = ωLΥθ + dω ∧ iΥθ.

We rewrite equation (2.4.38) in the form

LΥθ +
1
ω

dω ∧ iΥθ =
1
ω

(η − η̄). (2.4.43)

Applying the averaging operator to the both sides of this equation and taking into
account conditions (2.3.7) and (2.4.39), we get

η̄ = 〈η̄〉 = 〈η〉 − dω ∧ iΥ〈θ〉. (2.4.44)

According to decomposition (2.4.37), we have

θ = 〈θ〉+ θ0, 〈θ0〉 = 0, (2.4.45)

η = 〈η〉+ η0, 〈η0〉 = 0.

Putting these representations together with (2.4.44) into (2.4.43), we see that the
original problem (2.4.38), (2.4.39) is reduced to the following equation for θ0 ∈
Ωk

0(M):

LΥθ0 +
1
ω

dω ∧ iΥθ0 =
1
ω
η0.

We look for θ0 in the form θ0 = 1
ωS(η0) + θ̃0 and using property (2.3.9), we conclude

that θ̃0 ∈ Ωk
0(M) must satisfy the equation

LΥθ̃0 +
1
ω

dω ∧ iΥθ̃0 = − 1
ω2

dω ∧ iΥS(η0). (2.4.46)

Taking into account that iΥdω = LΥω = 0 and putting θ̃0 = dω ∧ %, we reduce
(2.4.46) to the following equation for % ∈ Ωk−1

0 (M):

dω ∧ LΥ% = dω ∧ (− 1
ω2

iΥS(η0))
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By property (2.3.9), the (k-1)-form % = − 1
ω2S2(iΥη0) satisfies the relation

LΥS(%) = − 1
ω2

iΥS(η0).

Therefore, the solutions to problem (2.4.38), (2.4.39) are given by (2.4.44) and
(2.4.45), where

θ0 =
1
ω
S(η0)− 1

ω3
dω ∧ S2(iXη0) (2.4.47)

and 〈θ〉 is an arbitrary S1-invariant k-form on M . Finally, property (2.3.8) says
that S(η0) = S(η) and hence formulas (2.4.40) and (2.4.41) follow from (2.4.44) and
(2.4.47) with µ = 〈θ〉.
From Theorem 2.4.7, we deduce the following consequences

Corollary 2.4.8 The kernel of the Lie derivative LX : Ωk(M)→ Ωk(M) is

Ker(LX) = Ωk
inv(M) ∩ {µ ∈ Ωk(M) | dω ∧ iXµ = 0}. (2.4.48)

Corollary 2.4.9 For a given η ∈ Ωk(M) (k ≥ 1), the homological equation

LXθ = η (2.4.49)

is solvable relative to a k-form θ on M if and only if

〈η〉 = dω ∧ iXα (2.4.50)

for a certain S1-invariant k-form α ∈ Ωk
inv(M).

It follows from (2.4.50) that the necessary conditions for the solvability of equa-
tion (2.4.49) are

X(m) = 0 =⇒ 〈η〉(m) = 0, (2.4.51)

dω ∧ 〈η〉 = 0, (2.4.52)

iX〈η〉 = 0. (2.4.53)

Corollary 2.4.10 There exist k-forms θ and η on M satisfying the equations

LXθ = η − η̄, (2.4.54)

LX η̄ = 0, (2.4.55)

if and only if the following condition holds

dω ∧ iX〈η〉 = 0. (2.4.56)

Under this conditions, solutions (θ, η) of ( 2.4.54) ( 2.4.55) are given by ( 2.4.40) and
( 2.4.41).

The Case of 1-forms. Now, we derive the formulas of solution for homological
equation and the compatibility condition for 1-forms.
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Proposition 2.4.11 For a given 1-form β ∈ Ω1(M), all 1-forms α and β̄ on M
satisfying the homological equation

LXα = β − β̄, (2.4.57)

and the condition
β̄ is S1-invariant (2.4.58)

are written as follows

β̄ = 〈β〉 − 1
ω

(iXµ)dω, (2.4.59)

α =
1
ω
S(η)− 1

ω3
S2(iXβ)dω + µ, (2.4.60)

with µ ∈ Ω1
inv(M).

Proof. It follows from Theorem 2.4.7, solution of equation (2.4.57), (2.4.58) are given
by (2.4.40), (2.4.41). These formulas reduce to (2.4.59), (2.4.60) because of for any
1-forms β and any vector field X, iXβ is a smooth function.
From Corollary 2.4.8, we have the following consequences:

• the solvability condition for homological equation

LXα = β (2.4.61)

reads

〈β〉 =
1
ω

(iXµ)dω (2.4.62)

for a certain S1-invariant 1-form µ ∈ Ω1
inv(M).

• Let Reg(ω) = {m ∈M | dmω 6= 0} be the set of regular points of the frequency
function ω. If Reg(ω) is everywhere dense in M , then

Ker(LX) = Ω1
inv(M) ∩ {µ ∈ Ωk(M) | iXµ = 0}. (2.4.63)

Corollary 2.4.12 For any β ∈ Ω1(M), there exist 1-forms α and β̄ satisfying the
equations

LXα = β − β̄, (2.4.64)

LX β̄ = 0, (2.4.65)

if and only if
iX〈β〉 = 0. (2.4.66)

Under this conditions, the formulas ( 2.4.59) and ( 2.4.60) give the solution of ( 2.4.64),
( 2.4.65).



42 Homological Equations for Tensor Fields associated to Periodic Flows

2.4.3 The S1-average of closed forms

Let us consider the case of closed forms. Let d : Ωk(M)→ Ωk+1(M) be the exterior
derivative. By standard properties of the exterior derivative, we conclude that d
commutes with operators LΥ,S and A, in particular, 〈dη〉 = d〈η〉 for any η ∈
Ωk(M). Moreover, splitting (2.4.37) is invariant with respect to d, in the sense that
if η ∈ Ωk(M) has the decomposition

η = 〈η〉+ η0,

where 〈η〉 ∈ Ωk
inv(M), η0 ∈ Ωk

0(M), then

dη = 〈dη〉+ (dη)0 = d〈η〉+ dη0.

It follows that if η is closed then, the components 〈η〉 and η0 are also closed k-forms.
In this case, according to (2.4.37), a solution to the equation LΥθ0 = η0 is given by
θ0 = S(η0). Then, dθ0 = S(dη0) = 0 and hence η0 = LΥθ0 = d ◦ iΥθ0. This proves
the following assertion.

Proposition 2.4.13 For every closed k-form η on M , we have the decomposition

η = 〈η〉+ d(iΥθ0), (2.4.67)

where θ0 = S(η) =
1

2π

∫ 2π

0
(t− π)(FltΥ)∗ηdt.

As a consequence of this proposition we have the equivariant version of Poincaré
Lemma.

Proposition 2.4.14 Assume that the S1-action with infinitesimal generator Υ is
free on M and let ρ : M →M/S1 be the canonical projection. Then for every closed
k-form η on M and m ∈ M there exists a neighborhood U of ρ(m) in M/S1 such
that the restriction of η to the S1− invariant domain ρ−1(U) ⊂M is exact.

Proof. By the S1-invariance and closeness of 〈η〉 we have that 〈η〉 = ρ∗γ for a certain
closed k-form γ ∈ Ω(M/S1). By the Poincare Lemma, there exists an open neigh-
borhood U of ρ(m) such that γ = dβ for β ∈ Ωk−1(U) It follows from Proposition
2.4.13

η|ρ−1(U) = d(ρ∗β + iΥ θ|ρ−1(U))

2.4.4 The trivial S1-action

We apply the results on global solvability of homological equations to the smooth
manifold

M = S1 × Rn = {ϕ(mod)2π} × {y = (y1, y2, . . . , yn)}.

Every vector field Y on M = S1 × Rn is of the form

Y (ϕ,y) = Y0(ϕ,y)
∂

∂ϕ
+ Yi(ϕ,y)

∂

∂yi
, (2.4.68)
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where Yi : R×Rn → R are smooth functions and 2π-periodic in ϕ. The vector field

X = ω(y)
∂

∂ϕ
, (2.4.69)

where ω : Rn → R is a smooth function such that ω(y) > 0. The flow of X is

T -periodic with period function T (y) :=
2π
ω(y)

. Thus, the vector field Υ = ∂
∂ϕ

is the infinitesimal generator of the S1-action induced by the flow of X. Let f ∈
C∞(S1 × Rn). The averaging of f with respect to Υ is given by

〈f〉(y) =
1

2π

∫ 2π

0

(
FltΥ
)∗
f(ϕ,y)dt

=
1

2π

∫ 2π

0
f(ϕ,y)dϕ (2.4.70)

If Y is a vector field on M (2.4.68), then averaging Y is

〈Y 〉(y) = 〈Y0〉(ϕ,y)
∂

∂ϕ
+ 〈Yi〉(ϕ,y)

∂

∂yi
,

=
1

2π

∫ 2π

0
Y (ϕ,y)dϕ. (2.4.71)

And, if η = η0dϕ+ ηidxi is a 1-form on M , then the averaging of η is

〈η〉(y) = 〈η0〉(y)dϕ+ 〈ηi〉(y)dxi,

=
1

2π

∫ 2π

0
η(ϕ,y)dϕ. (2.4.72)

Now, we study the homological equations for vector fields and 1-forms on S1 ×
Rn. Corollary 2.4.6, asserts that for a given vector field W = Y = Y0(ϕ,y) ∂

∂ϕ +
Yi(ϕ,y) ∂

∂yi
on M , there exist vector fields Z, and W̄ satisfying the equations (2.4.32),

(2.4.33) if and only if ω and Y are compatible by L〈Y 〉ω = 0. This condition is

equivalent to 〈Yi(ϕ,y)〉 ∂ω
∂yi

= 0. Explicit formulas of the solutions Z and W̄ are

given by

W̄ =
(
〈Y0〉+ ci ·

∂ω

∂Yi

)
∂

∂ϕ
+ 〈Yi〉

∂

∂yi
, (2.4.73)

Z =
(

1
ω
S(Y0) +

1
ω2
S2(Yi)

∂ω

∂Yi
+ b

)
∂

∂ϕ
+
(

1
ω
S(Yi) + ci

)
∂

∂yi
,

where b, ci ∈ C∞(M) are S1-invariant smooth functions.
For a given 1-form η = η0dϕ+ ηidxi on M , Corollary 2.4.12 says that equations

(2.4.64), (2.4.65) are solvable for α and η̄ if and only if the condition iX〈η〉 = 0
holds. But, η and X satisfy this condition if and only if 〈η0〉 = 0. Formulas of the
solutions are

η̄ = (〈ηi〉 − ā
∂ω

∂xi
)dxi, (2.4.74)

α = (
1
ω
S(η0) + ā)dϕ+ (S(ηi)−

1
ω2
S2(a)

∂ω

∂xi
+ ξ̄i)dξi, (2.4.75)

for arbitrary S1-invariant functions ā, ξ̄i.
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2.5 The Compatibility Condition From Period-Energy
Relation.

Here, we show that in the Hamiltonian case the compatibility condition (2.4.32)
always holds because of the so called period-energy relation, [2, 10, 29]. This leads
to the well known fact: the homological equation (2.4.32) and the condition (2.4.33)
are solvable in the Hamiltonian case [2, 6, 13, 15].

First, follow [29], we recall some facts concerning to period energy relation.

Proposition 2.5.1 (The Period-Energy relation) Let X be a vector field on a
manifold M with periodic flow and a smooth period function T : M → R. If there
exists a closed 2-form σ on M such that

iXσ = −dH (2.5.1)

for a certain function H ∈ C∞(M), then

dT ∧ dH = 0 on M. (2.5.2)

Proof. It follows from (2.5.1) that

LXσ = iXdσ + diXσ = −d2H = 0. (2.5.3)

On the other hand, we have

LXσ = LωΥσ = ωLΥσ + dω ∧ iΥσ = ωLΥσ −
1
ω
dω ∧ dH, (2.5.4)

where ω = 2π
T is the frequency function. Consider the S1-action on M with infinites-

imal generator Υ = 1
ωXH . Remark that ω and H are first integrals of X and hence

S1-invariant. Thus, applying the averaging operator to equality (2.5.4) and taking
into account (2.5.3) and that 〈LΥσ〉 = 0, we get

0 = 〈LXσ〉 = − 1
ω
dω ∧ dH.

Corollary 2.5.2 The 2-form σ is invariant with respect to the S1-action associated
with the periodic flow of X, LΥσ = 0.

Proposition 2.5.3 Assume that in addition to the hypothesis of Proposition 2.5.1
the S1-action with infinitesimal generator Υ = 1

ωXH is free on M and consider the
canonical projection ρ : M → M/S1. Then, for every m ∈ M , there exists an open
neighborhood U of ρ(m) in the orbit space M�S1 such that the restriction of the 2-
form σ to the S1-invariant domain ρ−1(U) is exact, σ = dµ and the period function
satisfies the relation

dJ = TdH (2.5.5)

where J ∈ C∞(ρ−1(U)) is given by

J := T 〈iXµ〉. (2.5.6)
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Proof. The existence of an open domain U with desired properties follows from
equivariant Poincare Lemma (see Proposition 2.4.14). Then, σ = dµ on the S1-
invariant domain %−1(U) ⊂ M . Taking into account that LΥ〈µ〉 = 0 and dH is
S1-invariant, we get

dJ = 2π〈diΥµ〉 = 2π〈LΥµ〉 − 2π〈iΥdµ〉 = −T 〈iXdσ〉 = TdH.

Corollary 2.5.4 If the 2-form σ is exact, then relation ( 2.5) holds on the whole
M .

Now, suppose we start with the Hamiltonian vector field XH of a function H ∈
C∞(M) on a symplectic manifold (M,σ). Assuming that XH has periodic flow with
period function T , consider the corresponding S1-action with infinitesimal generator
Υ := 1

ωXH , where ω = 2π
T is the frequency function. For a given function F ∈

C∞(M), we consider the homological problem

LXHZ = XF −W, (2.5.7)

LXHW = 0. (2.5.8)

Proposition 2.5.5 If the regular set Reg(XH) = {m ∈ M |dmH 6= 0} is dense in
M , then the compatibility condition

L〈XF 〉ω = 0. (2.5.9)

holds and homological problem ( 2.5.7), ( 2.5.8) is solvable on M . Every solution is
of the form

W = X〈F 〉 +
1
ω

(LY ω)XH , (2.5.10)

Z = X 1
ω
S(F ) + Y, (2.5.11)

where Y is arbitrary S1-invariant vector field.

Proof. First, let us show that the period energy relation (2.5.2) implies the compat-
ibility condition (2.5.9). By Corollary 2.5.2, the symplectic form σ is invariant with
respect to the S1-action with infinitesimal generator Υ = 1

ωXH . This implies that

〈XF 〉 = X〈F 〉. (2.5.12)

Then, we have

i〈XF 〉dH = LX〈F 〉H = −LXH 〈F 〉 = −ωLΥ〈F 〉 = 0.

It follows from the identity that dω ∧ dH = 0 that

0 = i〈XF 〉(dω ∧ dH) = (i〈XF 〉dω)dH − (i〈XF 〉dH)dω = (L〈XF 〉ω)dH (2.5.13)
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and hence condition (2.5.9) holds on Reg(XH). But by assumption the regular set
is dense and hence (2.5.9) is satisfies on the whole M . This implies the global
solvability of the problem (2.5.7), (2.5.8). By Corollary 2.4.6, the corresponding
general solutions are by (2.4.28), (2.4.29). Since the S1-action is symplectic relative
to σ. for the Hamiltonian vector field XF we have the equality (FltΥ)∗XF = XF◦FltΥ
which implies the following property of operator S:

S(XGF ) = XGS(F ) = S(F )XG +GXS(F ),

for every S1-invariant function G. In particular, S(XF ) = XS(F ) Using this property
and (2.5.12), by direct computation, we verify that formulas (2.4.28), (2.4.29) lead
to (2.5.10), (2.5.11).

Corollary 2.5.6 In terms of the Poisson bracket on (M,σ), the compatibility condi-
tion ( 2.5.9) reads: the S1-average 〈F 〉 Poisson commutes with the frequency function
ω.

In the exact case σ = dµ, Proposition 2.5.3 implies that the S1-action associated to
the periodic flow XH is Hamiltonian with momentum map J given by (2.5.6).

Taking Y = 0 in (2.5.10), (2.5.11), we get that the solutions W̄ and Z are Hamil-
tonian vector fields. This fact can be also derived from the standard Hamiltonian
approach, [15].



Chapter 3

Global Normal Forms and The Geometric

Averaging Theorem

3.1 Global Normal Forms.

In this section, we formulate some results on Deprit normalization and S1-invariant
normalization. Let Aε = A0 + εA1 + ε2

2!A2 + . . .+ εk

k!Ak. Given an S1-action on M
and assuming the S1-invariance of A0, we say that Aε is in S1-invariant normal form
of order k if A1, A2, . . . , Ak are S1-invariant vector fields.

3.1.1 First order normalization

Let Aε = A0 +εA1 +O(ε2) be an ε-dependent vector field on M whose unperturbed
part A0 has periodic flow with frequency function ω : M → R. Consider the S1-
action on M with infinitesimal generator Υ = A0

ω .

Theorem 3.1.1 Let
Φε = FltZ |t=ε (3.1.1)

be the time-ε flow of the vector field

Z =
1
ω
S(A1) +

1
ω3
S2(LA1ω)A0 + Y. (3.1.2)

where Y is an S1-invariant vector field. Then, for a given open domain N ⊂M with
compact closure, there exists a constant δ > 0 such that formula ( 3.1.1) defines a
near identity transformation Φε : N → M with ε ∈ (−δ, δ) which takes Aε into the
S1-invariant normal form

(Φε)∗Aε = A0 + ε(〈A1〉+ (LY lnω)A0) +O(ε2). (3.1.3)

If the perturbed vector field A1 and the frequency function ω : M → R are compatible
by the condition

L〈A1〉ω = 0, (3.1.4)

then Φε is a normalization transformation of first order for Aε relative to A0;

[A0, 〈A1〉] = 0. (3.1.5)

47
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Proof. Let Z be the vector field on N given by (3.1.2). By Proposition 1.1.1, there
exists a constant δ > 0 such that the mapping (3.1.1) defines a near identity trans-
formation on N for ε ∈ (−δ, δ). Let

Ãε
def= Φ∗εAε = A0 + εÃ1 +O(ε2). (3.1.6)

From Proposition 1.2.6, we get that vector fields Z and Ã1 satisfy the homological
equation

LA0Z = A1 − Ã1. (3.1.7)

Since the flow ofA0 is periodic, Proposition 2.4.5 tell us that general solution (Z0, Ã1)
of (3.1.7) is given by (3.1.2) and

Ã1 = 〈A1〉+ LY (lnω)A0, (3.1.8)

where Y is an S1-invariant vector field. In addition, Corollary 2.4.6 asserts that

[Ã1, A0] = 0

if and only if vector field A1 and ω are compatible by (3.1.4). In this case, Φε is a
normalization transformation of first order for Aε.

Remark 3 It follows form the formula ( 3.1.3) that a normal form of first order of
Aε is uniquely determines by 〈A1〉 modulo (LY lnω)A0.

Suppose we are given a smooth function I0 : M → R which is invariant with respect
to the S1-action with infinitesimal generator Υ = A0

ω . We observe that if I0 is a first
integral of the averaged vector field 〈A1〉,

L〈A1〉I
0 = 0,

then the original perturbed vector field Aε has an approximate first integral of the
form

Iε = I0 − ε

ω
LS(A1)I0.

So, we have
LAεI = O(ε2).

Now, let us see how, in the context of the normalization procedure, one can use a
freedom in the definition of Φε given by the S1-invariant Y in (3.1.2) . Consider the
perturbed vector field Pε = X+εW and assume that the S1-action with infinitesimal
generator Υ = 1

ωX is free on M . Then, the orbit space O = M/S1 is a smooth
manifold and the projection ρ : M → O is a S1-principal bundle. In this case,
the frequency function is of the form ω = ωO ◦ ρ for a certain ωO ∈ C∞(O). Let
Ver = Span{Υ} be the vertical subbundle and D ⊂ TM an arbitrary subbundle
which is complimentary to Ver. Then, for every vector field u ∈ X(O) there exists
a unique e ∈ Sec(D) descending to u, dρ ◦ e = u ◦ ρ. It follows that [Υ, e] = bΥ,
where b ∈ C∞(M) with 〈b〉 = 0. Defining hor(u) := e− S(b)e , by property (2.3.9),
we get that [Υ, hor(u)] = 0. Therefore, we have the splitting TM = Hor⊕Ver (a
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principal connection on M), where the horizontal subbundle Hor = Span{hor(u) |
u ∈ X(O)} is invariant with respect to the S1-action ( for more details, see Section
3.2 and [47]). According to this splitting, the vector field W̄ has the decomposition
W̄ = W̄ hor +W̄ ver into horizontal and vertical parts. The following statement shows
that under an appropriate choice of Y ∈ Xinv(M), we can get W̄ ver = 0.

Proposition 3.1.2 If
dω 6= 0 on M, (3.1.9)

then one can choose an S1-invariant vector field Y ( 3.1.12) in a such way that the
near identity transformation Φε ( 3.1.1) brings the perturbed vector field Pε = X+εW
into the form P̃ε = (Φε)∗Pε = P̃ hor

ε + P̃ ver
ε with

P̃ ver
ε = X +O(ε2), (3.1.10)

P̃ hor
ε = εhor(w) +O(ε2), (3.1.11)

where w ∈ X(O) is a unique vector field such that dρ ◦ 〈W 〉 = w ◦ ρ.

Proof. First, let us assume that O is parallelizable and pick a basis of global vector
fields u1, ..., un on O. Then, we have the basis of global S1-invariant vector fields
Υ, hor(u1), ...,hor(un) on M . For the perturbation vector field W , we have the
decomposition W = W hor + W ver, where W hor =

∑n
i=1 ci hor(ui) and W ver = c0Υ

for some ci ∈ C∞(M). Then, its S1-average is given by

〈W 〉 =
n∑
i=1

〈ci〉 hor(ui) + 〈c0〉Υ

It follows that the condition W̄ ver = 0 is equivalent to the algebraic equation iY dω =
−〈c0〉 for Y ∈ Xinv(M). Under assumption (3.1.9), a solution to this equation is
given by

Y = −〈c0〉
a2

n∑
i=1

ai hor(ui), (3.1.12)

where ai = ihor(ui)dω are S1-invariant functions on M and a2 =
∑n

i=1 a
2
i . In the

general case, the statement follows from the partition of unity argument.

Note that, in terms of the averaged vector field w, the normalization condition
(3.1.4) reads LwωO = 0 on O. In this case, [X,hor(w)] = 0.

3.1.2 Second order normalization

Let Aε = A0 + εA1 + ε2

2 A2 +O(ε3) be ε-dependent vector field on M whose unper-
turbed part A0 has periodic flow with frequency function ω : M → R.

Theorem 3.1.3 Let
Φε := FltZ0+tZ1

∣∣
t=ε

(3.1.13)
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be the time-ε flow of the vector field Z0 + εZ1, where

Z0 =
1
ω
S(A1) +

1
ω3
S2(LA1ω)A0 + Y1, (3.1.14)

Z1 =
1
ω
S(A2 +RD1 ) +

1
ω3
S2(LA2+RD1

ω)A0 + Y2, (3.1.15)

with RD1 = L2
Z0
A0 + 2LZ0A1 and Y1, Y2 are S1-invariant vector fields. Then, for

a given open domain N ⊂ M with compact closure, there exists a constant δ > 0
such that formula ( 3.1.13) defines a near identity transformation Φε : N →M with
ε ∈ (−δ, δ) which takes Aε into the S1-invariant normal form

Φ∗εAε = A0 + ε(〈A1〉+ (LY1 lnω)A0) +
ε2

2
(〈A2〉+ (LY2 lnω)A0 +B(A0, A1) + C(Y1)) +O(ε3), (3.1.16)

where

B(A0, A1) = 〈L 1
ω
S(A1)A1 + L 1

ω3 S
2(LA1

ω)A0
A1〉, (3.1.17)

C(Y1) = 2LY1〈A1〉+
(
L2
Y1

lnω + (LY1 lnω)2
)
A0. (3.1.18)

Moreover, if there exists an S1-invariant vector field Y1 such that the following con-
ditions

L〈A1〉ω = 0, (3.1.19)
1
2
L〈A2〉+B(A0,A1)ω = L[〈A1〉,Y1]ω (3.1.20)

hold, then Φ∗εAε is in normal form of second order relative to A0.

Proof. Proposition 1.1.1 asserts that for every vector field Z on N , there exists a
constant δ > 0 such that the mapping (3.1.13) defines a near identity transformation
on N for ε ∈ (−δ, δ). Let

Ãε
def= Φ∗εAε = A0 + εÃ1 +

ε2

2
Ã2 +O(ε3). (3.1.21)

From Proposition 1.2.6, we get that vector fields Z0, Z1, Ã2 and Ã1 satisfy the
homological equations

LA0Z0 = A1 − Ã1. (3.1.22)

and
LA0Z1 = A2 +RD1 − Ã2, (3.1.23)

where RD1 = L2
Z0
A0 + 2LZ0A1. Since the flow of A0 is periodic, Proposition 2.4.5

tell us that general solution (Z0, Ã1) of (3.1.22) is given by (3.1.2) and

Ã1 = 〈A1〉+ LY1(lnω)A0, (3.1.24)

where Y1 is an S1-invariant vector field. Also, by Proposition 2.4.5 , general solution
(Z1, Ã2) is given by (3.1.15) and

Ã2 = 〈A2〉+ LY2(lnω)A0 + 〈RD1 〉, (3.1.25)
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with Y2 an S1-invariant vector field. By direct computations, we have

〈L2
Z0
A0〉 = 〈LZ0(LZ0A0)〉,

= 〈LZ0(〈A1〉+ LY1(lnω)A0 −A1)〉,
= LY1〈A1〉+ LY1((LY1 lnω)A0)− 〈LZ0A1〉,
= LY1〈A1〉+

(
L2
Y1

lnω + (LY1 lnω)2
)
A0 − 〈LZ0A1〉.

and

〈LZ0A1〉 = 〈L 1
ω
S(A1)A1 + L 1

ω3 S
2(LA1

ω)A0
A1〉+ LY1〈A1〉.

Thus, we get

Ã2 = 〈A2〉+ (LY2 lnω)A0 + 〈L 1
ω
S(A1)A1 + L 1

ω3 S
2(LA1

ω)A0
A1〉

+2LY1〈A1〉+
(
L2
Y1

lnω + (LY1 lnω)2
)
A0.

Finally, Theorem 3.1.1 claims that Φ∗εAε is in normal form of first order if and only
if A1 and ω are compatible by

L〈A1〉ω = 0.

It follows from Corollary 2.4.6 that Φ∗εAε is in normal form of second order if and
only if there exist S1-invariant vector field Y1 such that

L〈A2〉ω + LB(A0,A1)ω + LC(Y1)ω = 0. (3.1.26)

Since L(L2
Y1

lnω+(LY1
lnω)2

)
A0
ω = 0, equation (3.1.26) is reduced to (3.1.20)

Actually, the ε-dependent vector field Aε = A0 + εA1 + . . . + O(εk) admits an
S1-invariant normalization of arbitrary order.

3.1.3 The regular Hamiltonian case

Let (M,σ) be a symplectic manifold. Assume that a perturbed vector field Aε =
XHε = XH0 + εXH1 + . . . is Hamiltonian relative to the symplectic form σ. Assume
that the flow of XH0 is periodic with frequency function ω and the regular set
reg(XH0) is dense in M . In this case, we have the following classical result [15].

Proposition 3.1.4 A canonical near identity transformation Φε on (M,σ) brings
the perturbed Hamiltonian vector field VHε to the Hamiltonian normal form relative
to XH0 of arbitrary order in ε. In particular, the second order normal form is

HεΦε = H0 + ε〈H1〉+
ε2

2

(
〈H2〉+ 〈{S

(
H1

ω

)
, H1}〉

)
+O(ε3).

The corresponding infinitesimal generator of Φε is a Hamiltonian vector field relative
to σ and the function

1
ω
S(H1) + ε

(
1
ω
S(H2 + { 1

ω
S(H1), H1 + 〈H1〉})

)
.

Here { , } denotes the Poisson bracket on M associated to the symplectic form σ.
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3.2 The Averaging Theorem on Riemannian Manifolds

Here, we generalize the classical averaging theorem [7, 62, 66] to the case of general
Riemannian manifolds. Consider the so-called the one-frequency system on the
cylinder M = S1 × Rn = {ϕ(mod2π)} × {y = (y1, y2, . . . , yn)} ( equipped with the
(flat) product Riemannian metric):

ϕ̇ = ω(x) + εAV (ϕ, x),
ẋ = εAH(ϕ, x).

Let (ϕ(t), x(t)) be a solution of this system. The classical averaging theorem [66]
asserts that for small enough ε, the dynamics of the slow variable x(t) is ε-close to
the dynamics of the averaged system

ẏ = ε〈AH〉(y),

〈AH〉(y) =
1

2π

∫ 2π

0
AH(ϕ, y)dϕ

on the long time scale t ∼ 1
ε . The proof of this fact is based on the following argu-

ments: (i) a near identity transformation whose infinitesimal generator is a solution
of the homological equation; (ii) the triangle inequality and (iii) the Gronwall lemma.
Geometrically, the last argument is related to the fact that the curves ((ϕ(0), x(t)))
and ((ϕ(0), y(t))) can be connected by a minimal geodesic in S1×Rn. In the case of
general Riemannian manifolds this property is not necessarily hold. Our approach
is based on the idea of including the “perturbed” trajectory and the averaged tra-
jectory into a parameterized surface which consists of the trajectories of a family of
vector fields.

3.2.1 Basic facts from Riemannian geometry

Arc Length of Curves and Distance Function. Let (M,<,>) be a smooth
connected Riemannian manifold, that is, a smooth manifold M equipped with a
(Riemannian) metric <,> on M assigning an interior product <,>m in each tangent
space TmM at m ∈M . Recall that the arc length of every smooth curve c : [0, 1]→
M is defined by

L(c) :=
∫ 1

0
(< ċ(s), ċ(s) >)

1
2ds =

∫ 1

0
‖ċ(s)‖ds,

where ċ(s) = d
dsc(s) ∈ Tc(s)M is the tangent vector. For piecewise smooth curves,

the length is defined by taking it for the smooth pieces and then by summing up
over all the pieces. For some p, q ∈ M , consider the set path(p, q) of all piecewise
smooth curves on M that begin at p and end at q. Then the distance function
dist : M ×M → R is given by

dist(p, q) = inf{l ∈ R | l = L(c) and c ∈ path(p, q)}

Remark that, in general, the distance dist(p, q) is not necessarily realized as the
length of a curve in path(p, q). An important fact is that ([52]), (M, dist) is a
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metric space and the induced topology coincides with the manifold topology on M .
Moreover, by the Hopf-Rinov theorem, (M,dist) is a complete metric space (Cauchy
sequences converge) if and only if each closed and bounded subset of M is compact.
On the complete connected Riemannian manifold any two points can be connected
by a geodesic of minimal length.

For a submanifold N of M , we denote by distN the distance function on N
induced by the restriction of the Riemannian metric <,> to N .

The basis fact in Riemannian geometry, says that for a given Riemannian man-
ifold (M,<,>) there exists the Levi-Civita connection ∇ on (M,<,>), that is, a
R-linear map ∇ : X(M)× X(M)→ X(M) satisfying the conditions

∇fYX = f∇YX, (3.2.1)

∇Y fX = (LY f)X + f∇YX, (3.2.2)

LZ〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉, (3.2.3)

∇XY −∇YX = [X,Y ], (3.2.4)

for any X,Y, Z ∈ X(M) and f ∈ C∞(M).
From the basic properties of Levi-Civita connection, (∇YX)(m) depends only

on the value of Y at m and not on the variations of Y around m. Therefore, to each
vector field X on M and a point m ∈ M one can associate the R-linear operator
(∇X)m : TmM → TmM given by

(∇X)m(v) = (∇YX)(m)

for every v ∈ TmM . Here, Y is an arbitrary vector field such that Y (m) = v. By
‖ (∇X)m ‖ we will denote the operator norm on (TmM,<,>m). Therefore, we have
the vector bundle morphism ∇X : TM → TM . The covariant derivative ∇Y along
Y is a differential operator of local type which is related with the given Riemannian
metric and torsion free.

For every diffeomorphism g : M → M one can defined the push-forward g∗∇ :
X(M)× X(M)→ X(M) of the covariant derivative ∇ by

(g∗∇)g∗Y g∗X = g∗(∇YX)

for allX,Y ∈ X(M). Remark that if g is an isometry, then g preserves the connection
∇, that is, g∗∇ = ∇.

Lemma 3.2.1 Let g be an isometry on (M,<,>) and X ∈ X(M) a vector field.
Then, ‖ g∗X ‖m= ‖X‖g−1(m) and for the vector bundle morphisms ∇(g∗X) and ∇X
we have

‖∇(g∗X)‖m = ‖∇X‖g−1(m). (3.2.5)

Proof. Since g is an isometry, we have that ∇g∗Y g∗X = g∗(∇YX) and hence

∇vg∗X = (dg−1(m)g)(∇dmg−1(v)X)
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for every v ∈ TmM . It follows that

‖ (∇g∗X)(v) ‖m=‖ ∇X(dmg−1(v)) ‖g−1(m) .

This equality together with ‖ dmg−1(v) ‖g−1(m)=‖ v ‖m implies (3.2.5).
The curvature of the Levi-Civita connection ∇ is given by

Curv(X,Y )Z := ∇X∇Y Z −∇y∇XZ −∇[X,Y ]Z

for X,Y, Z ∈ X(M). A Riemannian manifold (M,<,>) is called flat if Curv = 0.
Locally, the linear connection ∇ is described by the connection form. Let {ei}

be a basis of local vector fields on U ⊂ M . Then, a matrix-valued 1-form θ = (θji )
on U defined by

∇ei = θji ej

is called the connection form.
Let [0, 1] 3 s 7→ γ(s) ∈M be a smooth parameterized curve. A smooth function

v : [0, 1] 3 s 7→ v(s) ∈ Tγ(s)M is called a vector field along γ. Locally,

v(s) = vj(s)ej(γ(s)).

One can associate to v another vector field ∇α̇v along γ given by

(∇ dγ
ds

v)(s) = (
dvj(s)
ds

+ θji

(
dγ

ds

)
vi(s))ej(γ(s)). (3.2.6)

Using the transition rule for the connection form, one can show that this definition is
independent of the choice of local trivialization {ei}. Remark that , for any smooth
function f : [0, 1] 3 t 7→ f(t) ∈ R, we have ∇ dγ

ds
fv = df

dsv + f∇ dγ
ds

v. Moreover, if
Y : M → TM is a smooth vector field on M , then the composition Y ◦ γ is a vector
field along γ and

(∇ dγ
ds

(Y ◦ γ))(s) = (∇Y )γ(s)

(
dγ

ds

)
. (3.2.7)

The parallel transport is an isomorphism Pγ(s) : Tγ(0)M → Tγ(s)M given by

Pγ(s)ei(γ(0)) =
∑
j

P ji (s)ej(γ(s))

where the matrix function P (s) = (P ji (s)) is a solution of the problem

dP

ds
+ θ

(
dγ

ds

)
P = 0, (3.2.8)

P (0) = I. (3.2.9)

The parallel transport is an isometry of tangent spaces

〈Pγ(s)a,Pγ(s)b〉γ(s) = 〈a, b〉γ(0) (3.2.10)

for all a, b ∈ Tγ(0)M . Let w : [0, 1] 3 s 7→ w(s) ∈ T
γ(s)

M be a vector field along γ
given by

w = ∇ dγ
ds

v (3.2.11)

Let us think of this relation as an equation of v for a given w.
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Lemma 3.2.2 The solution to ( 3.2.11) is given by the formula

v(s) = Pγ(s)

 s∫
0

P−1
γ (τ)w(τ)dτ

+ Pγ(s)v(0). (3.2.12)

Proof. In coordinates, the equation (3.2.11) is written as

dv(s)
ds

+ θ

(
dγ

ds

)
v(s) = w(s). (3.2.13)

It follows from (3.2.8),(3.2.9) that the solution to this equation is given by the
formula

v(s) = P (s)

s∫
0

P−1(τ)w(τ)dτ + P (s)v(0). (3.2.14)

Recall that a vector field v along γ is called parallel if ∇ dγ
ds

v = 0. It follows from
(3.2.12), the vector field is of the form v(s) = Pγ(s)v(0). The curve γ is said to be
geodesic if the tangent vector field dγ

ds is parallel, ∇ dγ
ds

dγ
ds = 0.

Lemma 3.2.3 Let w be an arbitrary vector field along γ and s 7→ v (s) ∈ Tγ(s)M
be the solution of the problem

∇ dγ
ds

v = w,

v(0) = v0 ∈ Tγ(0)M.

Then,

‖ v(s) ‖γ(s)≤‖ v0 ‖γ(0) +

s∫
0

‖ w(τ) ‖γ(τ) dτ. (3.2.15)

Proof. Using (3.2.10) and (3.2.12), we get

‖ v(s) ‖γ(s) ≤ ‖ Pγ(s)

s∫
0

P−1
α (τ)w(τ)dτ ‖γ(s) + ‖ Pγ(s)v0 ‖γ(s),

≤
s∫

0

‖ P−1
γ (τ)w(τ) ‖γ(0) dτ+ ‖ v0 ‖γ(0),

=

s∫
0

‖ w(τ) ‖γ(τ) dτ+ ‖ v0 ‖γ(0) .
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Corollary 3.2.4 Let [0, 1] 3 s 7→ γ(s) ∈ M be a smooth parameterized curve and
X be a vector field on M . Then,

‖ X(γ(s))− Pγ(s)X(γ(0)) ‖γ(s)≤
s∫

0

‖ (∇X)
γ(s′) ‖‖

dγ

ds′
‖ ds′. (3.2.16)

Proof. Consider the following vector fields along γ:

v(s) = X(γ(s))− Pγ(s)X(γ(0),

w(s) = (∇X)
γ(s)

(
dγ

ds
).

Taking into account that the vector field Pγ(s)X(γ(0)) is parallel and using (3.2.7),
we get that ∇ dγ

ds
v = w with v(0) = 0. Applying (3.2.15) leads to inequality (3.2.16).

The Arc Length on Parameterized Surfaces. Now suppose we are given
smooth function

γ : [0, T ]× [0, 1] 3 (t, s) 7→ γ(t, s) ∈M, (3.2.17)

called a parameterized surface. Introduce the following s-dependent vector fields
along the curve t 7→ γs(t) = γ(t, s)

vs(t) :=
∂γ(t, s)
∂s

(3.2.18)

and
ws(t) := ∇ ∂γ

∂s

∂γ

∂t
. (3.2.19)

By the torsion free condition (4), we have the identity

∇ ∂γ
∂s

∂γ

∂t
= ∇ ∂γ

∂t

∂γ

∂s
(3.2.20)

which is rewritten as
∇ ∂γ

∂t
vs(t) = ws(t). (3.2.21)

It follows from here and Lemma 3.2.3 that∥∥∥∥∂γ(t, s)
∂s

∥∥∥∥
γ(t,s)

≤
∥∥∥∥∂γ(0, s)

∂s

∥∥∥∥
γ(0,s)

+

t∫
0

∥∥∥∥∇ ∂γ
∂t

∂γ(τ, s)
∂s

∥∥∥∥
γ(τ,s)

dτ. (3.2.22)

For every t ∈ [0, T ], denote by L(t) the length of the curve [0, 1] 3 s 7→ γt(s) = γ(t, s),

L(t) =
∫ 1

0

∥∥∥∥∂γ(t, s)
∂s

∥∥∥∥
γt(s)

ds.

Integrating both sides of (3.2.22) in s , we get the following result.
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Lemma 3.2.5 (Basic Inequality) For all t ∈ [0, T ], the length L(t) of the s-curve
s 7→ γt(s) satisfies the inequality

L(t) ≤ L(0) +

t∫
0

∫ 1

0

∥∥∥∥∇ ∂γ
∂s

∂γ

∂t′

∥∥∥∥
α(t′,s)

dsdt′. (3.2.23)

We will need also the following technical fact. Let Ys (s ∈ [0, 1]) be a s-dependent
vector field on M . Then, we associate to Ys the vector field (t, s) 7→ y(t, s) ∈ Tγ(t,s)M
along the parameterized surface γ(t, s) given as

y(t, s) := Ys(γ(t, s)).

Recall that dYs
ds denotes the s-dependent vector field on M defined by the condition

L dYs
ds
f = d

ds(LYsf) for any f ∈ C∞(M).

Lemma 3.2.6 For every t ∈ [0, T ], the vector field s 7→ yt(s) = y(t, s) along the
s-curve s 7→ γt(s) satisfies the relation

∇ ∂γ
∂s

yt =
dYs
ds

(γ(t, s)) + (∇Ys)γ(t,s)(
∂γ

∂s
). (3.2.24)

Here (∇Ys)m : TmM → TmM is the linear operator associated to the vector field Ys.

Proof. Locally, Ys = Y i
s ei and

∇Ys = (dY i
s + Y j

s θ
i
j)⊗ ei. (3.2.25)

On the other hand, yt(s) = Y i
s (α(t, s))ei(α(t, s)) and by definition (3.2.6), we have

∇ ∂γ
∂s

yt = (
dY i

s

ds
+ dY i

s

(
∂γ

∂s

)
+ Y j

s θ
i
j(
∂γ

∂s
))ei.

Comparing this identity with (3.2.25) leads to (3.2.24).

Flat parameterized surfaces of geodesics. Suppose that we are given a
parameterized surface

γ : [0, T ]× [0, 1] 3 (t, s) 7→ γ(t, s) ∈M,

such that, for every t ∈ [0, T ], the curve [0, 1] 3 s 7→ γt(s) = γ(t, s) is a geodesic.
Then, the vector field ∇ ∂γ

∂s

∂γ
∂t along the surface satisfies the Jacobi equation

∇ ∂γ
∂s

(
∇ ∂γ

∂s

∂γ

∂t

)
= Curv

(
∂γ

∂s
,
∂γ

∂t

)
∂γ

∂s
. (3.2.26)

Denote by Ps2s1 (γt) : Tγt(s1)M → Tγt(s2)M the parallel transport along the segment
γt ([s1, s2]).

Assume also that there exist two vector fields X0 and X1 on M such that

∂γ(t, 0)
∂t

= X0(γ(t, 0)), (3.2.27)

and
∂γ(t, 1)
∂t

= X1(γ(t, 1)). (3.2.28)
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Lemma 3.2.7 If the curvature of the Riemannian connection ∇ on M vanishes
along the parameterized surface γ,

Curv
(
∂γ

∂s
,
∂γ

∂t

)
= 0, (3.2.29)

then ∇ ∂γ
∂s

∂γ
∂t is parallel vector field along the geodesic s 7→ γt(s) which is given by the

formula

∇ ∂γ
∂s

∂γ

∂t
= (P1

s (γt))−1
[
X1(γt(1))− P1

0 (γt)X0(γt(0))
]
. (3.2.30)

Proof. It follows from assumption (3.2.29) and equation (3.2.26) that

∇ ∂γ
∂s

(
∇ ∂γ

∂s

∂γ

∂t

)
= 0

and hence
∂γ

∂t
= sa(t, s) + b(t, s),

where a and b are vector field along the surface γ which are parallel along the curve
s 7→ γt(s),

∇ ∂γ
∂s

a = 0 and ∇ ∂γ
∂s

b = 0.

In terms of the parallel transport we have the representations

a(t, s) = (P1
s (γt))−1a(t, 1),

b(t, s) = Ps0(γt)b(t, 0) = (P1
s (γt))−1b(t, 1).

From here and conditions (3.2.27), (3.2.28) we derive

b(t, 0) = X0(γ(t, 0)),

a(t, 1) + P1
0 (γt)b(t, 0) = X1(γ(t, 1)).

Therefore,

∇ ∂γ
∂s

∂γ

∂t
= a(t, s) = (P1

s (γt))−1
[
X1(γ(t, 1))− P1

0 (γt)X0(γ(t, 0))
]
.

Corollary 3.2.8 Under hypotheses ( 3.2.27), ( 3.2.28), the tangent vector to the
geodesic s 7→ γt(s) at s = 0 is given by

∂γ

∂s
(t, s) = Pt0(γs)[

∫ t

0
(Pτ0 (γs))−1a(τ, s)dτ +

∂γ

∂s
(0, s)].



3.2 The Averaging Theorem on Riemannian Manifolds 59

Corollary 3.2.9 For every t ∈ [0, T ], L(t) denotes the arc length of the geodesic
s 7→ γt(s),

L(t) =
∫ 1

0

∥∥∥∥∂γ(t, s)
∂s

∥∥∥∥ ds =
∥∥∥∥∂γ(t, 1)

∂s

∥∥∥∥ .
The following inequality holds

L(t) ≤‖ ∂γ(0, 0)
∂s

‖ +
∫ t

0

(∫ 1

0
‖ ∇X0 ‖γ(t′,s) ds

)
L(t′)dt′ (3.2.31)

+
∫ t

0
‖ X1 −X0 ‖γ(t′,1) dt

′.

Proof. Rewriting representation (3.2.30) in the form

∇ ∂γ
∂s

∂γ

∂t
= (P1

s (γt))−1
[
X0(γ(t, 1))− (P1

0 (γt))X0(γ(t, 0)) + (X1 −X0)(γ(t, 1))
]
.

and using (3.2.16), we get

‖ ∇ ∂γ
∂s

∂γ

∂t
‖≤
∫ 1

0
‖ ∇X0 ‖γ(t,s)) ‖ ds ‖

∂γ(t, 1)
∂s

‖

+ ‖ X1 −X0 ‖γ(t,1) .

This together with inequality ( 3.2.23) leads to (3.2.31).

3.2.2 Gronwall’s type estimates for flows on Riemannian manifolds

The Gronwall type estimates play an important role in the perturbation theory
for dynamical systems. Recall that the (specific) Gronwall lemma is formulated as
follows (see, for example [66]). Suppose that for t0 ≤ t ≤ t0 + T , we have

ϕ(t) ≤ δ2(t− t0) + δ1

∫ t

t0

ϕ(τ)dτ + δ3,

with ϕ(t) continuous and constants δ1 > 0, δ2 ≥ 0, and δ3 ≥ 0. Then,

ϕ(t) ≤
(
δ2

δ1
+ δ3

)
eδ1(t−t0) − δ2

δ1

for t0 ≤ t ≤ t0 + T . Using this fundamental inequality, we get some estimates for
the time evolution of the distance between points of trajectories of two vector fields.

First, let us consider the special case where the parameterized surface which
comes from trajectories of a parameter dependent vector field . Suppose we start
with a 1-parameter family of vector fields Xs on M smoothly depending on the
parameter s ∈ [0, 1]. Let [0, 1] 3 s 7→ β(s) ∈ M be a smooth curve. Then, one can
fix T > 0 such that for every s ∈ [0, 1], the trajectory t 7→ FltXs(β(s)) is defined for
all t ∈ [0, T ]. Consider the parameterized surface of the form

α(t, s) := FltXs(β(s)). (3.2.32)

Therefore, for every t, the s-curve s 7→ αt(s) is a result of the time evolution of the
“initial” curve β(s) under the flow of Xs.
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Proposition 3.2.10 The length L(t) of the s-curve s 7→ αt(s) on the parameterized
surface ( 3.2.32) satisfies the Gronwall type estimate

L(t) ≤
(
C2

C1
+ C3

)
eC1t − C2

C1
(3.2.33)

for all t ∈ [0, T ]. Here

C1 = sup
m∈α([0,T ]×[0,1])

s∈[0,1]

‖(∇Xs)m‖ ,

C2 = sup
t∈[0,T ]
s∈[0,1]

∥∥∥∥dXs

ds

∥∥∥∥
α(t,s)

,

C3 = L(0).

Proof. Formula (3.2.24) implies∥∥∥∥∇ ∂α
∂s

∂α

∂t

∥∥∥∥
α(t,s)

=
∥∥∥∥dXs

ds
(α(t, s)) + (∇Xs)α(t,s)(

∂α

∂s
)
∥∥∥∥
α(t,s)

≤
∥∥∥∥dXs

ds

∥∥∥∥
α(t,s)

+
∥∥(∇Xs)α(t,s)

∥∥∥∥∥∥(
∂α

∂s
)
∥∥∥∥
α(t,s)

.

Putting this inequality into (3.2.23), we get

L(t) ≤ L(0) + C1

t∫
0

L(τ)dτ + C2t.

By the specific Gronwall lemma, this leads to (3.2.33).

Theorem 3.2.11 Let (M,<,>) be a connected Riemannian manifold and dist :
M ×M → R the corresponding distance function. Let X0 and X1 be two vector
fields on M and p, q ∈ M some points. Assume that there exists an open subset
N ⊂M with compact closure such that

p, q ∈ N, (3.2.34)

distN (p, q) = dist(p, q). (3.2.35)

Consider the s-dependent vector field

Xs = X0 + s(X1 −X0) (3.2.36)

and choose T > 0 such that for every s ∈ [0, 1] and m ∈ N̄ the trajectory t 7→
FltXs(m) is defined for all t ∈ [0, T ]. Then,

dist(FltX0
(p),FltX1

(q)) ≤
(
c2

c1
+ c3

)
ec1t − c2

c1
(3.2.37)
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for all t ∈ [0, T ]. Here
c1 = sup

m∈KT
s∈[0,1]

‖(∇Xs)m‖ , (3.2.38)

c2 = sup
m∈KT

‖X1 −X0‖m , (3.2.39)

c3 = dist(p, q) (3.2.40)

and KT ⊂M is a compact subset given by

KT = {FltXs(m) | m ∈ N̄ , t ∈ [0, T ], s ∈ [0, 1]}.

Proof. Fix a smooth curve [0, 1] 3 s 7→ β(s) ∈ N joining p and q, β(0) = p, β(1) = q.
Using the flow of the s-dependent vector field (3.2.36), define the parameterized
surface α(t, s) = FltXs(β(s)). Let L(t) be the length of the s-curve s 7→ αt(s) on
the parameterized surface α. In particular, L(0) = L(β). By hypotheses (3.2.34),
(3.2.35), for any ∆ > 0, one can choose the curve β in such a way that L(0)−∆ <
distN (p, q) = dist(p, q). Then, Proposition 3.2.10 implies

dist(α(t, 0), α(t, 1) ≤ L(t) ≤
(
c2

c1
+ dist(p, q) + ∆

)
ec1t − c2

c1
.

Since ∆ is an arbitrary positive number, taking the limit ∆ → 0 in the right hand
side of this inequality, we arrive at (3.2.37).

Corollary 3.2.12 In the case when X1 = X0, under assumptions ( 3.2.34), ( 3.2.35),
the estimate ( 3.2.37). takes the form

dist(FltX0
(p),FltX0

(q)) ≤ dist(p, q)ec1t

where
c1 = sup

m∈KT
‖(∇X0)m‖ ,

and KT = {FltX0
(m) | m ∈ N̄ , t ∈ [0, 1]}.

This result was obtained in [44].

Remark 4 In the case when p = q, assumptions ( 3.2.34), ( 3.2.35) can be omitted
and the estimate ( 3.2.37) is written as

dist(FltX0
(p),FltX1

(p)) ≤
(
c2

c1

)
(ec1t − 1).

Notice that conditions (3.2.34), (3.2.35) do not hold in general.
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3.2.3 Free S1-actions and Riemannian submersions

To formulate the main results, we need some facts on the invariant metrics about
principal S1-bundles.
S1-actions. Let M be a connected manifold and A0 a vector field on M whose

flow FltA0
is periodic with frequency function ω : M → R, ω > 0. Consider the

action of the circle S1 = R�2πZ associated with infinitesimal generator Υ = 1
ωA0

and assume that this action is free. This means that each trajectory of Υ is minimally
2π-periodic. Let O = M�S1 be the orbit space of the S1-action and ρ : M → O the
natural projection. It follows from well-known properties of free actions of compact
Lie groups [24, 49] that there exists a unique manifold structure on O such that
ρ is a smooth surjective submersion (a fiber bundle). Moreover, ρ is a principal
S1-bundle over O. For each S1-invariant vector field Y on M there exists a unique
vector field YO on O which is ρ-relative with Y ,

dρ ◦ Y = YO ◦ ρ.

and called the reduced vector field.
Riemannian submersion and horizontal lifts. Recall that a fiber bundle

(M,ρ,B, F ) consists of the manifolds M , B, E and a surjective submersion ρ : M →
B such that for each b ∈ B the set M |b := ρ−1(b) is diffeomorphic to F . M is called
the total space, B the base space, ρ the projection and F the standard fiber. The
space

V := ker dρ (3.2.41)

is called the vertical subbundle of M . If M is a Riemannian manifold, the horizontal
subbundle H of M can be defined as the orthogonal complement of V,

H := V⊥. (3.2.42)

Thus, for each m ∈M , the linear transformation

dmρ : Hm → Tp(m)B.

is an isomorphism. Hence, we have the decomposition

TM = H⊕ V.

The vector fields on M tangent to H and V are called horizontal and vertical
vector fields, respectively.

If B is also a Riemannian manifold, p is a Riemannian submersions if dmρ :
Hm → Tp(m)B is an isometric isomorphism for all m ∈ M . For every v ∈ X(B)
there exists a vector field hor(v) ∈ XM , called the horizontal lift of v satisfying the
conditions

• hor(v)(m) ∈ Hm,

• dρ ◦ hor(v) = v ◦ ρ.
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hor(v) is well-defined and depends on m smoothly. Let γ : [a, b] → B be a smooth
curve on B passing trough the point γ(0) = x ∈ B. Let m ∈ Ma be a point in the
fiber over x. A lift of γ trough m is a smooth curve γ̃ : [a, b]→M such that

• m = γ̃(a), (3.2.43)
• ρ ◦ γ̃ = γ. (3.2.44)

A lift curve is horizontal if in addition

d
dt
γ̃(t) ∈ Hγ̃(t), ∀t ∈ [a, b]. (3.2.45)

Given any smooth curve γ : [a, b] → B there exists always a local horizontal lift of
γ. This means that conditions (3.2.44)-(3.2.45) hold in an interval [a, a+ε] for some
ε > 0. If ρ is a proper surjective submersion then for any γ : [a, b]→ B there exists
a global horizontal lift γ̃ : [a, b]→M , [52].

Riemannian submersions on the S1-principal bundle (M,ρ,O). Pick a
Riemannian metric <,> on M which is invariant with respect to the S1-action,
that is, the flow FltΥ is an isometry on (M,<,>). Such a S1-invariant Riemannian
metric always exists and can be obtained from an arbitrary Riemannian metric on
M by applying the averaging procedure . Indeed, if g̃ is the metric tensor of a given
Riemannian metric on M , then formula (see Chapter 2)

g :=
1

2π

∫ 2π

0
(FltΥ)∗g̃dt

gives the metric tensor of an S1-invariant Riemannian metric. Consider the S1-
principal bundle (M,ρ,O) whereO = M�S1 denotes the orbit space and ρ : M → O
the canonical projection. The line distribution Span{Υ} coincides with the vertical
subbundle V of M . Since the Riemannian metric is S1-invariant, the horizontal
subbundle is also invariant with respect to the S1-action,

(dm FltΥ )(Hm) = HFltΥ (m) ∀m ∈M.

Therefore, we have the S1-invariant, orthogonal splitting

TM = H⊕ V, (3.2.46)

and for every vector field Y on M there is a the decomposition Y = Y hor + Y ver

into horizontal and vertical parts. It is clear that the restriction of the differential
dmρ : TmM → Tρ(m)O to Hm is an isomorphism. For every vector field v on O
there exists a unique horizontal lift hor(v) on M which is tangent to H and such
that dρ ◦ hor(v) = v ◦ ρ.

Moreover, there exists a unique Riemannian metric <,>o on the orbit space O
such that the projection ρ is a Riemannian submersion (see [52], page 327),

〈u1, u2〉m = 〈(dmρ)u1, (dmρ)u2〉oρ(m) (3.2.47)

for any m ∈ M and u1, u2 ∈ Hm. Denote by disto : O × O →R the distance
function associated to the Riemannian metric <,>o on O. Denote by ∇ and ∇o the
Riemannian connections on (M,<,>) and (O, <,>o), respectively.
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Lemma 3.2.13 Let γ : [0, 1] 3 s 7→ γ(s) ∈ M be a smooth curve on M and
α := ρ ◦ γ : [0, 1] 3 s 7→ ρ(γ(s)) ∈ O its projection to the orbit space. Let (dγds )hor ∈
Hγ(s) and (dγds )ver ∈ Vγ(s) are horizontal and vertical components in the orthogonal
decomposition

dγ

ds
=
(
dγ

ds

)hor

+
(
dγ

ds

)ver

. (3.2.48)

Then,

(a) the arc lengths of the curves γ and α

L(γ) =

1∫
0

∥∥∥∥dγds
∥∥∥∥ ds, L(α) =

1∫
0

∥∥∥∥dαds
∥∥∥∥o ds

satisfy the inequalities
L(α) ≤ L(γ) (3.2.49)

L(γ) ≤ L(α) +

1∫
0

∥∥∥∥(dγds
)ver∥∥∥∥ ds ≤ √2L(γ). (3.2.50)

The equality L(α) = L(γ) holds if and only if the curve γ is horizontal,
(dγds )ver = 0.

(b) For any p, q ∈M , we have

disto(ρ(p), ρ(q)) ≤ dist(p, q). (3.2.51)

Proof. The statement (a) is evident and follows from the relation dα
ds = (dγ(s)ρ)(dγds )hor,

orthogonal decomposition (3.2.48) and the equality∥∥∥∥dαds
∥∥∥∥o =

∥∥∥∥∥
(
dγ

ds

)hor
∥∥∥∥∥ , (3.2.52)

which is consequence of the property that ρ is a Riemannian submersion. To prove
the item (b), for arbitrary p, q ∈M and ∆ > 0, let us choose a curve γ on M joining
p with q and such that dist(p, q) + ∆ ≥ L(γ). Then, by (3.2.49) we get

disto(ρ(p), ρ(q)) ≤ L(ρ ◦ γ) ≤ L(γ)
≤ dist(p, q) + ∆.

Since, ∆ > 0 is arbitrary, inequality (3.2.51) is true.

Remark 5 One can suppose that a Riemannian metric on the orbit space is arbi-
trary because of the following fact. For a given Riemannian metric 〈, 〉o on O, there
exists a S1-invariant Riemannian metric 〈, 〉 on M such that the projection ρ is a
Riemannian submersion.
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The following statement gives us the key property of the horizontal lift.

Proposition 3.2.14 Let X ∈ X(M) be a vector field and γ : [0, T ] → M the
trajectory of X through m0 ∈M , γ(t) = Flt

X
(m0).Consider the projection α = ρ ◦ γ

and its horizontal lift α̃ : [0, T ] 3 t 7→ α̃(t) ∈ M through m0, α̃(0) = m0. Then,
there exists a smooth function τ : [0, T ]→ R such that τ(0) = 0 and

α̃(t) = gt(γ(t)) (3.2.53)

where
gt = Flτ(t)

Υ . (3.2.54)

Moreover, the curve t 7→ α̃(t) ∈ M is the trajectory through m0 of the horizontal
t-dependent vector field

X̃t = (gt)∗Xhor, (3.2.55)

that is,
dα̃(t)
dt

= X̃t(α̃(t)).

Moreover, the following properties hold

‖ X̃t ‖α̃(t)=‖ X ‖γ(t) (3.2.56)

and
‖ ∇vX̃t ‖α̃(t)≤‖ ∇Xhor ‖γ(t) · ‖ v ‖α̃(t) (3.2.57)

for every v ∈ Tα̃(t)M .

Proof. By definition, the points α̃(t) and γ(t) belongs to the same fiber ρ−1(α(t))
and hence they can be joint by a segment of the periodic trajectory of Υ for the time
τ = τ(t). Differentiating the both sides of (3.2.53) in t and using the decomposition
(3.2.48) give

dα̃(t)
dt

= (dγ(t)g
t)
dγ(t)
dt

+ τ ′(t)Υ(γ(t)) (3.2.58)

= (dγ(t)g
t)Xhor(γ(t)) + (dγ(t)g

t)Xver(γ(t))

+ τ ′(t)Υ(γ(t)).

Remark that the flow of Υ is an isometry which preserves splitting (3.2.46) of TM
into horizontal and vertical subspaces. Hence, the diffeomorphisms gt have the same
properties. From here and the fact that the velocity dα̃(t)

dt is a horizontal vector, we
deduce from (3.2.58) the relations

dα̃(t)
dt

= (dγ(t)g
t)Xhor(γ(t) (3.2.59)

and
τ ′(t)Υ(γ(t)) = −(dγ(t)g

t)Xver(γ(t)).
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The last formula just defines the function τ(t). Putting γ(t) = (gt)−1(α̃(t)) into
(3.2.59) leads to the relation

dα̃(t)
dt

= (d(gt)−1(α̃(t)g
t)Xhor((gt)−1(α̃(t))

= (gt)∗Xhor(α̃(t))

which says that α̃(t) is the trajectory through m0 of the vector field X̃t in (3.2.55).
Equality (3.2.56) follows from the property that the differential of gt is a linear
isometry and the representation X̃t(m) = (dmgt)X((gt)−1m). Finally, applying
Lemma 3.2.1, we get

‖ ∇vX̃t ‖α̃(t)=‖ ∇(dα̃(t)g
t)−1vX ‖γ(t)≤‖ ∇X ‖γ(t) · ‖ v ‖α̃(t)

3.2.4 A geometric proof of the averaging theorem

Suppose we are start with a perturbed vector field on M

Aε = A0 + εA1,

where A0 is a vector field with periodic flow, frequency function ω > 0 and A1 ∈
X(M) is a certain vector field. We assume that the S1-action with infinitesimal
generator Υ = 1

ωA0 is free.
Let 〈A1〉 be the S1-average of the perturbation vector field A1 and 〈A1〉O the

reduced averaged vector field on O,

dρ ◦ 〈A1〉 = 〈A1〉O ◦ ρ.

Assume that the orbit space O is equipped with a certain metric <,>o. The corre-
sponding distance function is denoted by disto : O ×O → R.

Theorem 3.2.15 Fix m0 ∈ M and assume that the trajectory of 〈A1〉O through
z0 = ρ(m0) ∈ O is defined for t ∈ [0, T ] and remains in an open domain D0 with
compact closure. Then, there exist some constants ε0 > 0, T0 > 0 and c > 0 such
that

disto(ρ ◦ FltAε
(m0),Flεt〈A1〉O(z0)) ≤ cε (3.2.60)

for all ε ∈ [0, ε0] and t ∈ [0, T0
ε ].

We will proceed the proof of this Theorem in few steps.
First of all we choose an S1-invariant metric <,> on M such that the projection

ρ : M → O is a Riemannian submersion
Step 1. (Fixing ε0). Pick another open domain D in O with compact closure

such that D0 ⊂ D. Then, N0 = ρ−1(D0) and N = ρ−1(D) are open domains in
M with compact closure which are invariant with respect to the S1-action. It is
clear that m0 ∈ N0 ⊂ N . By Theorem 3.1.1 there exist δ > 0 and a near identity
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transformation Φε : N → M with which takes the perturbed vector field Aε into
the form

(Φε)∗Aε = A0 + ε〈A1〉+ ε2Rε.

for all ε ∈ (−δ, δ). Here, the remainder Rε is a smooth ε-dependent vector field on
N . Without loss of generality, we can assume that Rε is extended to the closure N̄ .
The diffeomorphism Φε is given as the time-ε flow of the vector field

Z =
1
ω
S(A1) +

1
ω3
S2(L〈A1〉ω)A0 (3.2.61)

which is defined on the whole M .
Since, Φε is a near identity transformation Φε, there exists a constant δ0 ∈ (0, δ]

such that
m0 ∈ Φε(N0 ) ∀ε ∈ [0, δ0]. (3.2.62)

Condition (3.2.62) can be rewritten as

mε := Φ−1
ε (m0) ∈ N0. (3.2.63)

Lemma 3.2.16 Let [0, δ0] 3 ε 7→ mε ∈ N0 be the parameterized curve and Lε its
arc length. Then, for all ε ∈ [0, δ0], we have

dist(m0,mε) ≤ Lε ≤ κ0ε

where
κ0 = sup

m∈N0

‖Z(m)‖ . (3.2.64)

Proof. Consider the parameterized curve [0, δ0] 3 ε 7→ mε ∈ N0. Taking into account
that dmε

dε = −Z(mε), we get

Lε =
∫ ε

0

∥∥∥∥dmε′

dε′

∥∥∥∥ dε′
=
∫ ε

0
‖Z(mε′)‖ dε′ ≤ sup

m∈N0

‖Z‖m ε.

Corollary 3.2.17 Let [0, ε0] 3 ε 7→ ρ(mε) ∈ D0 be the parameterized curve on the
orbit space and Loε its arc length. Then, the inequality

disto(ρ(m0), ρ(mε)) ≤ Loε ≤ κ0ε

holds for ε ∈ [0, ε0].

Consider the following (s, ε)-dependent vector field on N :

Ãε,s = A0 + ε〈A1〉+ sε2Rε (3.2.65)

where s ∈ [0, 1].
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Lemma 3.2.18 There exists ε0 ∈ (0, δ0] such that for every trajectory of Ãs,ε

through msε

t 7→ γε,s(t) := Flt
Ãε,s

(msε) ∈ N (3.2.66)

is defined for t ∈ [0, T0
ε ] if ε ∈ [0, ε0] and s ∈ [0, 1].

Proof. By standard properties of flows, we have

Flt
Ãε,s

= FltA0
◦Flεt

Pε
(3.2.67)

where
Pt = (Pε,s)t = 〈A1〉 − t(L〈A1〉ω)Υ + εs(FltA0

)∗Rε

is a time-dependent vector field parametercally depending on ε, s in a smooth way.
Since the flow of A0 is periodic, it is enough to show that for small enough ε, the
interval [0, T0] belongs to the interval of definition of the trajectory of Pt through
msε. The vector field (P0,s)t = 〈A1〉− t(L〈A1〉ω)Υ is S1-invariant and ρ-related with
〈A1〉O and hence by the hypothesis of Theorem 3.2.15, its trajectory through m0 is
defined for t ∈ [0, T0]. Then, there exists ε0 ∈ (0, δ0] such that for every ε ∈ [0, ε0]
and s ∈ [0, 1] the trajectory of (Pε,s)t = (P0,s)t + εs(FltA0

)∗Rε through msε is also
defined for all t ∈ [0, T0]. Here we use , the following well-known property (see [1],
page 222): if [0, T0] belongs to the domain of definition of the trajectory through
m0, then there exists a neighborhood U of m0 such that any m ∈ U has trajectory
existing for time t ∈ [0, T0].

Step 2 (Triangle Inequality ) Remark that the perturbed vector field is related
with (3.2.65) by the formula

Aε = (Φε)∗Ãε,1

and hence
t 7→ FltAε

(m0) = (Φε ◦ Flt
Ãε,1

)(mε)

Fix ε0 as in Lemma 3.2.18. Then, for each ε ∈ [0, ε0], the trajectories of the per-
turbed vector field Aε and the averaged vector field

Ãε,0 = A0 + ε〈A1〉

through the point m0 are defined for all t ∈ [0, T0
ε ]. To estimate the distance between

the points of these trajectories, we start with standard triangle inequality argument
[66]

dist(FltAε
(m0),Flt

Ãε,0
(m0)) (3.2.68)

≤ dist(FltAε
(m0),Flt

Ãε,1
(mε)) + dist(Flt

Ãε,1
(mε),Flt

Ãε,0
(m0))

The first term in (3.2.68) has the following estimate

dist(FltAε
(m0),Flt

Ãε,1
(mε)) = dist(Φε ◦ Flt

Ãε,1
(mε),Flt

Ãε,1
(mε)) ≤ κ1ε (3.2.69)
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where
κ1 = sup

m∈N̄
‖Z‖m (3.2.70)

This inequality follows from the same arguments as the proof of Lemma 3.2.16. It
follows from (3.2.69) and (3.2.51) that

disto(ρ ◦ FltAε
(m0), ρ ◦ Flt

Ãε,1
(mε)) ≤ κ1ε

This implies the following fact.

Lemma 3.2.19 For all ε ∈ [0, ε0] and t ∈ [0, T0
ε ] the following estimate holds

disto(ρ ◦ FltAε
(m0),Flεt〈A1〉O(z0)) ≤ κ1ε (3.2.71)

+ disto(ρ ◦ Flt
Ãε,1

(mε), ρ ◦ Flt
Ãε,0

(m0)).

Step 3 (Gronwall’s inequality) To estimate the second term in (3.2.71), we make
some preparation steps. For each fixed ε, denote by γε : [0, T0

ε ].→ N the trajectory
of the vector field Ãε,1 through mε,

γε(t) = Flt
Ãε,1

(mε).

Consider its projection to the orbit space αε = ρ◦γε : [0, T0
ε ].→ D and the horizontal

lift α̃ε : [0, T0
ε ] 3 t 7→ α̃ε(t) ∈ N through mε of the curve αε. Then, by Proposition

3.2.14 for every t, there exists a fiber wise diffeomorphism gtε on N defined by
(3.2.54), such that g0

ε = id and

α̃ε(t) = gtε(γε(t)).

Moreover, α̃ε(t) is the trajectory of the time-dependent vector field (gtε)∗Ã
hor
ε,1 where

Ãhor
ε,1 = ε〈A1〉hor + ε2Rhor

ε .

Since gtε is defined as the re parameterized flow of the infinitesimal generator of the
S1-action we have that (gtε)∗ 〈A1〉hor = 〈A1〉hor and hence

(gtε)∗Ã
hor
ε,1 = ε〈A1〉hor + ε2(gtε)∗R

hor
ε .

For every ε ∈ [0, ε0] and s ∈ [0, 1], introduce the following horizontal time-dependent
vector field on N :

Xt = (Xε,s)t := ε〈A1〉hor + sε2(gtε)∗R
hor
ε .

For each ε ∈ [0, ε0] , using the flow of this vector field, we define a parameterized
surface in N as

σε : [0,
T0

ε
]× [0, 1] 3 (t, s) 7→ σε(t, s) := FltXt

(mεs). (3.2.72)

It is clear that
σε(t, 0) = Flεt〈A1〉hor(m0).
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Since (Xε,1)t coincides with (gtε)∗Ã
hor
ε,1 we have

α̃ε(t) = σε(t, 1)

and hence
ρ ◦ σε(t, 1) = αε(t).

Therefore, for the second term in (3.2.71) we have the estimation (Proposition 3.2.14)

disto(ρ ◦ σε(t, 1), ρ ◦ σε(t, 0)) ≤ dist(σε(t, 1), σε(t, 0))

which says that it is enough to study the lengths of the s-curves in the surface σε.
For a fixed t, consider the horizontal s-curve s 7→ σε,t(s) = σε(t, s) and denote by

Lε(t) :=

1∫
0

∥∥∥∥dσε,t(s)ds

∥∥∥∥ ds
its arc length.

Lemma 3.2.20 For all ε ∈ [0, ε0] and t ∈ [0, T0
ε ] the following estimate holds

Lε(t) ≤
[(
κ3

κ2
+ κ0

)
eεκ2t − κ3

κ2

]
ε, (3.2.73)

where κ0 is given by ( 3.2.64) and

κ2 = sup
m∈N̄
ε∈[0,ε0]

(∥∥∥∇〈A1〉hor
∥∥∥
m

+ ε
∥∥∥∇Rhor

ε

∥∥∥
m

)
, (3.2.74)

κ3 = sup
m∈N̄
ε∈[0,ε0]

‖ Rhor
ε ‖m . (3.2.75)

Proof. Applying the basic inequality (3.2.23), we have

Lε(t) ≤ Lε(0) +

t∫
0

∫ 1

0
‖ ∇ ∂σε

∂s

∂σε
∂t′
‖σε dsdt′. (3.2.76)

By definition, the t-curves in σε are horizontal and

∂

∂t
σε(t, s) = ε

(
〈A1〉hor + sε2(gtε)∗R

hor
ε

)
◦ σε.

It follows that

‖ ∇ ∂σε
∂s

∂σε
∂t′
‖σε≤ ε ‖ ∇〈A1〉hor ‖σε ·

∥∥∥∥∂σε∂s
∥∥∥∥
σε

+sε2 ‖ ∇ ∂σε
∂s

(
(gtε)∗R

hor
ε

)
‖σε +ε2 ‖ (gtε)∗R

hor
ε ‖σε .
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By Lemma 3.2.1, we deduce

‖ ∇ ∂σε
∂s

(
(gtε)∗R

hor
ε

)
‖σε≤‖ ∇

(
(gtε)∗R

hor
ε

)
‖σε · ‖

∂σε
∂s
‖σε

=‖ ∇Rhor
ε ‖g−tε ◦σε · ‖

∂σε
∂s
‖σε

and
‖ (gtε)∗R

hor
ε ‖σε=‖ Rhor

ε ‖g−tε ◦σε .

Putting these relations into (3.2.76) we arrive to the inequality

Loε(t) ≤ εκ0 + εκ2

t∫
0

Lε(t′)dt′ + ε2κ3t.

Applying the specific Gronwall lemma leads to (3.2.73).

Finally, the proof of Theorem 3.2.15 follows from Lemma 3.2.19, Lemma 3.2.20
and the inequality

dist(σε(t, 1), σε(t, 0)) ≤ Lε(t).

Corollary 3.2.21 The ε-independent constant in ( 3.2.60) can be chosen as follows

c = κ1 +
(
κ3

κ2
+ κ0

)
eκ2T0 − κ3

κ2
, (3.2.77)

where the constants κ0,κ1,κ2,κ3 are given by ( 3.2.64)-( 3.2.75).

Remark that the upper estimates for the constants κ0 and κ1 can be expressed
directly in terms of vector fields A0 and A1 by using the following estimate for the
infinitesimal generator (3.2.61) of the near identity transformation:

‖Z‖m ≤
1
ω
‖A1‖m +

1
ω3
| S2(L〈A1〉ω) | ‖A0‖m

for every m ∈M.

Remark 6 Instead of parameterized surface ( 3.2.72), one can try to use the surface
σ̃ε generated by trajectories of the (s, ε)-dependent vector field Ãε,s ( 3.2.65) which
start at the initial s-curve s 7→ msε. Then,

disto(ρ ◦ Flt
Ãε,1

(mε), ρ ◦ Flt
Ãε,0

(m0)) ≤ L1
0(ρ ◦ σ̃ε,t).

But we have estimation for the length L1
0(ρ ◦ σ̃ε,t) = O(ε) at the time long scale

t ∼ 1
ε , only if L〈A1〉ω = 0.

Applications of the Averaging Theorem. Let Aε = A0 + εA1 be a perturbed
vector field on a Riemannian manifold (M,< · >). Below we suppose that the flow
of the unperturbed vector field A0 is periodic with frequency function ω : M → R
and the S1-action with infinitesimal generator Υ = 1

ωA0 is free. Recall that ω is a
first integral of A0 and ω = ρ ◦ ωO for a certain smooth function ωO : O → R. Here
ρ : M → O is the natural projection.
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Proposition 3.2.22 (Adiabatic Invariant) Assume also that the averaged vector
field 〈A1〉O on the orbit space O = M�S1 satisfies the hypothesis of Theorem 3.2.15
and admits a smooth first integral JO : O → R,

L〈A1〉OJO = 0 (3.2.78)

Then,
J = JO ◦ ρ

is an adiabatic invariant of Aε, that is,

|J ◦ FltAε
(m0)− J(m0)| = O(ε)

for m0 ∈ D0 , for small enough ε and t ∈ [0, T0
ε ].

Proof. Since the closure of the open domain D is compact, the function JO has the
Lipschitz property on D̄ (see, for example, [67])

|JO(z)− JO(y)|o ≤ λJ ‖z − y‖o .

Then, by condition (3.2.78) and Theorem 3.2.15 we have∥∥J ◦ FltAε
(m0)− J(m0)

∥∥
=
∥∥∥JO(ρ ◦ FltAε

(m0))− JO(Flεt〈A1〉O(ρ(m0))
∥∥∥

≤ λJ
∥∥∥ρ ◦ FltAε

(m0)− Flεt〈A1〉O(ρ(m0)
∥∥∥o

≤ λJcε,

where the constant c is given by (3.2.77).

Remark 7 Another important consequence of Theorem 3.2.15 can be formulated as
follows (see, for example Moser [58]). If the averaged vector field 〈A1〉O on O admits
admits a nondegenerate rest point z0 ∈ D0,

〈A1〉O(z0) = 0.

then, for small enough ε, the original perturbed vector field Aε admits a periodic
trajectory γε(t) whose projection ρ(γε(t)) ∈ O is ε-close to z0 and the period T (ε)
has the representation

T (ε) =
2π

ωO(z0)
+O(ε).



Chapter 4

Periodic Averaging on Slow-Fast Spaces

In this chapter, in the context of normal forms, we study a wide class of perturbed
Hamiltonian systems so-called slow-fast phase spaces. This kind of systems appear
in the theory of adiabatic approximation [7, 38, 62] and its generalizations [16,
17, 19, 43, 74, 76]. In applications, such perturbed models come from ε-dependent
Hamiltonians which are slow or rapidly varying in some degrees of freedom as ε→ 0.
Geometrically, the perturbation theory for slow-fast systems deals with phase spaces
equipped with symplectic forms (or Poisson brackets) depending on the perturbation
parameter ε in a singular way at ε = 0. As a consequence, the main feature of our
perturbed model is that, in the limit ε→ 0, the unperturbed system does not inherits
any natural Hamiltonian structure. This means that one can not apply directly any
results of the regular Hamiltonian perturbation theory.

By a slow-fast phase space we mean a product M = S1 × S2 of two symplectic
manifolds (S1, σ1) and (S2, σ2) equipped with a rescaled product symplectic form
σ = σ1⊕εσ2. We think ofM as the total space of the trivial fiber bundle π1 : M → S1

over the “slow” base with “fast” fiber S2. On such a phase space we consider a
perturbed Hamiltonian system with Hamiltonian Hε = H0 + εH1, whose leading
term H0 depends on the slow variables m1 ∈ S1 and the fast variables m2 ∈ S2

appear only in the perturbation H1. The corresponding Hamiltonian vector field
VHε is of the form VHε = V + εW, where the unperturbed vector field V is no
longer Hamiltonian but projects to the Hamiltonian vector field vf on (S1, σ1). In
particular, when H0 ≡ 0, we arrive at the adiabatic situation [7, 62].

We are interested in two types of normalization related to S1-actions. First,
we show that in the resonant case, when the flow FltV of the unperturbed system is
periodic, the perturbed vector field V+εW admits a first order normalization relative
to V. Our main observation is that, although the unperturbed and perturbation
vector fields V andW are not Hamiltonian, because of a special relationship between
V andW, one can still use the general criterion (Theorem 4.2.1) applying the period-
energy relation argument for the Hamiltonian vector field vf . The term “resonance”
is motivated by the following interpretation of the periodicity condition for the flow
FltV. Since the flow FltV is a fiber preserving mapping on the trivial symplectic
bundle S1 × S2 → S1, under the periodicity of the flow of vf , one can introduce
the monodromy map g : S1 → Sym(S2, σ2). Then, the flow FltV is periodic if
gk(m1) = id for all m1 ∈ S1and some integer k ≥ 1. In the particular case, when
S2 = R2m and H1 is a quadratic function in the fast variables, this condition is
precisely the resonance condition between the “tangential” and “normal” frequencies
of the linearized Hamiltonian dynamics over S1 . Such perturbed models appear in

73
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the study of Hamiltonian dynamics near an invariant symplectic submanifold (S1, σ1)
[39, 74]. Here, S1× R2m plays the role of the normal bundle of the submanifold S1

and the unperturbed vector field V presents the linearized dynamics around S1.
The second normalization setting for VHε = V+εW is motivated by the question

on the geometric meaning of the normalization transformation in the proof of the
classical adiabatic theorem [7, 62]. In this case, the flow of V is not necessarily
periodic and we only assume that V admits a circle first integral J . This means that
the vertical Hamiltonian vector field VJ is an infinitesimal generator of an S1-action.
Therefore we deal with the situation when the unperturbed vector field V is invariant
with respect to the S1-action but not the symplectic form σ nor the Hamiltonian Hε.
To correct this “defect”, we are looking for a near identity transformation Tε which
brings the original perturbed model to a system which is ε2 close to a S1-symmetric
Hamiltonian system. We show that such a normalization transformation can be de-
fined as a symplectomorphism between the symplectic structure σ and its S1-average
〈σ〉. In the case of two degrees of freedom, we perform a detailed analysis of the
properties of Tε and derive various results concerning nearly integrable Hamiltonian
systems and adiabatic invariants. Here, our main tools are the averaging technique
on symplectic fibered spaces [28, 47, 55], the notion of weak coupling symplectic
structures [30] and the Moser homotopy method [57] (see also [17, 74]).

4.1 General Normalization Settings

Let M = S1 × S2 be a product of two symplectic manifolds (S1, σ1) and (S2, σ2).
Let π1 : M → S1 and π2 : M → S2 be the canonical projections and d1 and d2

the partial exterior derivatives on M along S1 and S2, respectively. It is clear that
d = d1 + d2 is the exterior derivative on M and d2

1 = d2
2 = d1 ◦ d2 + d2 ◦ d1 = 0.

Denoting σ(1) = π∗1σ1 and σ(2) = π∗2σ2, let us consider the following ε-dependent
2-form on M

σ = σ(1) + εσ(2) (4.1.1)

which is a symplectic structure for all ε 6= 0. For H ∈ C∞(M), denote by VH the
Hamiltonian vector field relative to σ. Then, VH = V

(1)
H + 1

εV
(2)
H , where V (1)

H and
V

(2)
H are vector fields on M uniquely defined by the relations

i
V

(1)
H

σ(1) = −d1H, (4.1.2)

i
V

(1)
H

σ(2) = 0, (4.1.3)

and
i
V

(2)
H

σ(2) = −d2H, (4.1.4)

i
V

(2)
H

σ(1) = 0. (4.1.5)

It follows that, for all m1 ∈ S1 and m2 ∈ S2, the vector fields V (1)
H and V

(2)
H are

tangent to the symplectic slices S1 × {m2} and {m1} × S2, respectively. For every
u ∈ X(S1), denote by û = u ⊕ 0 ∈ X(M) the lifting associated to the canonical
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decomposition TM = TS1⊕TS2. By {, }1 and {, }2 we denote the Poisson brackets
on M associated to the presymplectic structures σ(1) and σ(2), respectively. Then,
{H,G}1 = Π(1)(dH, dG) = L

V
(1)
H

G and {H,G}2 = Π(2)(dH, dG) = L
V

(2)
H

G. Here,

Π(1),Π(2) ∈ χ2(M) denote the corresponding Poisson tensor fields. In this terms,
we have V (1)

H = idHΠ(1) and V
(2)
H = idHΠ(2).

On the slow-fast phase space (M,σ), let us consider the following perturbed
Hamiltonian model [17, 19, 74, 76]

Hε = f ◦ π1 + εF, (4.1.6)

for some f ∈ C∞(S1) and F ∈ C∞(M). The corresponding Hamiltonian vector field
takes the form

VHε = V+ εW, (4.1.7)

where
V = v̂f + V

(2)
F (4.1.8)

and
W = V

(1)
F (4.1.9)

are unperturbed and perturbation vector fields, respectively. Here vf denotes the
Hamiltonian vector field on (S1, σ1) of f . It is clear that v̂f = V

(1)
f◦π1

and we have
the relations

[v̂f , V
(1)
F ] = V

(1)
Lv̂f F

, (4.1.10)

[v̂f , V
(2)
F ] = V

(2)
Lv̂f F

. (4.1.11)

In the bracket form, the Hamiltonian system of (4.1.7) is written as follows

ξ̇i = {f ◦ π1, ξ
i}1 + ε{F, ξi}2,

ẋα = {F, xα}2,

where ξ = (ξi) ∈ S1 and x = (xα) ∈ S2.
The Deprit Normalization. The first normalization question we address for

Hamiltonian vector field (4.1.7) is the standard one: put VHε into a normal form
relative to V up to desired order. Since the vector field in (4.1.8) and (4.1.9) are
related through the dependence of F , first of all, it is natural to see under which
conditions perturbed vector field (4.1.8) is in normal form relative to V. We need
the following useful technical fact.

Lemma 4.1.1 For every G ∈ C∞(M), the Lie brackets between the vector fields
V

(1)
G , V

(2)
G and V ( 4.1.8) are given by the relations

i
[V

(1)
G ,V]

(σ(1) + σ(2)) = LVd1G− LV (1)
G

d2F, (4.1.12)

[V (2)
G ,V] = −V (2)

LVG
. (4.1.13)



76 Periodic Averaging on Slow-Fast Spaces

Proof. From relations (4.1.2)-(4.1.4) and Cartan formula LX = iX ◦ d + d ◦ iX , we
get

L
V

(1)
G

σ(1) = −d2 ◦ d1G, L
V

(1)
G

σ(2) = 0, (4.1.14)

L
V

(2)
F

σ(1) = 0, L
V

(2)
F

σ(2) = −d1 ◦ d2F. (4.1.15)

It follows that L
V

(1)
G

(σ(1) + σ(2)) = −d2 ◦ d1G and i
V

(2)
F

(σ(1) + σ(2)) = −d2F. Next,
using the identity i

[V
(1)
G ,V

(2)
F ]

= L
V

(1)
G

◦ i
V

(2)
F

− i
V

(2)
F

◦ L
V

(1)
G

, we derive the following

formula for the Lie bracket between V
(1)
G and V

(2)
F

i
[V

(1)
G ,V

(2)
F ]

(σ(1) + σ(2)) = −L
V

(1)
G

d2F + i
V

(2)
F

(d2 ◦ d1G), (4.1.16)

= −
(
i
V

(1)
G

(d1 ◦ d2F ) + i
V

(2)
F

(d1 ◦ d2G)
)
.

Finally, (4.1.10) implies the equality i
[V

(1)
G ,v̂f ]

(σ(1) +σ(2)) = d1(Lv̂fG) which together

with (4.1.16) leads to the formula

i
[V

(1)
G ,v̂f+V

(2)
F ]

(σ(1) + σ(2)) = d1(Lv̂fG)− i
V

(2)
F

(d1 ◦ d2G)−
(
i
V

(1)
G

(d1 ◦ d2F )
)
.

Taking into account the property d1 ◦ Lv̂f = Lv̂f ◦ d1 and the equalities

i
V

(2)
F

(d1 ◦ d2G) = −L
V

(2)
F

d1G and i
V

(1)
G

(d1 ◦ d2F ) = L
V

(1)
G

d2F,

we derive the identity (4.1.12). Formula (4.1.13) follows directly from (4.1.11) and
the identity [V (2)

G , V
(2)
F ] = −V (2)

L
V

(2)
F

G.

The canonical decomposition TM = TS1⊕TS2 induces decomposition of every of
1-forms on M into horizontal and vertical components which vanish the vector fields
tangent to the slices {m1}×S2 and S1×{m2}, respectively. Taking into account that
d1G and d2F are horizontal and vertical 1-forms respectively, we observe that the
first and the second terms in the right hand side of (4.1.12) belong to the subspaces
vertical and horizontal, respectively. This leads to the following consequence of
Lemma 4.1.1.

Corollary 4.1.2 The perturbed vector field V + εW ( 4.1.7) is in normal form rel-
ative to V,

[V,W] = 0,

if and only if the functions f and F are related by the conditions

LVd1F = 0 and LWd2F = 0. (4.1.17)

Therefore, in general, the vector fields V and W do not commute. This fact gives
rise to the normalization question.

The Hamiltonization Problem. We observe that in general, the unperturbed
vector field V is not Hamiltonian relative to the symplectic structure (4.1.1). Indeed,
it follows from (4.1.14), (4.1.15) that

LVσ = −εd1 ◦ d2F (4.1.18)
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and hence V is Hamiltonian relative to σ for ε 6= 0, only in the case when F =
π∗1f1 + π∗2f2, for some f1 ∈ C∞(S1) and f2 ∈ C∞(S2). This feature of our un-
perturbed system comes from the singular dependence of the symplectic form σ on
the perturbation parameter at ε = 0. In the limit ε → 0, the 2-form σ becomes
degenerate and one can think of V as a Hamiltonian vector field only relative to the
pre-symplectic structure σ(1).

To correct this “defect” of the unperturbed dynamics one can try to search a
Hamiltonian structure for V by deforming the symplectic structure σ. The following
result [17, 74] shows that it can be done under some appropriate conditions.

Proposition 4.1.3 If there exists a horizontal 1-form θ satisfying the homological
equation

LVθ = d1F, (4.1.19)

then the vector field V is Hamiltonian relative to the pre-symplectic structure

σ̃ = σ − εdθ (4.1.20)

and the function
H̃ε = f ◦ π1 + εF̃ , (4.1.21)

where
F̃ := F − iv̂f θ. (4.1.22)

Moreover, the functions f ◦ π and F̃ are first integrals of V.

Proof. Let θ be an arbitrary horizontal 1-form. Taking into account that i
V

(2)
F

θ = 0,
we get the relation

iV(σ(1) + εσ(2)) = −d1(f ◦ π1)− εd2F = −d(f ◦ π1 + εF ) + εd1F

and iV ◦ dθ = LVθ − d(iv̂f θ). It follows from here that

iV(σ(1) + εσ(2) − εdθ) = −d(f ◦ π1 + ε(F − iv̂f θ))− ε(LVθ − d1F ).

Therefore, if θ satisfies (4.1.19), then formulas (4.1.20),(4.1.21) give a Hamiltonian
structure for V. Finally, it is easy to see that f ◦ π is a first integral of V. Then,
by the representation (4.1.21) for the Hamiltonian function of (4.1.19), we conclude
that F̃ is also a first integral.

One can show [20] also that the solvability of (4.1.19) is necessary in some sense
for the Hamiltonization of V. There is also a geometric interpretation of the homo-
logical equation related with the notion of invariant connections [17, 20, 74].

In general, the solvability criteria for homological equation (4.1.19) is a nontrivial
question [20, 74]. But, if this equation is solvable, one can get a normalization
of the following type [16, 17]: there exists a near identity transformation Tε such
that the unperturbed vector field V and the transformed vector field (Tε)∗VHε are
Hamiltonian relative to one and the same symplectic form T ∗ε σ for small ε 6= 0.
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S1-invariant Normalization. Given an action of the circle S1 = R/2πZ on M
and assuming the S1-invariance of the unperturbed vector field V, we are looking
for a near identity transformation which brings VHε to a S1-invariant vector field
up to desired order. The infinitesimal generator Z of a first order normalization
transformation must satisfy the equations

LVZ = W− W̄,
LΥW̄ = 0,

where Υ is the infinitesimal generator of the S1-action. We distinguish two situations,
the first one when the S1-action comes from the periodic flow of V. In this case
normalization results depend on the properties of Hamiltonian vector field vf . In
the second case, the flow of V is not necessarily periodic.

4.2 Normalization Relative to Periodic Skew Flows

Our point is to study normal forms of perturbed model (4.1.7)-(4.1.9) in the periodic
case, when the flow of the unperturbed vector field V is periodic.

4.2.1 The first order normalization

The vector field V is π1-related with vf and hence the trajectories of V are projected
onto trajectories of the Hamiltonian vector field vf , π1 ◦ FltV = ϕt ◦ π1 . Here, ϕt

denotes the flow of vf . Therefore, FltV is the skew-product flow,

FltV(m1,m2) = (ϕt(m1),Gtm1
(m2)), (4.2.1)

where Gtm1
is a smooth family of symplectomorphisms on (S2, σ2) determining as the

solution of the time-dependent Hamiltonian system

dGtm1
(m2)
dt

= V
(2)
F (ϕt(m1),Gtm1

(m2)), (4.2.2)

G0
m1

= idS2 . (4.2.3)

Assume that the flow FltV is periodic with frequency function ω = 2π
T . Then,

ϕt+T (m1,m2)(m1) = ϕt(m1) (4.2.4)

for all m1 ∈ S1,m2 ∈ S2 and t ∈ R. If vf 6= 0 on S1, then differentiating equality
(4.2.4) along S2 says that the period function T is independent of m2 and hence ω =
$ ◦ π1, for a certain smooth positive function $ on S1. Therefore, the Hamiltonian
flow ϕt of vf is also periodic with frequency function $.

Let VHε = V + εW be the Hamiltonian vector field on (M = S1 × S2, σ =
σ(1) + εσ(2)).

Theorem 4.2.1 Assume that the flow of vector field V = v̂f + V
(2)
F ( 4.1.8) is peri-

odic with frequency function ω : M → R and the set Reg(vf ) = {m1 ∈ S1|vf (m1) 6=
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0} is dense in S1. Then, the vector field W = V
(1)
F ( 4.1.9) satisfies the compatibility

condition
L〈W〉ω = 0 on M (4.2.5)

where 〈·〉 denotes the averaging with respect to S1-action on M with infinitesimal
generator Υ = 1

ωV.

Proof. It is sufficient to show that (4.2.5) holds on the domain π−1(Reg(vf )) which
is dense in M . By Proposition (2.5.1), the period-energy relation for vf says that
d$ ∧ df = 0 on Reg(vf ) and hence

dω ∧ d(f ◦ π1) = 0 (4.2.6)

on π−1
1 (Reg(vf )). The hypotheses of the theorem imply that d(f ◦ π1) 6= 0 on

π−1
1 (Reg(vf )). On the other hand, taking into account (4.1.2), (4.1.4), (4.1.9) and

the identity v̂f = V
(1)
f◦π1

, we get

LVF = Lv̂fF = π∗1σ1(V (1)
f◦π1

, V
(1)
F )

= −π∗1σ1(V (1)
F , V

(1)
f◦π1

) = −LW(f ◦ π1).

It follows from here and the S1-invariance of f ◦ π1 that

L〈W〉(f ◦ π1) = 〈LW(f ◦ π1)〉 = −〈LVF 〉 = −LV〈F 〉 = 0.

Finally, using these relations and applying the interior product with 〈W〉 to both
sides of (4.2.6), we get the equality

0 = (i〈W〉dω)d(f ◦ π1)− (i〈W〉d(f ◦ π1))dω = −(L〈W〉ω)d(f ◦ π1)

which implies (4.2.5).
Now, on the phase space (M = S1 × S2, σ = σ(1) + εσ(2)), let us consider the
perturbed Hamiltonian is of the form

Hε = f ◦ π1 + εF +
ε2

2
G+O(ε3) (4.2.7)

for a certain G ∈ C∞(M). For ε 6= 0, the corresponding Hamiltonian vector field is
represented as

VHε = V+ ε(W+
1
2
V

(2)
G ) +O(ε2), (4.2.8)

Theorem 4.2.2 Suppose that the unperturbed vector field V satisfies the hypothesis
of Theorem 4.2.1. Then, the perturbed Hamiltonian vector field VHε ( 4.2.8) admits a
normalization of first order with respect to V, that is, for every open domain N ⊂ M
with compact closure and small enough ε, there exists a (noncanonical) near identity
transformation Φε : N →M such that

Φ∗εVHε = V+ ε(〈W〉+
1
2
〈V (2)
G 〉) +O(ε2) (4.2.9)

and
[V, 〈W〉] = [V, 〈V (2)

G 〉] = 0. (4.2.10)
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Proof. It is clear that L
V

(2)
G

ω = 0 and hence L〈V (2)
G 〉

ω = 0. Then, by (4.2.5), we
conclude that the perturbation vector field satisfies the compatibility condition

L〈W+ 1
2
V

(2)
G 〉

ω = 〈LW+ 1
2
V

(2)
G

ω〉 = L〈W〉ω +
1
2
L〈V (2)

G 〉
ω = 0

It follows from here and (4.2.5) that conditions (4.2.10) are satisfied. Finally, ac-
cording to Theorem 3.1.1, the normalization transformation Φε in (4.2.10) is defined
as the time-ε flow of the vector field

Z =
1
ω
S(V (1)

F +
1
2
V

(2)
G ) +

1
ω3
S2(L

V
(1)
F + 1

2
V

(2)
G

ω)V.

By this theorem and Proposition 3.2.22, we derive the following fact.

Corollary 4.2.3 The frequency function ω = $ ◦ π1 is an adiabatic invariant of
Hamiltonian system ( 4.1.7).

Proposition 4.2.4 Under the hypothesis of Theorem 4.2.2, we have the following
representation

〈V (2)
G 〉 = V

(2)
〈G〉, (4.2.11)

〈W〉 = P (1) + P (2) (4.2.12)

where
P (1) = i〈d1F 〉 Π(1), P (2) = iα Π(2), (4.2.13)

α := iP (1)d2β − 〈iV (1)
F

β〉, β := S(d1

(
F

ω

)
). (4.2.14)

For the proof of this proposition, we need the following fact.

Lemma 4.2.5 The Poisson tensor Π(2) and the presymplectic 2-forms σ(1) and

σ(2) − dβ (4.2.15)

are invariant with respect to the S1-action on M with infinitesimal generator Υ = V
ω .

Here, the 1-form β is given by ( 4.2.14).

Proof. By the hypotheses, we have ω = $ ◦ π1 , where $ : S1 → R is the frequency
function of the period flow of the Hamiltonian vector field vf . The period energy
relation says that d$∧df = 0. Computing the Lie derivative of Π(2) and σ(1) along
the infinitesimal generator Υ = 1

ω v̂f + V
(2)
F
ω

gives

LΥΠ(2) = L
V

(2)
F
ω

Π(2) = 0,

LΥσ
(1) = −d(

1
ω
d1(f ◦ π1)) =

1
ω2
d1($ ◦ π1) ∧ d1(f ◦ π1) = 0.
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Now, using the property of averaging operator and the identity iΥσ(2) = −d2(Fω ),
we get

0 = 〈LΥσ
(2)〉 = 〈d(iΥσ(2))〉 = −〈d1 ◦ d2

(
F

ω

)
〉.

Taking into account this equality and the identity dβ = −S(d1 ◦ d2

(
F
ω

)
) together

with the properties of the operator S, we verify the invariance of 2-form (4.2.15)

LΥσ
(2) + LΥ ◦ S

(
d1 ◦ d2

(
F

ω

))
= d(iΥσ(2)) + d1 ◦ d2

(
F

ω

)
= −d1 ◦ d2

(
F

ω

)
+ d1 ◦ d2

(
F

ω

)
.

Proof of Proposition 4.2.4. The equality (4.2.11) follows from the representation
V

(2)
G = idGΠ(2) and the S1-invariance of the Poisson tensor Π(2). According to

splitting TM = TS1 ⊕ TS2, we have the decomposition 〈W〉 = P (1) + P (2). By the
S1-invariance of σ(1), we have

i〈V (1)
F 〉

σ(1) = 〈i
V

(1)
F

σ(1)〉 = −〈d1F 〉. (4.2.16)

This says that in terms of Poisson tensor Π(1), the vector field P (1) in (4.2.12) has
the representation (4.2.13). Next,

i
V

(1)
F

(σ(2) − dβ) = −i
V

(1)
F

d1β − i
V

(1)
F

d2β,

and hence
〈i
V

(1)
F

(σ(2) − dβ)〉 = −〈i
V

(1)
F

d1β〉 − 〈iV (1)
F

d2β〉. (4.2.17)

On the other hand, using the S1-invariance of 2-form (4.2.15), we get

〈i
V

(1)
F

(σ(2) − dβ)〉 = i〈V (1)
F 〉

(σ(2) − dβ) = iP (1)(σ(2) − dβ) + iP (2)(σ(2) − dβ),

= −iP (1)d1β − iP (1)d2β + iP (2)σ(2) − iP (2)d1β − (4.2.18)
iP (2)d2β.

Comparing (4.2.17) and (4.2.18) gives

iP (2)σ(2) = iP (2)d1β + iP (2)d2β,

iP (1)d1β + iP (1)d2β = 〈i
V

(1)
F

d1β〉+ 〈i
V

(1)
F

d2β〉.

Rewriting the last equation in terms of Poisson tensor Π(2), we get (4.2.12).

The Adiabatic Case. In the situation when f ≡ 0 and G ≡ 0 in (4.2.7), we
arrive at a perturbed Hamiltonian model

VHε = V
(2)
F + εV

(1)
F
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which appears in the theory of adiabatic approximation [6, 62]. Suppose that the
flow of V = V

(2)
F is periodic with frequency function ω. In this case, the periodicity

of the flow of V does not imply that the perturbation vector field W = V
(1)
F satis-

fies compatibility condition (4.2.5) and hence Theorem 4.2.2 does not provide the
existence of the first order normalization of VHε relative to V (2)

F . The period-energy
relation for the restriction of V (2)

F to the symplectic slices {m1} × S2 implies only
that d2ω ∧ d2F = 0. On other hand by the general result of Theorem 4.2.2, we con-
clude that under the near identity transformation Tε (4.2.9), the perturbed vector
field VHε is transformed to normal form of first order

T ∗ε (V (2)
F + εV

(1)
F ) = V

(2)
F + εidF 〈Π(1)〉+O(ε2),

which is invariant relative to the S1-action on M associated to the periodic flow of
V

(2)
F . Then, the compatibility condition (4.2.5) reads

〈Π(1)〉(dF, dω) = 0.

Remark that the S1-average 〈Π(1)〉 of Π(1) is not a Poisson tensor in general.
In contrast to the regular case (see Section 3.1.3), vector field V (1)

F is not Hamil-
tonian on (M,σ) in general. As consequence, the normalization transformation Φε is
not necessarily canonical. This “defect” of the normalization transformation comes
from the following feature: the S1-action associated to the periodic flow of the un-
perturbed vector field V does not preserve the symplectic form σ (see condition
(4.1.18)).

4.2.2 Periodicity criteria and resonances

The periodicity of the flow of vector field V (4.1.8) can be formulated as a resonance
relation. Suppose that

• V is a complete vector field;

• the flow ϕt of vf is periodic with frequency function $ : S1 → R;

• the regular set Reg(vf ) is dense in S1 and the orbit t 7→ ϕt(m1) through every
point m1 ∈ Reg(vf ) is τ(m1)-minimally periodic, where τ(m1) = 2π

$(m1) .

It follows from these conditions that vf satisfies all hypotheses of Theorem 4.2.1
and the S1-action associated to the periodic flow ϕt is free on Reg(vf ). The group
property of the flow FltV implies the relations

Gt1+t2
m1

= Gt1
ϕt2 (m1)

◦ Gt2m1
= Gt2

ϕt1 (m1)
◦ Gt1m1

for any m1 ∈ S1 and m2 ∈ S2. In particular, we have Gt+τ(m1)
m1 = Gtm1

◦ gm1 , where

gm1 := Gτ(m1)
m1

. (4.2.19)
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Definition 4.2.1 The symplectomorphism gm1 : S2 → S2 in ( 4.2.19) is called the
monodromy of the flow FltV over a point m1 ∈ S1.

Proposition 4.2.6 The flow FltV is periodic if and only if there exists an integer
k ≥ 1 such that

gkm1
= id ∀m1 ∈ Reg(vf ). (4.2.20)

In this case, the corresponding frequency and period functions can be defined as

ω =
1
k
$ ◦ π1, and T = kτ ◦ π1.

Proof. We assume that flow of V is periodic with period function T . Since V and vf
are π1-related, there exists a positive integer k such that T = kτ ◦ π1. Conversely,
we assume that there exists and integer k ≥ 1 such that condition (4.2.20) holds.
Let T = kτ ◦π1. By the group property of G, equation (4.2.1) and periodicity of ϕt,
we have

Flt+TV (m1,m2) = (ϕt+T (m1),Gtm1
◦ gkm1

(m2)) = (ϕt(m1),Gtm1
(m2)).

Therefore, FltV is periodic with period function T .
It is naturally to separate the resonance condition (4.2.20) into two hypotheses.
First, we assume that the monodromy mapping does not depend on the points in
S1 up to conjugation, that is, for any m1, m̃1 ∈ S1 there exists a diffeomorphism
U : S2 → S2 such that

gm̃1 = U ◦ gm1 ◦ U−1. (4.2.21)

Then, the resonance condition (4.2.20) reads

gkm0
1

= id, (4.2.22)

where m0
1 ∈ Reg(vf ) is fixed.

In the linear case, condition (4.2.21) is known as the “isospectral deformation”
property.

Example 4.2.1 Consider perturbed model ( 4.1.6) in the case when S1 = S1 × R =
{(s, α(mod 2π))} is a cylinder and S2 = R2 = {x = (x1, x2)} is a plane equipped with
canonical symplectic forms σ1 = ds ∧ dα and σ2 = dx1 ∧ dx2, respectively. Suppose
that f = f(s) and the perturbation term in the Hamiltonian Hε is a quadratic
function in the fast variables,

F (s, α, x) =
1
2
〈JV(s, α)x, x〉 , (4.2.23)

where J =
(

0 −1
1 0

)
and V : S1 × R→ sl(2;R) is a smooth matrix-valued function.

In this case, the dynamical system of the unperturbed vector field V is of the form

ds

dt
= 0,

dα

dt
= $(s), (4.2.24)
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dx

dt
= V(s, α))x, (4.2.25)

where $(s) = ∂f
∂s > 0. It is clear that the flow of this system satisfies all conditions

above and is given by

FltV(s, α, x) = (s,$(s)t+ α,Gs,αx)

where Gs,α ∈ Sp(1;R) is the fundamental solution of the s-dependent periodic linear
Hamiltonian system:

d

dα
Gs,α =

1
$(s)

V(s, α)Gs,α,

Gs,0 = I.

Since V(s, α + 2π) = V(s, α), we have that Gs,α+2π = Gs,α ·Gs,2π and the mono-
dromy of V is a linear symplectic mapping gs : R2 → R2 given by gs = Gs,2π. Remark
that the minimal period of V in α is not necessarily equals 2π. We have the follow-
ing fact [26] ; the linear monodromy gs possesses the property ( 4.2.21) if and only if
there exists a vector field on (S1 × R)× R2 of the form U = ∂

∂s+ < U((s, α)x, ∂∂x >
which commutes with V, that is, the following “zero curvature” condition holds

∂U
∂α
− ∂V

∂s
+

1
$

[U,V] = 0.

Under this hypothesis, the periodicity condition ( 4.2.22) is formulated as follows.
Fix s0 ∈ R, then the flow of system ( 4.2.24), ( 4.2.25) is periodic if and only if
gs0 = I,−I or

tr gs0 = 2 cos
(

2π
m

k

)
for some coprime integers m, k ∈ Z such that 0 < m < k

2 . In each case, the
corresponding period functions are T (s) = 2π

$(s) ,
4π
$(s) ,

2πk
$(s) . This result follows from

the Floquet theory for linear periodic Hamiltonian systems [26, 79] and says that
the periodicity condition for the flow of V coincides with the resonance condition for
the frequencies of the quasiperiodic motion of system ( 4.2.24), ( 4.2.25) which are
defined by $ and the Floquet exponent.

Condition (4.2.21) can be also derived from the following homogeneity argu-
ments. Let Λ be a smooth manifold which will be play the role of a parameter
space. Suppose we have two smooth mappings

%1 : Λ× S1 → S1, %2 : Λ× S2 → S2

of the form %1(λ,m1) = %λ1(m1) and %2(λ,m2) = %λ2(m2) where %λ1 : S1 → S1 and
%λ2 : S2 → S2 are diffeomorphisms for every λ ∈ Λ. Let %λ be the λ-dependent
diffeomorphism on M = S1 × S2 defined as as the direct product %λ(m1,m2) =
(%λ1(m1), %λ2(m2)). Assume that the family {%λ}λ∈Λ of diffeomorphisms gives a “con-
formal symmetry ” for the unperturbed vector field in the sense that

(%λ)∗V = κ(λ)V (4.2.26)
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for some nowhere vanishing smooth function κ : Λ → R. It follows that (%λ1)∗vf =
κ(λ)vf . In terms of the flows these relations read

%λ ◦ Flκ(λ)t
V = FltV ◦%λ (4.2.27)

and
%λ1 ◦ ϕκ(λ)t = ϕt ◦ %λ1 . (4.2.28)

By (4.2.1), we have

FltV(%λ1(m1), %λ2(m2)) =
(
ϕt(%λ1(m1),Gt

%λ1 (m1)
(%λ2(m2))

)
.

On the other hand,

%λ(Flκ(λ)t
V (m1,m2)) = %λ

(
ϕκ(λ)t(m1),Gκ(λ)t

m1
(m2)

)
=

(
%λ1 ◦ ϕκ(λ)t(m1), %λ2 ◦ Gκ(λ)t

m1
(m2)

)
.

By property (4.2.27), the left hand sides of the last two equalities coincide and hence
we get

Gt
%λ1 (m1)

= %λ2 ◦ Gκ(λ)t
m1

◦ (%λ2)−1 (4.2.29)

for any m1 ∈ S1. Now, let τ : S1 → R be the period function of the flow ϕt of vf .
Then, identity (4.2.28) implies τ(%λ1(m1))

ϕκ(λ)τ(%λ1 (m1))(m1) = m1

for all m1 ∈ S1, λ ∈ Λ. Since vf 6= 0 on S1, this identity says that κ(λ)τ(%λ1(m1)) is
independent of λ. Suppose that S1 is connected and there exists λ0 ∈ Λ such that

κ(λ0) = 1 and %λ0
1 = id . (4.2.30)

Then, we get the equality

κ(λ) =
τ(m1)

τ(%λ1(m1))
.

Putting this relation into identity (4.2.29) for t = τ(%λ1(m1)), we arrive at the fol-
lowing fact.

Proposition 4.2.7 Assume that V is complete and the flow ϕt of vf is periodic
with period function τ : S1 → R. Under hypotheses ( 4.2.26), ( 4.2.30), we have the
following variation of parameters formula for the monodromy mapping gm1 : S2 →
S2

g%λ1 (m1) = %λ2 ◦ gm1 ◦ (%λ2)−1 (4.2.31)

for any m1 ∈ S1, λ ∈ Λ.

In the case when the S1-action associated with flow ϕt is free, the orbit space
Orb(vf ) is a smooth manifold. If the hypotheses of Proposition 4.2.7 hold for the
parameter space Λ = Orb(vf ), then the “isospectral deformation” condition (4.2.21)
is satisfied.
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Example 4.2.2 On the standard slow-fast space (R4 = R2 × R2, σ = dp1 ∧ dq1 +
εdp2 ∧ dq2), consider the Hamiltonian system Hε = f ◦π1 + εF , where the functions
f and F are homogeneous in the weighted degree with a weight n,

f(λsp1, λ
lq1) = λnf(p1, q1),

F (λsp1, λ
lq1, λ

sp2, λ
lq2) = λnF (p1, q1, p2, q2)

for all λ > 0 and some nonzero integers s and l. If the level set {f(p1, q1) = 1}
is bounded in R2, the open domain S1 is foliated by periodic trajectories of the
Hamiltonian vector field vf = ∂f

∂p1

∂
∂q1
− ∂f

∂q1
∂
∂p1

. In this case, Λ = Orb(vf ) = R+

and conditions ( 4.2.26), ( 4.2.30) hold for scaling map

%λ(p1, q1, p2, q2) = (λsp1, λ
lq1, λ

sp2, λ
lq2)

where λ0 = 1 and formula ( 4.2.26) reads κ(λ) = λn−s−l.

4.3 S1-Invariant Hamiltonian Normalization

In this section, we study a perturbed Hamiltonian system of the form (4.1.1), (4.1.6)
in the case when the flow of the unperturbed system is not necessarily periodic but
this system possesses a S1-symmetry. We formulate some results on the approxima-
tion of the original perturbed model by an ε-dependent Hamiltonian system with
S1-symmetry. This setting is not standard in the Hamiltonian perturbation theory
[6, 50] because of the singular dependence of the symplectic structure on the small
parameter ε.

4.3.1 Hamiltonian systems with rapidly varying perturbations

On the standard phase space (R4, dp1∧dq1+dP2∧dQ2), let us consider a Hamiltonian
system of the form [19]

H = f(p1, q1) + εF

(
p1, q1,

P2

εκ
,
Q2

ε1−κ

)
, (4.3.1)

where ε � 1 is a small parameter and s ∈ [0, 1] is a constant. After rescaling
p2 = P2

εκ , q2 = Q2

ε1−κ , we get the ε-dependent symplectic form

σ = dp1 ∧ dq1 + εdp2 ∧ dq2, (4.3.2)

and the Hamiltonian

Hε = f(p1, q1) + εF (p1, q1, p2, q2), (4.3.3)

depending regularly on ε. According to the appearance of the small parameter ε in
the corresponding Poisson bracket

{p1, q1} = 1,

{p2, q2} =
1
ε
,
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one can separate the space coordinates into slow (p1, q1) and fast (p2, q2) variables.
For ε 6= 0, the equations of motion of Hamiltonian system (4.3.2), (4.3.3) are of the
form

ṗ1 = − ∂f
∂q1
− ε ∂F

∂q1
, q̇1 =

∂f

∂p1
+ ε

∂F

∂p1
, (4.3.4)

ṗ2 = −∂F
∂q2

, q̇2 =
∂F

∂p2
, (4.3.5)

and viewed as a perturbed dynamical system. As we have mentioned above, for
ε = 0, the unperturbed system

ṗ1 = − ∂f
∂q1

, q̇1 =
∂f

∂p1
, (4.3.6)

ṗ2 = −∂F
∂q2

, q̇2 =
∂F

∂p2
, (4.3.7)

is not Hamiltonian relative to σ, in general. According to the notations introduced in
Section 4.1, the total space M = R4 is product of the symplectic planes S1 = R2

p1,q1

and S2 = R2
p2,q2 which is equipped with symplectic structure σ = σ(1) + εσ(2), where

σ(1) = dp1 ∧ dq1 and σ(2) = dp2 ∧ dq2. Moreover, the unperturbed vector field of
system (4.3.6), (4.3.7) is represented in the form V = v̂f + V

(2)
F , where

v̂f = − ∂f
∂q1

∂

∂p1
+
∂f

∂p1

∂

∂q1
, (4.3.8)

V
(2)
F = −∂F

∂q2

∂

∂p2
+
∂F

∂p2

∂

∂q2
.

Circle first integrals. As is usual in the perturbation theory, we need some good
properties of the unperturbed dynamics. We make the following assumption:

• (Symmetry Hypothesis). In an invariant open domain N ⊆ R4, the unper-
turbed system (4.3.6), (4.3.7) admits a first integral J = J(p1, q1, p2, q2),

LVJ ≡ Lv̂fJ −
∂F

∂q2

∂J

∂p2
+
∂F

∂p2

∂J

∂q2
= 0 (4.3.9)

such that the flow Flt
V

(2)
J

of the vector field

V
(2)
J :=

∂J

∂p2

∂

∂q2
− ∂J

∂q2

∂

∂p2
(4.3.10)

is periodic and the corresponding period function is equal to 2π,

Flt+2π

V
(2)
J

= Flt
V

(2)
J

. (4.3.11)

This means that Υ = V
(2)
J is an infinitesimal generator of the S1-action on N ⊆ R4 =

R2
p1,q1 × R

2
p2,q2 . The circle S1 = R�2πZ acts along the slices {p1, q1} × R2

p2,q2 ∩ N
in a Hamiltonian fashion, with momentum map Jp1,q1 parametrically depending
on the slow variables p1, q1. We admit that this S1-action is not necessarily free.
Therefore, the phase portrait of the Hamiltonian system with one degree of freedom
(dp2 ∧ dq2, Jp1,q1) consists of periodic orbits and rest points.
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Definition 4.3.1 A smooth function J : N → R satisfying ( 4.3.9)-( 4.3.11) is said
to be a circle first integral of V.

Under above assumptions, the unperturbed vector field V has two first integrals
f ◦ π1 and J . Here, as usual, π1 : R2

p1,q1 × R
2
p2,q2 → R2

p1,q1 denotes the canonical
projection and throughout this section, by 〈·〉 we will denote the average with respect
the S1-action on N associated to the infinitesimal generator V (2)

J .
It is clear that the first integrals f ◦ π1 and J are invariant under the S1-action.

Moreover, the unperturbed vector field V is also S1-invariant, 〈V〉 = V.
Indeed by (4.3.9) and formula (4.1.13), we get [V, V (2)

J ] = V
(2)
LVJ

= 0. On the
other hand, it follows from (4.1.15) that

L
V

(2)
J

σ = −εd1 ◦ d2J,

and then, for ε 6= 0, symplectic form (4.3.2) is not S1-invariant, and hence the
S1-action is noncanonical, in general.

Original perturbed Hamiltonian system (4.3.2), (4.3.3) is nonintegrable, that is,
does not admit an additional first integral. In what follows, a natural question is
to construct an approximation of (4.3.2), (4.3.3) by a completely integrable system
as ε → 0. Remark that our setting is slightly unusual in Hamiltonian perturbation
theory because of the singular dependence of the symplectic structure in the small
parameter ε.

4.3.2 Approximate Hamiltonian models with S1-symmetry

Here we formulate the results on S1-invariant normal forms of perturbed Hamiltonian
system (4.3.2), (4.3.3).

Suppose that the symmetry hypothesis holds and we are given a circle first
integral J : N → R of the unperturbed vector field V defined on an open subset N ⊂
R4 with compact closure. Consider the S1-action on N with infinitesimal generator
V

(2)
J . Recall that by a near identity transformation we mean a smooth family of

mappings Tε : N → R4, ε ∈ (−δ, δ) such that T0 = id and Tε is a diffeomorphism
onto its image.

Theorem 4.3.1 For small enough ε 6= 0, the following assertions are true:
(a) the S1-average 〈σ〉 of the original symplectic structure σ ( 4.3.2) is a nondegen-
erate closed 2-form on N ;
(b) the S1-action is Hamiltonian relative to 〈σ〉,

i
V

(2)
J

〈σ〉 = −εdJ0,

where the function J0 : N → R is given by

J0 := i
V

(2)
J

〈p2dq2〉 (4.3.12)

and related with J by
J − J0 = g ◦ π1 (4.3.13)
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for a certain function g ∈ C∞(π1(N));
(c) there exits a near identity transformation Tε : N → R4 which gives a symplecto-
morphism between σ and 〈σ〉,

〈σ〉 = T ∗ε σ; (4.3.14)

(d) the pull-back by Tε of the original Hamiltonian system ( 4.3.2), ( 4.3.3)

(N, 〈σ〉, Hε ◦ Tε) (4.3.15)

is ε2-close to the Hamiltonian system with S1-symmetry

(N, 〈σ〉, 〈Hε〉 = f ◦ π1 + ε〈F 〉) (4.3.16)

in the sense that
Hε ◦ Tε = 〈Hε〉+O(ε2). (4.3.17)

(e) J0 is a first integral of the Hamiltonian vector field X〈Hε〉 of 〈Hε〉 on (N, 〈σ〉)
and

X〈Hε〉 = V+O(ε). (4.3.18)

Remark 8 Relations ( 4.3.13), ( 4.3.18) mean that V (2)
J = V

(2)
J0 and J0 is also a

circle first integral of V. In general, J is not a first integral of ( 4.3.16), we have
only that

LX〈Hε〉J = O(ε).

Remark 9 The symmetry hypothesis can be reformulated as follows: the unper-
turbed vector field V admits a first integral G : N → R of V such that the flow of
V

(2)
G is periodic with period function T : N → R. Then, the statement of Theorem

4.3.1 remains true, where formula ( 4.3.12) reads

J0 :=
T

2π
i
V

(2)
G

〈p2dq2〉. (4.3.19)

Therefore, Theorem 4.3.1 states that under the symmetry hypothesis, the original
perturbed Hamiltonian model (4.3.2), (4.3.3) can be transformed by a near identity
transformation to a system which is approximated by Hamiltonian system with S1-
symmetry (4.3.16). The approximate Hamiltonian system is defined as the averaged
system where the “new” symplectic form 〈σ〉 is a ε-deformation of the original one.
The next result says that under natural additional assumptions the approximate
Hamiltonian system (4.3.16) is completely integrable.

Proposition 4.3.2 Assume that in addition to the symmetry hypothesis the follow-
ing condition holds
(i) there exists an open dense domain U in π1(N) such that

df 6= 0 on U . (4.3.20)

Then, the first integral J0 is functionally independent with Hamiltonian 〈Hε〉 on
N0 = π−1

1 (U). Moreover, if
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(ii) the flow of vf is periodic on U with frequency function $ : U → R and the
S1-action associated to infinitesimal generator V (2)

J0 is free on N0 = π−1
1 (U), then:

(a) the flow of the unperturbed vector field V is quasiperiodic on N0,

V = ω1Υ̃ + ω2V
(2)
J0 (4.3.21)

where Υ̃ is a vector field with 2π-periodic flow on N0 such that [Υ̃, V (2)
J0 ] = 0 and

ω1 = $ ◦ π1, ω2 : N0 → R are frequency functions;
(b) for small enough ε 6= 0, the averaged Hamiltonian system (N, 〈σ〉, 〈Hε〉 = f ◦ π1 + ε〈F 〉)
is completely integrable and the Liouville 2-tori are connected components of the level
sets of two first integrals,

T2
c1,c2(ε) = {f ◦ π1 + ε〈F 〉 = c1; J0 = c2}cc (4.3.22)

which carry a quasiperiodic motion with frequencies ω1 +O(ε) and ω2 +O(ε).

Proof. By hypothesis of Proposition we have

• vector fields V and V
(2)
J0 are independent on N and commute;

• the functions f ◦π1 and J0 are functionally independent on N and give mutual
first integrals of V and V

(2)
J0 ;

• the connected components of f ◦ π1 and J0 are compact.

Then, it is well-known (see, for example [6]) that {f ◦π1 = c1; J0 = c2}cc is a 2-
torus T2

c1,c2(0) carrying a quasiperiodic motion along the trajectories of V. It remains
to derive some information about the corresponding frequency functions. Remark
that the vector field 1

ω1
V is projectable relative to π1 : M → S1 and descends to the

vector field 1
$vf with 2π-periodic flow . Moreover, each torus T2

c1,c2(0) is invariant

with respect to the S1-action with infinitesimal generator V (2)
J0 . It follows from these

properties that for every m ∈ T2
c1,c2(0) there exists a α = α(m) 6= 0 such that

Fl2π1
ω1

V(m) = Flα(m)

V
(2)

J0

(m).

If we take another point m′ ∈ T2
c1,c2(0) such that m′ = Flt1

ω1
V(m), then Fl2π1

ω1
V(m′) =

Fl2π+t
1
ω1

V (m) = Fl2π1
ω1

V(m) and hence α(m) = α(m′). In other words , the function

m 7→ α(m) is first integral of V. Then, we can define the vector field Υ̃ in (4.3.21)
as

Υ̃ :=
1
ω1
V− α

2π
V

(2)
J0 .

Its flow is 2π-periodic,

Fl2π
Υ̃

(m) = Fl2π1
ω1

V ◦Fl2π−α
2π
V

(2)

J0

(m)

= Fl2π1
ω1

V ◦Fl−α(m)

V
(2)

J0

(m) = m.
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Therefore, the second frequency of the quasiperiodic motion is defined as

ω2 =
α

2π
$ ◦ π1.

Notice that for ε = 0, the connected components

T2
c1,c2(0) = {f ◦ π1 = c1; J0 = c2}cc

are just the quasiperiodic 2-tori of the unperturbed vector field V.

Remark 10 One can use Proposition 4.3.2 to apply the KAM arguments [6, 14] to
the nearly integrable Hamiltonian system (N, 〈σ〉, Hε ◦ Tε) to state the persistence
of quasiperiodic tori T2

c1,c2(ε). For more applications see also [18, 19]

Adiabatic Models. The adiabatic situation appears in the case when the leading
term in Hamiltonian (4.3.3) is zero, f ≡ 0. The dynamics due to the adiabatic model

(σ = dp1 ∧ dq1 + εdp2 ∧ dq2, Hε = εF (p1, q1, p2, q2)) (4.3.23)

is described by the system

ṗ1 = −ε ∂F
∂q1

, q̇1 = ε
∂F

∂p1
, (4.3.24)

ṗ2 = −∂F
∂q2

, q̇2 =
∂F

∂p2
, (4.3.25)

which is known as a slow fast Hamiltonian system [62].

Remark 11 System ( 4.3.24), ( 4.3.25) can be also derive starting from a slow vary-
ing Hamiltonian

H = F (εκP1, ε
1−κQ1, p2, q2)

on the standard phase space (R4, dP1∧dQ1 +dp2∧dq2). After the scaling p1 = εκP1,
q1 = ε1−κQ1 we arrive at the adiabatic model(

σ̃ =
1
ε
dp1 ∧ dq1 + dp2 ∧ dq2, Hε = F (p1, q1, p2, q2)

)
whose dynamical system coincides with ( 4.3.23), ( 4.3.24).

The unperturbed vector field of (4.3.24), (4.3.25) is of the form V = V
(2)
F and

the corresponding dynamics is describes by the 1-dimensional Hamiltonian system
(R2, dp2 ∧ dq2, Fp1,q1) for frozen value of the slow variables p1, q1:

ṗ2 = −∂Fp1,q1

∂q2
, q̇2 =

∂Fp1,q1

∂p2
, (4.3.26)

where Fp1,q1(p2, q2) = F (p1, q1, p2, q2). In this case, the symmetry hypothesis is
formulated as follows: there exists an open domain N in R4 = R2

p1,q1 × R
2
p2,q2 with
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compact closure which is invariant with respect to the flow of V and Flt
V

(2)
F

: N → N

is periodic with period function T : N → R. This condition is reduced to the
verification of the compactness of the level sets {Fp1,q1 = const} in the slice Np1,q1 =
N ∩ {p1, q1} × R2

p2,q2 for every (p1, q1) ∈ S1 = π1(N). Consider the S1-action on

N defined by the 2π-periodic flow of the vector field Υ = T
2πV

(2)
F . The circle first

integral in (4.3.12) is given by

J0 :=
T

2π
i
V

(2)
F

〈p2dq2〉.

Then, we have the relationship

d2J
0 =

T

2π
d2F,

which says that the infinitesimal generator of the S1-action is just Υ = V
(2)
J0 . In

a open domain N0 ⊆ N where the S1-action is free, the circle first integral J0

is defined as the standard action [5, 42] of Hamiltonian system (4.3.26) with one
degree of freedom:

J0
p1,q1(p2, q2) =

1
2π

Area(Dp1,q1) =
1

2π

∮
γp1,q1

p2dq2

Here, γp1,q1(t) = Flt
V

(2)
F

(p2, q2) and Dp1,q1 is a domain in Np1,q1 bounded by the

periodic trajectory γp1,q1 . It is clear that F is invariant with respect to the S1-action
and hence 〈F 〉 = F . But, if d1 ◦ d2F 6= 0, then the S1-action is not Hamiltonian
relative to σ. Theorem 4.3.1 leads to the following normalization result.

Proposition 4.3.3 Under the symmetry hypothesis, for small enough ε, a sym-
plectomorphism Tε : N → R4 between the original symplectic structure σ and its
S1-average 〈σ〉 brings slow -fast Hamiltonian system ( 4.3.24), ( 4.3.25) to another
one which is approximated mod ε2 by the Hamiltonian system with S1-symmetry

(N, 〈σ〉, Hε = εF ) .

The S1-action associated to the infinitesimal generator T
2πV

(2)
F is Hamiltonian on

(N, 〈σ〉) with momentum map εJ0.

As we will show in Subsection 4.3 (Theorem 4.3.20), in the adiabatic case, the
symplectomorphism Tε can be viewed as a free coordinate normalization step in the
proof of the classical adiabatic theorem [6, 62] (the usual method uses action-angle
variables and generating functions).

4.3.3 The averaging procedure and the homotopy method

Here we give a proof of Theorem 4.3.1 in few steps which carry a general character
and are based on the averaging technique on symplectic fibered spaces [28, 47, 55],
the notion of weak coupling symplectic structures [56] and the Moser homotopy
method [38].
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Given 2-dimensional symplectic manifolds S1 and S2, we start with a Hamil-
tonian system Hε = f ◦ π1 + εF on the 4-dimensional symplectic manifold (M =
S1 × S2, σ = σ(1) + εσ(2)). Through this section we will assume that the symmetry
hypothesis holds and a circle first integral J : N → R of the unperturbed vector field
V is fixed. The corresponding S1-action on N is given by the infinitesimal generator
Υ = V

(2)
J satisfying the relations i

V
(2)
J

σ(2) = −d2J and i
V

(2)
J

σ(1) = 0. By (p1, q1)

and (p2, q2) we will denote (local) Darboux coordinates on the symplectic surfaces
S1 and S2 , respectively.

The S1-Average of the Symplectic Form. Recall that the S1-average of the
ε-dependent symplectic form σ = σ(1) + εσ(2) is defined by the formula

〈σ〉 :=
1

2π

2π∫
0

(Flt
V

(2)
J

)∗σdt.

Since the exterior differential commutes with the averaging operator, the 2-form 〈σ〉
is closed but it is not necessarily nondegenerate for all ε 6= 0.

Lemma 4.3.4 The S1-average 〈σ〉 has the representation

〈σ〉 = σ − εdθ0, (4.3.27)

where the 1-form θ0 = θ0
1dp1 + θ0

2dq1 is given by

θ0 := S(d1J) ≡ 1
2π

2π∫
0

(t− π)(Flt
V

(2)
J

)∗d1Jdt. (4.3.28)

and has zero S1-average,
〈θ0〉 = 0. (4.3.29)

Here d1J = ∂J
∂p1

dp1 + ∂J
∂q1
dq1. Moreover, the S1-average of d1J is a closed 1-form

which has a representation on N :

〈d1J〉 = π∗1ς (4.3.30)

for a certain closed 1-form ς = ς1dp1 + ς2dq1 on π1(N) ⊂ S1.

Proof. By Proposition 2.4.13, the closed 2- form σ splits into a S1-invariant form
and an exact one,

σ = 〈σ〉+ d(i
V

(2)
J

S(σ)),

where S(σ) = 1
2π

∫ 2π
0 (t − π)

(
Flt
V

(2)
J

)∗
σ. Taking into account that the exterior

differential d commutes with operator S and using the identity i
V

(2)
J

σ = −εd2J , we
get

i
V

(2)
J

(S(σ)) = S(i
V

(2)
J

σ) = −εS(d2J) = −εd ◦ S(J) + εS(d1J)
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and hence d(i
V

(2)
J
S(σ)) = εd(S(d1J)). To prove (4.3.30), first, we remark that

0 = 〈L
V

(2)
J

σ(2)〉 = 〈d(i
V

(2)
J

σ(2))〉 = −d(〈d1J〉) (4.3.31)

and hence 〈d1J〉 is closed on N . On the other hand, by properties (Flt
V

(2)
J

)∗dp1 = dp1

and (Flt
V

(2)
J

)∗dq1 = dq1 we have 〈d1J〉 = 〈 ∂J∂p1
〉dp1 + 〈 ∂J∂q1 〉dq1. It follows from here

and (4.3.31) that

d2〈
∂J

∂p1
〉 = d2〈

∂J

∂q1
〉 = 0 (4.3.32)

and hence (4.3.30) holds for ς1 = 〈 ∂J∂p1
〉 and ς2 = 〈 ∂J∂q1 〉.

Now, let us associate to the 1-form θ0 (4.3.28) the following λ-dependent vector
fields

Y λ
1 =

∂

∂p1
+ (1− λ)(

∂θ0
1

∂p2

∂

∂q2
− ∂θ0

1

∂q2

∂

∂p2
), (4.3.33)

Y λ
2 =

∂

∂q1
+ (1− λ)(

∂θ0
2

∂p2

∂

∂q2
− ∂θ0

2

∂q2

∂

∂p2
). (4.3.34)

It is clear that , for every λ, the set

{Y λ
1 , Y

λ
2 ,

∂

∂p2
,
∂

∂q2
} (4.3.35)

defines a basis of vector fields on N . Consider also the dual basis of 1-forms

{dp1, dq1,Γλ1 ,Γ
λ
2}, (4.3.36)

where

Γλ1 := dp2 + (1− λ)
(
∂θo1
∂q2

dp1 +
∂θ0

2

∂q2
dq1

)
, (4.3.37)

Γλ2 := dq2 + (1− λ)
(
∂θo1
∂p2

dp1 +
∂θ0

2

∂p2
dq1

)
. (4.3.38)

Lemma 4.3.5 There exists δ > 0 such that

σλ = (1− λ)〈σ〉+ λσ (4.3.39)

is a symplectic form on N for all ε ∈ (0, δ) and λ ∈ [0, 1].

Proof. By Lemma 4.3.4, the 2-form σλ is represented as

σλ = σ − (1− λ)εdθ0.

It is clear that σλ is closed for all values of λ and ε. To study the nondegeneracy of the
2-form σλ, let us use bases (4.3.35) and (4.3.36). By a straightforward computation,
we obtain

σλ(Y λ
1 , Y

λ
2 ) = 1− ε∆λ, σλ(Y λ

1 ,
∂

∂p2
) = 0, σλ(Y λ

1 ,
∂

∂q2
) = 0,
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σλ(Y λ
2 ,

∂

∂p2
) = 0, σλ(Y λ

2 ,
∂

∂q2
) = 0, σλ(

∂

∂p2
,
∂

∂q2
) = ε,

where

∆λ = (1− λ)
[
∂θ0

2

∂p1
− ∂θ0

1

∂q1
+ (1− λ)(

∂θ0
1

∂p2

∂θ0
2

∂q2
− ∂θ0

1

∂q2

∂θo2
∂p2

)
]
. (4.3.40)

It follows that the 2-form σλ has the representation

σλ = (1− ε∆λ)dp1 ∧ dq1 + εΓλ1 ∧ Γλ2 (4.3.41)

and has the coefficient matrix of σλ with respect to basis (4.3.36) is given by
0 −(1− ε∆λ) 0 0

1− ε∆λ 0 0 0
0 0 0 −ε
0 0 ε 0

 .
The determinant of this matrix equals ε2(1 − ε∆λ)2. Since N̄ is compact, there
exists δ > 0 such that 1− ε∆λ 6= 0 on N for all ε ∈ (0, δ) and λ ∈ [0, 1].

A Normalization Transformation Tε. To construct a normalization map Tε,
one can use a parameter-dependent version of the Moser homotopy method [30]. For
every ε ∈ (0, δ), consider the curve of symplectic forms σλ (4.3.39) on N joining 〈σ〉
with σ. Introduce the following (ε, λ)-dependent family vector fields on N :

Zλ :=
1

1− ε∆λ
[−θ0

2Y
λ

1 + θ0
1Y

λ
2 ]. (4.3.42)

For a fixed ε, denote by Φλ the flow of the time-dependent vector field εZλ,

d

dλ
Φλ = εZλ(Φλ).

Φ0 = id .

Lemma 4.3.6 One can choose δ > 0 in Lemma 4.3.5 such that the flow Φλ : N →
M is well-defined for all ε ∈ (−δ, δ) and λ ∈ [0, 1]. Moreover, we have

(Φλ)∗σλ = 〈σ〉, ∀λ ∈ [0, 1]. (4.3.43)

Proof. By Lemma 4.3.5, we can fix δ > 0 so that σλ is nondegenerate on N if
ε ∈ (0, δ), that is, 1− ε∆λ 6= 0. Since the closure N̄ is compact, shrinking δ if it is
necessarily, we can arrange that the flow Φλ of the time-dependent vector field εZλ
is defined on N for all ε ∈ (−δ, δ) and λ ∈ [0, 1]. Next, to verify (4.3.43), we have to
show that

∂

∂λ
((Φλ)∗σλ) = 0. (4.3.44)

Because of the identity

∂

∂λ
((Φλ)∗σλ) = (Φλ)∗(εLZλσλ +

∂

∂λ
σλ),
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condition (4.3.44) is equivalent to the equation for Zλ

εLZλσλ +
∂

∂λ
σλ = 0.

Taking into account that ∂
∂λσλ = εdθ0 and the closeness of σλ, we conclude that it

is sufficient to find a vector field Zλ satisfying the relation

iZλσλ = −θ0. (4.3.45)

Then, putting

Zλ = c1Y
λ

1 + c2Y
λ

2 + c3
∂

∂p2
+ c4

∂

∂q2
.

and using representation (4.3.41), we get equality

iZλσλ = −c2(1− ε∆λ)dp1 + c1(1− ε∆λ)dq1 − εc4Γλ1 + εc3Γλ2 .

which says that a solution to (4.3.45) is just given by formula (4.3.42).

Corollary 4.3.7 The time-1 flow of time-dependent vector field εZλ ( 4.3.42)

Tε = FlλεZλ |λ=1 (4.3.46)

gives a symplectomorphism between the original symplectic structure σ and its S1-
average 〈σ〉.

The S1-Invariant Plane Distribution H. For λ = 0, the vector fields Y λ
1 and

Y λ
1 in (4.3.33), (4.3.34) can be represented as

Y 0
1 =

∂

∂p1
+ V

(2)

θ0
1
, (4.3.47)

Y 0
2 =

∂

∂q1
+ V

(2)

θ0
2
. (4.3.48)

Lemma 4.3.8 The vector fields Y 0
1 and Y 0

2 and the function

∆0 =
∂θ0

2

∂p1
− ∂θ0

1

∂q1
+
∂θ0

1

∂p2

∂θ0
2

∂q2
− ∂θ0

1

∂q2

∂θ0
2

∂p2
. (4.3.49)

are S1-invariant, that is,

[Y 0
1 , V

(2)
J ] = [Y 0

2 , V
(2)
J ] = 0, (4.3.50)

and
L
V

(2)
J

∆0 = 0. (4.3.51)
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Proof. It follows from representations (4.3.47) and (4.3.48) that

[Y 0
1 , V

(2)
J ] = V

(2)
L
Y 0

1
J , (4.3.52)

[Y 0
2 , V

(2)
J ] = V

(2)
L
Y 0

2
J . (4.3.53)

By definition (4.3.28) of the 1-form θ0 and properties of the operator S (see Chapter
2), we have

L
V

(2)
J
θ0 = d1J − 〈d1J〉.

Taking the interior product of both sides of this equality with vector fields ∂
∂p1

and
∂
∂q1

, we get

LY 0
1
J = 〈 ∂J

∂p1
〉, LY 0

2
J = 〈 ∂J

∂q1
〉. (4.3.54)

From here and property (4.3.32) we get the identities

d2(LY 0
1
J) = d2(LY 0

2
J) = 0

which together with (4.3.52) and (4.3.53) prove (4.3.50). Property (4.3.51) follows
from (4.3.50) and the relation

1− ε∆0 = 〈σ〉(Y 0
1 , Y

0
2 )

which is consequence of (4.3.41).

Let us associate to every vector field u = u1 ∂
∂p1

+ u2 ∂
∂q1

on π1(N) ⊂ S1, the
following vector field on the total space N :

horu := u1Y 0
1 + u2Y 0

2 ≡ û+ V
(2)
iûθ0 . (4.3.55)

By Lemma 4.3.8, horu is S1-invariant. Then, the (horizontal) plane distribution

H := {horu | u ∈ X(π1(N))} (4.3.56)

is also invariant with respect to the S1-action.

Lemma 4.3.9 For any vector field u on π1(N) and G ∈ C∞(N), the S1-average of
the vector fields V (2)

G and û are given by the formulas

〈V (2)
G 〉 = V

(2)
〈G〉, (4.3.57)

〈û〉 = horu . (4.3.58)

Proof. To verify identity (4.3.57), let us consider the degenerate Poisson tensor on
M :

Π(2) =
∂

∂p2
∧ ∂

∂q2
. (4.3.59)
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Then, in terms of Π(2), the definition (4.1.2), (4.1.3) of the vector field V
(2)
G reads

V
(2)
G = idGΠ(2). (4.3.60)

This says that V (2)
G is a Hamiltonian vector field relative to Π(2) and hence the flow

of V (2)
G preserves Π(2). In particular, we conclude that Π(2) is invariant with respect

to the S1-action,
L
V

(2)
J

Π(2) = 0. (4.3.61)

Averaging both sides of (4.3.60) gives the identity 〈V (2)
G 〉 = id〈G〉Π(2) which proves

(4.3.57). Next, by (4.3.55) we have the representation û = horu−V (2)
iûθ0 . Applying

again the averaging operator to this equality and using the S1-invariance of horu,
property (4.3.29) and identity (4.3.57), we get

〈û〉 = 〈horu〉 − V (2)
iû〈θ0〉 = horu .

We have also the follow useful technical result.

Lemma 4.3.10 For every S1-invariant function I on N the following identity holds

iû〈d1I〉 = Lhor(u)I, ∀u ∈ X(S1), (4.3.62)

where hor(u) is defined by ( 4.3.55).

Proof. First, using the S1-invariance of dI and formula (4.3.58), we get

〈iûdI〉 = i〈û〉dI = ihor(u)dI = Lhor(u)I.

On other hand, the S1-invariance of hor(u) and the fact that 〈d1J〉 is horizontal
1-form imply

〈iûdI〉 = 〈iûd1I〉 = 〈i
û+V

(2)

θ0(u)

d1I〉 = i
û+V

(2)

θ0(u)

〈d1I〉 = iû〈d1I〉.

Comparing these identities, we show (4.3.62).

For any 1-forms α and β on M denote by {α ∧ β}2 the 2-form given by {α ∧
β}2(X,Y ) = {α(X), β(Y )}2 − {α(Y ), β(X)}2.

Lemma 4.3.11 The S1-invariant distribution H ( 4.3.56) is involutive if the 1-form
θo satisfies the equation

d1θ
o +

1
2
{θo ∧ θo}2 = 0. (4.3.63)

Proof. Consider the 2-form

C := d1θ
o +

1
2
{θo ∧ θo}2. (4.3.64)
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It is clear that C annihilates the vector fields ∂
∂p2

and ∂
∂q2

and hence condition (4.3.63)
reads C( ∂

∂p1
, ∂
∂q1

) = 0. On other hand, we have the equality

[Y 0
1 , Y

0
2 ] =

[
∂

∂p1
+ V

(2)
θo1
,
∂

∂q1
+ V

(2)
θo2

]
= V

(2)

C( ∂
∂p1

, ∂
∂q1

)
,

which says that conditions (4.3.63) implies the involutivity of H, [Y 0
1 , Y

0
2 ] = 0.

By direct verification one can show that there is the representation C = ∆0σ
(2) and

hence condition (4.3.63) is equivalent to the following

∆0 = 0. (4.3.65)

Remark 12 According to [47] the S1-invariant splitting TN = H ⊕ TS2 gives the
Hannay-Berry connection on a trivial symplectic bundle π1 : S1 × S2 → S1 equipped
with S1-action. The horizontal distribution H can be derived by applying the gen-
eral averaging procedure [47] to the trivial connection associated to the canonical
distribution TS1 ⊕ {0}. The curvature of the Hannay-Berry connection is just the
vector valued 2-form V

(2)
C . Therefore, condition ( 4.3.63) (respectively ( 4.3.65)) im-

plies vanishing of the curvature and can be called the zero curvature equation. If
( 4.3.63) holds, then the distribution is integrable in the sense of Frobenius.

The ε-expansion of the Hamiltonian Hε ◦ Tε. To end the proof of Theorem
4.3.1 it remains to find the ε-expansion of the transformed Hamiltonian Hε ◦Tε,
where the near identity transformation Tε is given by Tε = FlλεZλ

∣∣
λ=1

. Remark that
the vector field Zλ in (4.3.42) has the following expansion at ε = 0:

Zλ(ε) = X − λY + ε∆λ(X − λY) +O(ε2), (4.3.66)

where
X = −θ0

2Y
0

1 + θ0
1Y

0
2 , Y = −θ0

2V
(2)

θ0
1

+ θ0
1V

(2)

θ0
2
, (4.3.67)

∆λ = (1− λ)∆0 + λ(λ− 1){θ0
1, θ

0
2}2. (4.3.68)

Lemma 4.3.12 Under the near identity mapping Tε, original perturbed system ( 4.3.2),
( 4.3.3) is transformed to a system which is Hamiltonian relative to the symplectic
structure 〈σ〉 and the Hamiltonian

Hε ◦ Tε = f ◦ π1 + ε〈F 〉+
ε2

2
K +O(ε3), (4.3.69)

where the second order term and its S1-average is given by the formulas

K =
1
3
LX (F + 2〈F 〉)− 1

3
i
V

(1)
2F+〈F 〉

θ0 +
(

∆0 −
1
3
{θ0

1, θ
0
2}2
)

(〈F 〉 − F ), (4.3.70)

〈K〉 = −1
3
〈i
V

(1)
2F+〈F 〉

〉 − 1
3
〈{θ0

1, θ
0
2}2(〈F 〉 − F )〉. (4.3.71)
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Proof. Let H = H0 + εH1. Using (4.3.66) and the identity

H ◦ FlλεZλ = H +
∫ λ

0
(LZλ′H) ◦ Flλ

′
εZλ′

dλ′,

by direct computation we derive the following representation

(H0 + εH1) ◦ Tε = H0 + ε

(
H1 +

1
2
L2X−YH0

)
(4.3.72)

+
ε2

2

(
(L2
X −

1
3

(LY ◦ LX + LX ◦ LY)

+
1
4
L2
Y + c1LX + c2LY)(H0) + L2X−YH1

)
+ O(ε3),

where

c1 = 2
∫ 1

0
∆λdλ = ∆0 −

1
3
{θ0

1, θ
0
2}2, (4.3.73)

c2 = −2
∫ 1

0
λ∆λdλ. (4.3.74)

Putting H0 = f ◦ π1 and H1 = F , que get that LYH0 = 0 and the first order term
in the decomposition (4.3.72) takes the form

LXH0 +H1 = −iv̂f θ
0 + F. (4.3.75)

By (4.3.57), (4.3.58), the S1-average of V =v̂f + V
(2)
F is given by the formula

〈V〉 = v̂f + V
(2)
〈F 〉+iv̂f θ

0 (4.3.76)

On the other hand , we know that 〈V〉 = V. Then, this property together with(
4.3.76) implies the relation

〈F 〉+ ivf θ
0 = F + c ◦ π, (4.3.77)

for a certain c ∈ C∞(π(N)). T0he averaging of both sides of this equality gives
c ◦ π = −iv̂f 〈θ0〉 = 0 and hence

〈F 〉 = F − iv̂f θ
0. (4.3.78)

Next, the second order term in (4.3.72) is given by the expression

(LX −
1
2
LY)LX (H0) + c1LX (H0) + L2X−Y(H1),

which together with (4.3.73), (4.3.75) and (4.3.78 leads to (4.3.70). Finally, averag-
ing (4.3.70) and using the equalities 〈∆0〉 = ∆0 and 〈X 〉 = 0, we prove (4.3.71).
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Remark 13 It follows from ( 4.3.72) that the near identity transformation Tε can
be also represented as the time ε-flow of a time-dependent vector field Z̃λ with Z̃0 =
X − 1

2Y.

Hamiltonian S1-Spaces. It follows from (4.3.27), (4.3.28) that the ε-dependent
Poisson tensor associated to the S1-invariant symplectic form 〈σ〉 = σ−εdθ0 is given
by the formula (see, also [49])

Π =
1

1− ε∆0
Y 0

1 ∧ Y 0
2 +

1
ε

∂

∂p2
∧ ∂

∂q2
. (4.3.79)

This is just straightforward computation. It is clear that Π is well defined in the
invariant domain {1− ε∆0 6= 0, ε 6= 0} in M . Moreover, Π is S1-invariant,

L
V

(2)
J

Π = 0. (4.3.80)

This fact follows directly from (4.3.50), (4.3.51) and (4.3.61). The Hamiltonian
vector field XG relative to Π and a function G is defined by the relation XG = idGΠ
and represented as

XG =
1

1− ε∆0

(
(LY 0

1
G)Y 0

2 − LY 0
2
G)Y 0

1

)
+

1
ε
V

(2)
G . (4.3.81)

In particular, the Hamiltonian vector field of the approximate model is of the form

X
f◦π1+ε〈F 〉+ ε2

2
K

=
1

1− ε∆0
horθ

0

vf
+V (2)
〈F 〉 +

ε

2
V

(2)
K (4.3.82)

+
ε

1− ε∆0

(
(LY 0

1
(〈F 〉+

ε

2
K))Y 0

2 − (LY 0
2

(〈F 〉+
ε

2
K))Y 0

1

)
= V+ ε

(
1
2
V

(2)
K + ∆0 horvf +(LY 0

1
〈F 〉)Y 0

2 − (LY 0
2
〈F 〉)Y 0

1

)
+O(ε2).

The following result says under which conditions the canonical S1-action is
Hamiltonian on (N, 〈σ〉).

Proposition 4.3.13 The S1-action associated to the infinitesimal generator Υ =
V

(2)
J is Hamiltonian relative the symplectic form 〈σ〉 if and only if the cohomology

class of the 1-form ς in ( 4.3.30) is trivial, that is,

〈d1J〉 = d(g ◦ π1) (4.3.83)

for a certain g ∈ C∞(π1(N)). Under this condition , the corresponding momentum
map is ε(J − g ◦ π1),

i
V

(2)
J

〈σ〉 = −εd(J − g ◦ π1)

Proof. It follows from representation (4.3.81) that the infinitesimal generator V (2)
J

of the S1-action is Hamiltonian relative to Π (also, relative to 〈σ〉) and a function
G, V (2)

J = XG if and only if
V

(2)
G = εV

(2)
J
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and G is a first integral of the vector fields Y 0
1 and Y 0

2 , LY 0
1
G = LY 0

2
G = 0. These

conditions are equivalent to the following: G = ε(J − g ◦ π1) for a certain g ∈
C∞(π1(N)) and

LY 0
1
J =

∂g

∂p1
,LY 0

2
J =

∂g

∂q1
. (4.3.84)

By (4.3.54) we have the relations LY 0
1
J = 〈 ∂J∂p1

〉,LY 0
2
J = 〈 ∂J∂q1 〉 which together with

(4.3.84) lead to (4.3.83).

Corollary 4.3.14 If the domain π1(N) is simply connected, then the S1-action is
Hamiltonian on (N, 〈σ〉).

Lemma 4.3.15 If condition ( 4.3.83) holds for a certain g ∈ C∞(π1(N)), then the
function J − g ◦ π1 is a mutual first integral of the vector fields Y 0

1 , Y 0
2 and the

Hamiltonian system (N, 〈σ〉, 〈Hε〉 = f ◦ π1 + ε〈F 〉). Moreover,

Lvf g = 0.

Proof. The fact that J̃ = J−g◦π1 is a first integral of Y 0
1 , Y 0

2 is a direct consequence
of (4.3.83). The S1-invariance of 〈Hε〉 and condition (4.3.83) mean that L

V
(2)
J

〈Hε〉 =

0 and V
(2)
J = εXJ̃ . It follows that

LX〈Hε〉 J̃ = −LXJ̃ 〈Hε〉 = −1
ε
L
V

(2)
J

〈Hε〉 = 0. (4.3.85)

By (4.3.82) we have XH̃ε
= V + O(ε). From here and (4.3.85) we deduce that

LVJ̃ = 0.
In the following special case, condition (4.3.83) is always satisfied.

Lemma 4.3.16 Consider the S1-action associated to the infinitesimal generator
Υ = V

(2)
J and suppose that the presymplectic 2-form σ(2) is exact on N ,

σ(2) = dη (4.3.86)

for a certain 1-form η ∈ Ω1(N). Then, the function

J0 := iΥ〈η〉 (4.3.87)

satisfies the relations
iΥσ(2) = −d2J

0, (4.3.88)

〈d1J
0〉 = 0. (4.3.89)

Proof. Since the 1-form 〈η〉 is S1-invariant, we have L
V

(2)
J

〈η〉 = 0 and hence

di
V

(2)
J

〈η〉 = −i
V

(2)
J

〈dη〉.
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In terms of the presymplectic 2-form σ(2), this equality is rewritten as follows

i
V

(2)
J

〈σ(2)〉 = −dJ0. (4.3.90)

On the other hand, averaging the identity i
V

(2)
J

σ(2) = −d2J gives

i
V

(2)
J

〈σ(2)〉 = −〈d2J〉 (4.3.91)

. Taking into account the identity 〈d2J〉 = d1J−〈d1J〉+d2J and equations (4.3.90),
(4.3.91), we deduce the relationship between J and J0:

d1J − 〈d1J〉+ d2J = d1J
0 + d2J

0. (4.3.92)

It follows that d2(J − J0) = 0 and hence there exists a function g ∈ C∞(π1(N))
such that

J − J0 = g ◦ π1. (4.3.93)

This implies (4.3.88). Moreover, it follows form (4.3.92) that d1J
0 = d1J − 〈d1J〉.

So, equality (4.3.89) holds.

Corollary 4.3.17 In the exact case ( 4.3.86), condition ( 4.3.83) holds for a function
g given by ( 4.3.93). Thus, Υ = V

(2)
J0 and the S1-action is Hamiltonian relative to

〈σ〉.

To complete the proof of Theorem 4.3.1 it remains to apply Lemma 4.3.16 to the
case when S2 = R2 and σ(2) = d(p2dq2).

Remark 14 Hypothesis ( 4.3.18), called the adiabatic condition was introduced in
[47, 55], in the context of the theory of Hannay-Berry connections on symplectic and
Poisson fiber bundles.

4.3.4 The geometric structure of normal forms

Resuming the above results, we will formulate a free coordinate version of Theorem
4.3.1 and clarify the geometric meaning of the corresponding normal forms. Let
(S1, σ1) and (S2, σ2) be two 2-dimensional symplectic surfaces. Consider a perturbed
Hamiltonian system with two degrees of freedom

(M = S1 × S2, σ = σ(1) + εσ(2), Hε = f ◦ π1 + εF ), (4.3.94)

for some f ∈ C∞(S1) and F ∈ C∞(M). Assume that on an open domain N ⊆
M , the unperturbed vector field V admits a circle first integral J : N → R and
consider the S1-action with infinitesimal generator Υ = V

(2)
J . By Lemma 4.3.4, the

cohomology class of the closed 1 form ς on π1(N) ⊂ S1 given by

〈d1J〉 = π∗1ς (4.3.95)

is an intrinsic characteristic of the S1-action.
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By Lemma 4.3.8, the 1-form θ0 = S(d1J) induces the horizontal distribution
H = {horu | u ∈ X(π1(N))} which is invariant with respect to the S1-action. Here
horu = û + V

(2)
iûθo

. Consider a smooth global function ∆0 on N which is defined
as the density of the horizontal 2-form C = d1θ

o + 1
2{θ

o ∧ θo}2 with respect to the
pre-symplectic 2-form σ(1) = π∗1σ1, C = ∆0σ

(1). The coordinate representation of
∆0 is just given by (4.3.49). Let Π1 ∈ χ2(S1) be the nondegenerate Poisson tensor
associated to the symplectic structure σ1 on S1. Denote by hor(Π1) the horizontal
lift of Π1 to N via the connection H, that is, a unique bivector field on N which is
tangent to H and such that

hor(Π1)(π∗1df, π
∗
1dg) = Π1(df, dg) ◦ π1 ≡ σ1(vf , vg)

for all f, g ∈ C∞(S1). It is clear that hor(Π1) is S1-invariant and locally,

hor(Π1) = Y 0
1 ∧ Y 0

2 ,

where the vector fields Y 0
1 and Y 0

2 are given by (4.3.47), (4.3.48). Moreover, it is
easy to see that the global representation of the function K in (4.3.70) is

K =
1
3
LX (F + 2〈F 〉)− 1

3
i
V

(1)
2F+〈F 〉

θ0 +
(

∆0 −
1
6
{θ0 ∧ θ0}2

)
(〈F 〉 − F ), (4.3.96)

where
X = iθ0hor(Π1).

Theorem 4.3.18 Suppose that the closure of the domain N is compact. Then,
(a) for small enough ε 6= 0, the near identity mapping Tε ( 4.3.46) brings the original
perturbed model to a Hamiltonian system of the form(

N, 〈σ〉 = σ − εdθ0, Hε ◦ Tε = f ◦ π1 + ε〈F 〉+
ε2

2
K +O(ε3)

)
, (4.3.97)

where the Hamiltonian vector field XHε◦Tε = T ∗ε VHε of Hε◦Tε relative to the averaged
form 〈σ〉 has the representation

XHε◦Tε = V+ εW̄+O(ε2), (4.3.98)

where
V = horvf +V (2)

〈F 〉, (4.3.99)

and
W̄ = ∆0 horvf +id〈F 〉hor(Π1) +

1
2
V

(2)
K . (4.3.100)

(b) Moreover, if the cohomology class of the 1-form ς in ( 4.3.30) is trivial,

[ς] = 0,

then the S1-action associated to the infinitesimal generator V (2)
J is Hamiltonian on

(N, 〈σ〉) with momentum map εJ0, where

J0 = J − g ◦ π1 (4.3.101)
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for a certain g ∈ C∞(π1(N)) satisfying ( 4.3.83). In this case, perturbed system
( 4.3.97) is ε2-close to the Hamiltonian system with S1-symmetry

(N, 〈σ〉, 〈Hε〉 = f ◦ π1 + ε〈F 〉 ) (4.3.102)

and the function J0 is a first integral of this system and the averaged perturbation
vector field W̃ in ( 4.3.98),

L〈W̃〉J
0 = 0. (4.3.103)

Proof. The proof of the first part of the theorem is a direct consequence of the results
of the previous subsection. Representation (4.3.99) follows from equality (4.3.78).
By Lemma 4.3.12, we have 〈V (2)

K 〉 = V
(2)
〈K〉. Then by averaging the both sides of the

equality

W̄ = ∆0 horvf +id〈F 〉Y
0

1 ∧ Y 0
2 +

1
2
V

(2)
K ,

we get the formula for the S1-average of the perturbation vector field

〈W̄〉 = ∆0 horvf +id〈F 〉Y
0

1 ∧ Y 0
2 +

1
2
V

(2)
〈K〉

which together with properties LY 0
i
J0 = 0 (see Lemma 4.3.15) and the identity

L
V

(2)
〈K〉
J0 = −LV (2)

J0 〈K〉=0 implies (4.3.103).

We observe that condition (4.3.18) holds in each of the following cases:

• the “slow” symplectic manifold S1 is simply connected;

or

• the symplectic form on “fast” symplectic manifold S2 is exact.

In the last case,
σ(2) = dη, η = π∗2η

0 (4.3.104)

for a certain 1-form η0 on π2(N) ⊂ S2. Then, according to Lemma 4.3.16, the
function Jo in (4.3.101) can be defined as

Jo = i
V

(2)
J

〈η〉. (4.3.105)

Consider the splitting TM = H ⊕ TS2, where H is the S1-invariant horizon-
tal distribution. Then according to this splitting the perturbation vector field W̄
(4.3.100) has the decomposition

W̄ = W̄H + W̄V

into the horizontal and vertical parts given by

W̄H = ∆0horvf + id〈F 〉hor(Π1),

W̄V =
1
2
V

(2)
K .
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It follows that W̄H is S1-invariant and

〈W̄V 〉 =
1
2
V

(2)
〈K〉.

Therefore, the near identity transformation Tε (4.3.46), brings the Hamiltonian vec-
tor field VHε into an S1-invariant normal form of first order only in the horizontal
direction. Remark that the horizontal lift hor(Π1) coincides with the horizontal part
of 〈Π(1)〉 and is not a Poisson tensor, in general. For example, hor(Π1) is a Poisson
tensor if ∆0 = 0 and hence H is integrable. Then, the horizontal normal form W̄H

is a Hamiltonian vector field relative to the Poisson tensor hor(Π1) and the function
〈F 〉.

The next question is to remove the non-invariant vertical component by making
an additional near identity transformation.

Corollary 4.3.19 Suppose that there exist functions G ∈ C∞(N) and c ∈ C∞(π1(N))
satisfying the homological equation

LVG =
1
2

(K − 〈K〉) + c ◦ π1. (4.3.106)

Then, for small enough ε 6= 0, the near identity transformation

T̃ε = Tε ◦ Flε
V

(2)
G

(4.3.107)

brings the Hamiltonian vector field VHε on (M,σ) into S1-invariant normal form of
first order:

T̃ ∗ε VHε = V+ ε(W̄H +
1
2
V

(2)
〈K〉〉) +O(ε2). (4.3.108)

Proof. The statement follows from Theorem 4.3.18, the representation(
Flε
V

(2)
K

)∗
(V+ εW̄) = V+ (−[V, V (2)

G ] + W̄H +
1
2
V

(2)
K +O(ε2)

and the identity [V, V (2)
G ] = V

(2)
LVG

.

The Adiabatic Invariants. On the phase space (M = S1 × S2, σ = σ(1) + εσ(2)),
we consider a slow-fast Hamiltonian model

ξ̇ = εV
(1)
F (ξ ∈ S1), (4.3.109)

ẋ = V
(2)
F (x ∈ S2), (4.3.110)

for a certain F ∈ C∞(M). Assume that the regular set Reg(V (2)
F ) is dense in M

and the flow of V (2)
F is periodic with frequency function ω : M → R. Consider the

S1-action with infinitesimal generator Υ = 1
ωV

(2)
F . It is clear that the restriction of

V
(2)
F to each slice {m1} × S2 gives a Hamiltonian system with periodic flow. Then,

applying to this system the period-energy relation argument (see, Proposition 2.5.1),
we get the identity

d2ω ∧ d2F = 0
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which says that the 1-form 1
ωd2F is d2-closed on M . Given an S1-invariant open

domain N ⊂M with compact closure, we assume that

1
ω
d2F is d2-exact on N. (4.3.111)

This implies that 1
ωd2F = d2J for a certain smooth function J : N → R and hence

1
ω
V

(2)
F = V

(2)
J on N. (4.3.112)

It follows that J is a circle first integral of the unperturbed vector field V
(2)
F and

hence the initial hypotheses of Theorem 4.3.1 hold.

Theorem 4.3.20 Under above assumptions, the following assertions are true:
(a) for small enough ε, the near identity transformation

T̃ε = Tε ◦ Flε1
2
V

(2)
S(K)

: N →M,

brings the vector field of slow-fast system ( 4.3.109), ( 4.3.110) to S1-invariant normal
form of first order

T̃ ∗ε (V (2)
F + εV

(1)
F ) = V

(2)
F + ε(idFhor(Π1) +

1
2
V

(2)
〈K0〉) +O(ε2). (4.3.113)

where
K0 = −i

V
(1)
F

θ0.

(b) If there exists a smooth function J0 ∈ C∞(N) such that

d2J
0 =

1
ω
d2F, (4.3.114)

〈d1J
0〉 = 0, (4.3.115)

then J0 is a first integral of the second term in the normal form ( 4.3.113). In the
case when the S1-action is free on N , the function J0 is an adiabatic invariant of
system of system ( 4.3.109), ( 4.3.110).

Proof. It is clear that 〈F 〉 = F . By Theorem 4.3.1, in the adiabatic case f ≡ 0, the
slow-fast Hamiltonian model

(M = S1 × S2, σ = σ(1) + εσ(2), Hε = εF )

is transformed under mapping Tε (4.3.46) into the Hamiltonian system(
N, 〈σ〉, Hε ◦ Tε = εF +

ε2

2
K +O(ε3)

)
,

where
K = LXF − i

V
(1)
F

θ0 = LXF +K0.
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The corresponding Hamiltonian vector field is of the form

XHε◦Tε = V
(2)
F +εW̄+O(ε2). (4.3.116)

Since the flow of V = V
(2)
F is periodic, homological equation (4.3.106) has a solution

of the form G = 1
2S(K) and c = 0. Moreover, the property 〈X 〉 = 0 implies that

〈K〉 = −〈i
V

(1)
F θ0〉 = 〈K0〉, Therefore, this proves item (a). As a consequence, we get

the representation

〈W̄〉 = idFhor(Π1) +
1
2
V

(2)
〈K0〉

= (LY 0
1
F )Y 0

2 − (LY 0
2
F )Y 0

1 +
1
2
V

(2)
〈K0〉.

To prove the item (b), we recall that condition (4.3.115) is equivalent to the following

LY 0
1
J0 = LY 0

2
J0 = 0. (4.3.117)

Finally, using these properties and condition (4.3.114), we compute

L〈W̄〉J0 = (LY 0
1
F )LY 0

2
J0 − (LY 0

2
F )LY 0

1
J0 +

1
2
L
V

(2)
〈K0〉

J0

= −LV (2)
J 〈K0〉 = 0.

In the case when the S1-action is free, the fact that J0 is an adiabatic invariant
follows from Proposition 3.2.22.

Combining Theorem 4.3.20 and Theorem 4.2.2 leads to the following criterion.

Corollary 4.3.21 The vector field T̃ ∗ε (V (2)
F +εV

(1)
F ) is in normal form of first order

relative to V (2)
F if and only if

hor(Π1)(dF, dω) +
1
2
〈{K0, ω}2〉 = 0.

By Theorem 4.3.20, the existence of a function J0 with properties (4.3.115), (4.3.114)
is provided by conditions (4.3.111) which is automatically satisfied in the exact case.

Proposition 4.3.22 Suppose that the flow of V (2)
F is periodic with frequency func-

tion ω : M → R and the exactness condition ( 4.3.104) holds. Then, the function

J0 =
1
ω

i
V

(2)
F

〈η〉, η = π∗2η
0 (4.3.118)

satisfies the conditions ( 4.3.115), ( 4.3.114).
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Proof. Using the invariance of ω and dF with respect to the S1-action with infinites-
imal generator Υ = 1

ωV
(2)
F and that J0 = iΥ〈η〉, we obtain

d2J
0 = d2(iΥ〈η〉) = d ◦ iΥ〈η〉 − d1J

0,

= LΥ〈η〉 − iΥ〈dη〉 − d1J
0,

= −〈iΥσ(2)〉 − d1J
0 =

1
ω
〈d2F 〉 − d1J

0,

=
1
ω
dF − 1

ω
〈d1F 〉 − d1J

0.

From here we get the identity

d2J
0 − 1

ω
d2F =

1
ω
d1F −

1
ω
〈d1F 〉 − d1J

0

which splits into the two relations

d2J
0 =

1
ω
d2F,

d1J
0 =

1
ω
d1F −

1
ω
〈d1F 〉.

This proves (4.3.115), (4.3.114).

Therefore, Proposition 4.3.22 gives us a free action-angle coordinate version of
the classical adiabatic theorem [7, 38, 62].

4.3.5 Generalizations

The above results remain true in the general case when we start with a phase space
(M = S1 × S2, σ = σ(1) + εσ(2)), where S1 and S2 are symplectic manifolds of
arbitrary dimensions. Below we give some computational formulas for the main
objects which appear in the formulations of Theorem 4.3.1. Let (ξ, x) = (ξi, xα) be a
(local) coordinate system on M adapted to the symplectic factors, ξ = (ξi) ∈ S1 and
x ∈ (xα) ∈ S2. Then, the presymplectic forms σ(1) and σ(2) have the representations

σ(1) =
1
2
σ

(1)
ij (ξ)dξi ∧ dξj ,

σ(2) =
1
2
σ

(2)
αβ (x)dxα ∧ dxβ.

Recall that the summation over repeated indices is understood. Suppose we are
given an S1-action on M with an infinitesimal generator

V
(2)
J = [σ(2)]αβ

∂J

∂xβ
∂

∂xα

for certain smooth function J = J(ξ, x) on M . Here [σ(2)]αβ denote the elements of
the inverse of the matrix (σ(2)

αβ ). Introduce a 1-form θ0 = θoi (ξ, x)dξi on M whose
coefficients are given by

θ0
i :=

1
2π

2π∫
0

(t− π)(Flt
V

(2)
J

)∗
∂J

∂ξi
dt
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and 〈θ0
i 〉 = 0. Let us associate to θ0 the following 2-form

F =
1
2
Fij(ξ, x)dξi ∧ dξj = π∗1σ

(1) − ε(d1 +
1
2
{θ0 ∧ θ0}2),

Fij := σ
(1)
ij + ε

(
∂θ0

i

∂ξj
−
∂θoj
∂ξi

+ [σ(2)]αβ
∂θ0

i

∂xα
∂θoj
∂xβ

)
,

and (local) 1-forms

Γα = dxα − [σ(2)]αβ
∂θ0

i

∂xβ
dξi.

A multidimensional version of Lemma 4.3.4 and Lemma 4.3.8 is formulated as fo-
llows.

Proposition 4.3.23 The S1-average 〈σ〉 of the symplectic form σ with respect to
the S1-action Flt

V
(2)
J

has the representations

〈σ〉 = σ − εdθ0 = F+
1
2
σ

(2)
αβΓα ∧ Γβ (4.3.119)

and is nondegenerate if and only if det(Fij) 6= 0. The both terms in the last decom-
position in ( 4.3.119) are S1-invariant. Moreover, there is an S1invariant splitting

TM = H⊕ TS2, (4.3.120)

where the horizontal distribution H is generated by the vector fields

Y o
i =

∂

∂ξi
+ [σ(2)]αβ

∂θ0
i

∂xβ
∂

∂xα
.

The S1-action is Hamiltonian relative to 〈σ〉 if and only if 〈d1J〉 = 0 or, equivalently

LY 0
i
J = 0, (4.3.121)

for i = 1, 2, . . . ,dimS1.

The proof of this statement is based on the same arguments as in subsection 4.3.3
(see also [17]).

Remark that the last representation in (4.3.119) says that the averaged form 〈σ〉
is a weak coupling symplectic form which has the following geometrical interpretation
[30, 73]. The S1-invariant splitting (4.3.120) gives the Hannay-Berry connection
[55] in the trivial symplectic bundle π1 : M → S1 associated with the horizontal
subbundle H and the connection form Γ = Γα ⊗ ∂

∂xα . The horizontal 2-form F
controls the curvature of Γ and coincides at ε = 0 with the pull-back π∗1σ1 of the
symplectic form on the base S1. For example, in the 2-dimensional case, F =
(1− ε∆0)π∗1σ1 (where ∆0 is given by 4.3.49 ) and the zero curvature condition reads
∆0 = 0. The second term of the last representation in (4.3.119) is a 2-form on M
which vanishes along the horizontal distribution H and coincides with σ2 on the
fiber of π1. Therefore, the weak coupling symplectic form is the result of coupling
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of the base of symplectic form σ1 with the fiberwise symplectic symplectic form σ2

via the Hannay-Berry connection Γ.
As well as in Theorem 4.3.1, the averaging principle says that in the multidi-

mensional case, a good approximation to the original perturbed system is the model
(〈σ〉, 〈Hε〉) which becomes a Hamiltonian system with S1-symmetry if condition
(4.3.121) holds.

4.4 The Quadratic Case

Here we apply the general results to a special type of perturbed Hamiltonian system
(M = S1×S2, σ = σ(1) +εσ(2), Hε = f ◦π1 +εF ) where the fast factor S2 is a vector
space and the perturbation term F is a quadratic function in the fast variables.
As we have showed in Section 2, such perturbed models appear in the study of
Hamiltonian dynamics near invariant symplectic submanifolds (see, also [39, 74]).
In this context, the unperturbed dynamics is defined by the first variation system
over an invariant submanifold.

4.4.1 Perturbative setting for linearized dynamics

Let Rr = {x = (x1, ..., xr)} be the Euclidean space and S1 a smooth manifold.
Consider the product manifold M = S1 × Rr, identifying S1 with submanifold in
M by means of the slice S1 × {0}. Suppose we are given a vector field X on M for
which S1 is an invariant submanifold. Then, we have

X =
∑
i

Xi(ξ, x)
∂

∂ξi
+
∑
α

Xα(ξ, x)
∂

∂xα
(4.4.1)

with
Xα(ξ, 0) = 0 (α = 1, ..., r). (4.4.2)

Here, ξ = (ξi) is a coordinate system on S1. The restriction of X to S1 is a vector
field given by

v = X |S=
∑
i

vi(ξ)
∂

∂ξi
,

vi(ξ) = Xi(ξ, 0).

For every ε ∈ R, ε 6= 0, consider the scaling map ρε : M →M , ρε(ξ, x) = (ξ, εx). It
is clear that ρε is a diffeomorphism if ε 6= 0.

Proposition 4.4.1 The pull-back Aε = ρ∗εX is an ε-dependent vector field on M
with Taylor expansion at ε = 0

Aε = varS(X) + εA1 +O(ε2), (4.4.3)

where

varS1(X)
def
= lim

ε→0
ρ∗εX =

∑
i

vi(ξ)
∂

∂ξi
+
∑
α,β

∂Xα(ξ, 0)
∂xβ

xβ
∂

∂xα
,
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A1
def
= lim

ε→0

1
ε

(ρ∗εX − varS1(X))

=
∑
i,β

∂Xi(ξ, 0)
∂xβ

xβ
∂

∂ξi
+

1
2

∑
α

∂2Xα(ξ, 0)
∂xβ∂xγ

xβxγ
∂

∂xα
.

Proof. In local coordinates, vector field Aε takes the form

Aε(ξ, x) = ρ∗εX =
∑
i

Xi(ξ, εx)
∂

∂ξi
+
∑
α

1
ε
Xα(ξ, εx)

∂

∂xα
. (4.4.4)

Since the vector field Aε is not defined at ε = 0, the terms of the Taylor expansion
of Aε are given by

A0 = varS1(X) def= lim
ε→0

ρ∗εX,

A1
def= lim

ε→0

1
ε

(ρ∗εX −A0) .

From (4.4.4), we get

varS1(X) =
∑
i

vi(ξ)
∂

∂ξi
+
∑
α,β

∂Xα(ξ, 0)
∂xβ

xβ
∂

∂xα
.

Next, we compute the vector field
1
ε

(ρ∗εX −A0) in local coordinates,

1
ε

(ρ∗εX −A0) =
∑
i

1
ε

(
Xi(ξ, εx)− vi(ξ)

) ∂

∂ξi

+
∑
α

 1
ε2
Xα(ξ, εx)− 1

ε

∑
β

∂Xα(ξ, 0)
∂xβ

xβ

 ∂

∂xα
.

Taking limit as ε→ 0, we obtain

A1 =
∑
i,β

∂Xi(ξ, 0)
∂xβ

xβ
∂

∂ξi
+

1
2

∑
α,β,γ

∂2Xα(ξ, 0)
∂xβ∂xγ

xβxγ
∂

∂xα
.

Vector field A0 = varS(X) , called the linearized (or first variation) vector field of
Aε at S, presents the unperturbed dynamics of (4.4.3). The small parameter ε char-
acterized the “radius” of a neighborhood of the invariant submanifold S where we
study the original dynamics of X. We have the following properties: the linearized
vector field is invariant with respect to scaling, ρ∗ε varS(X) = varS(X). And the Lie
derivative along varS(X) preserves the space of smooth functions on M = S × Rr
which are linear in x ∈ Rr.

Consider the following particular case. According to the canonical splitting
TM = TS ⊕ Rr the vector field X has the decomposition onto “tangent” and
“normal ” components relative to S: X = X(1) + X(2). In coordinates, the vector
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fields X(1) and X(2) correspond to the first and second terms in (4.4.1), respectively.
Assume that

ρ∗−λX
(1) = X(1), (4.4.5)

ρ∗−λX
(2) = −λX(2) ∀λ ∈ R. (4.4.6)

Then, one can define the unperturbed vector field as follows

Aε = ρ∗√εX.

In this case, we have
Aε = varS(X) + εA1 +O(ε2)

where

A1 =
1
2

∑
i,β,γ

∂2Xi(ξ, 0)
∂xβ∂xγ

xβxγ
∂

∂ξi
+

1
6

∑
i,β,γ

∂3Xα(ξ, 0)
∂xβ∂xγ∂xσ

xβxγxσ
∂

∂xσ
.

Finally, let us consider the Hamiltonian case. Suppose that (S1, σ) is a symplectic
manifold with symplectic form

σ(1) =
1
2

∑
i,j

σ
(1)
ij (ξ)dξi ∧ dξj

and the Euclidian space R2m = {x = (x1, ..., x2m)} is equipped with canonical

symplectic structure σ(1) = 1
2 < Jdx ∧ dx >, where J =

(
0 −I
I 0

)
. Assume that

on the phase space M = S1 × R2m with symplectic structure

σ = σ(1) +
1
2
< Jdx ∧ dx > (4.4.7)

we are given a Hamiltonian vector field XH whose Hamiltonian H = H(ξ, x) satisfies
the condition

∂H

∂x
(ξ, 0) = 0 ∀ξ ∈ S1.

This means that condition (4.4.2) holds and hence the symplectic submanifold S ≈
S × {0} is invariant with respect to the flow of XH . The restriction of XH to this
submanifold is the Hamiltonian vector field vf on (S1, σ

1), that is, ivfω = −d1f ,
where f(ξ) := H(ξ, 0). In addition, assuming that ρ∗−1H = H, we get that XH

satisfies conditions (4.4.5),(4.4.6). Therefore, applying the scaling map by the factor√
ε to symplectic form (4.4.7) and the Hamiltonian vector field XH gives

σε = ρ∗√εσ = σ1 +
ε

2
< Jdx ∧ dx >,

Aε = ρ∗√εXH = varS(XH) + εA1 +O(ε2).

Here, the unperturbed and perturbation vector fields have the form varS(XH) =
vf + V

(2)
H1

, and A1 = V
(1)
H1

+ V
(2)
H2

, respectively and

H1 =
1
2

∑ ∂2H

θxα∂xβ
(ξ, 0)xαxβ.

For small ε 6= 0, Aε represents a perturbed Hamiltonian system on (M,σ) .
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4.4.2 Circle first integrals from Lax’s equation

Suppose that we start with a slow-fast phase space (M = S1×S2, σ = σ(1) + εσ(2)),
where S1 is an arbitrary symplectic manifold and the S2 = R2 = {x = (p2, q2)} is
the plane equipped with canonical symplectic form. Then,

σ(1) =
1
2
σ

(1)
ij (ξ)dξi ∧ dξj ,

σ(2) = dp2 ∧ dq2 ≡ d(
1
2
Jx · dx).

On this phase space, let us consider a perturbed Hamiltonian system of the form

Hε = f0(ξ) + ε

(
f1(ξ)− 1

2
JV(ξ)x · x

)
(4.4.8)

where f0, f1 ∈ C∞(S1) and V : S1 → sp(1;R) is a smooth matrix-valued function.

Here J =
(

0 −1
1 0

)
. Therefore, we deal with the case when the perturbation term

F is a quadratic function in the fast variables p2, q2. The corresponding unperturbed
vector field is

V = v̂f0 + Vx · ∂
∂x

. (4.4.9)

Lemma 4.4.2 Suppose there exists a smooth vector function A : S1 → sp(1;R)
satisfying the Lax type equation on S1 :

Lvf0 A + [A,V] = 0, (4.4.10)

and the condition
det A = 1. (4.4.11)

Then,

(a) the function

J(ξ,x) = −1
2
JA(ξ)x · x (4.4.12)

is a circle first integral of the unperturbed vector field V satisfying the adiabatic
condition ( 4.3.115).

(b) the approximate Hamiltonian system with S1-symmetry (M, 〈σ〉, 〈Hε〉) is given
by

〈σ〉 = σ(1) +
ε

2
d

(
Jx·(dx− 1

2
(Ad1A)x

)
, (4.4.13)

〈Hε〉 = f0 ◦ π1 + ε

(
f1 ◦ π1 −

1
4
J(V −A−1VA)x · x

)
. (4.4.14)

Proof. Consider the function J = −1
2JA(ξ)x · x. First, by direct computation we

verify that the equality LVJ = 0 is just equivalent to the Lax equation (4.4.10) for
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A. Under condition (4.4.11), the flow of V (2)
J = Ax · ∂∂x is 2π-periodic, because of

the representation

Flt
V

(2)
J

(ξ,x) = exp(tA(ξ))x = (cos t)x+ sin tA(ξ)x.

Now, let us justify formulas (4.4.13), (4.4.14). It is clear that the presymplectic form
σ(2) is exact, σ(2) = dη, where a primitive can be chosen as follows η = 1

2Jx · dx.
Then, we have the following property of η: the pull-back of η by a diffeomorphism
Φ : M → M of the form Φ(ξ,x) = (ξ,Φ(ξ)x), for a certain smooth matrix valued
function Φ : S1 → Sp(1;R), is given by the formula:

Φ∗η = η +
1
2
Jx·(Φ−1d1Φ)x. (4.4.15)

Taking Φ = cos tI+ sin tA, we have Φ−1 = cos tI− sin tA, d1Φ = sin td1A and by
(4.4.14) we compute

(Flt
V

(2)

J0

)∗η = η +
sin t

2
Jx·(cos tI− sin tA)(d1A)x.

This leads to the following formula for the S1-average of η:

〈η〉 = η − 1
4
Jx ·A(d1A)x. (4.4.16)

Then, representation (4.4.13) follows from the identity 〈σ〉 = σ(1) +d〈η〉 and expres-
sion (4.4.16). Moreover, we observe that

i
V

(2)
J

〈η〉 = i
V

(2)
J

η = −1
2
JA(ξ)x · x =J.

Hence J = J0 and by Lemma 4.3.16, J0 satisfies the adiabatic condition (4.3.115).
Finally, we compute the S1-average of F

〈F 〉(ξ,x) = f1(ξ)− 1
4π

∫ π

0
JV(cos tx+ sin tAx) · (cos tx+ sin tAx)dt

= f1(ξ)− 1
4
J(V −A−1VA)x · x.

By direct computation, we get that the 1-form θ0 in (4.4.13) is just given by the
formula

θ0 = −1
4
x · J(Ad1A)x.

Then, one can show that Cθ0 = d1θ
0 + 1

2{θ
0 ∧ θ0}2 = 0 and hence the zero curvature

condition holds. The corresponding horizontal distribution H is integrable.

Remark 15 If Ã : S1 → sp(1;R) is a solution of Lax equation ( 4.4.10) satisfying
the condition det Ã > 0, then det Ã is a first integral of vf0, Lvf0 (det Ã) = 0, and

the matrix valued function A =
[
det Ã

]− 1
2 Ã is again a solution of ( 4.4.10) with

property ( 4.4.11).
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Now, let us consider the adiabatic situation f0 ≡ 0. The corresponding slow-fast
Hamiltonian system is of the form

ξ̇i = ε

(
vif (ξ)− 1

2
[σ(1)(ξ)]ijJ

∂V(ξ)
∂ξj

x · x
)
, (4.4.17)

ẋ = V(ξ)x.

Assuming that det V(ξ) 6= 0 ∀ξ ∈ S1, we get that the matrix valued function
A = [det V]−

1
2 V satisfies conditions (4.4.10), (4.4.11). In this case, formula (4.4.12)

reads
J(ξ,x) = − 1

2 [det V(ξ)]
1
2

JV(ξ)x · x

and by Theorem 4.3.20 J0 is an adiabatic invariant of system (4.4.17) in the domain
where the S1-action is free.

In the particular case, when

Hε = ε

(
p2

1 + p2
2

2
+
ω2(q1)q2

2

2

)
formula (4.4.12) gives the classical formula [7] for the adiabatic invariant

J0 =
p2

2 + ω2(q1)q2
2

2ω(q1)
.

4.4.3 Circle first integrals from strong stability

On the 4-dimensional slow-fast space (R4, σ = dp1 ∧ dq1 + εdp2 ∧ dq2), we consider
again a Hamiltonian system whose perturbation term F is a quadratic form in the
fast variables p2, q2:

Hε = f(p1, q1) +
ε

2
(z11p

2
2 + 2z12p2q2 +z22q

2
2), (4.4.18)

where zij = zij(p1, q1) are some smooth functions on R2. The corresponding un-
perturbed vector field is written as

V =
∂f

∂p1

∂

∂q1
− ∂f

∂q1

∂

∂p1
+ (z11p2 +z12q2)

∂

∂q2
− (z12p2 +z22q2)

∂

∂p2
. (4.4.19)

We assume that the Hamiltonian system (R2, dp1∧dq1, f) with one degree of freedom
admits an invariant open domain S1 ⊆ R2 such that the flow ϕt : S1 → S1 of vf is
periodic with period function τ : S1 → R. Moreover, we suppose that the trajectory
of vf through each point (p1, q1) ∈ S1 is τ(p1, q1)-minimally periodic. Therefore,
according to general definition (4.2.1), the monodromy of V at a point (p1, q1) ∈ S1

is a linear symplectomorphism gp1,q1 : R2 → R2 given by

gp1,q1 = Gp1,q1(t) |t=τ(p1,q1) . (4.4.20)

Here, Gp1,q1(t) ∈ Sp(1;R) is the fundamental solution of the linear periodic system:

d

dt
Gp1,q1 = V(ϕt(p1, q1))Gp1,q1 , (4.4.21)
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Gp1,q1(0) = I, (4.4.22)

where

V(p1, q1) :=
[
−z12(p1, q1) −z22(p1, q1)
z11(p1, q1) z12(p1, q1)

]
∈ sp(1;R). (4.4.23)

Remark that the trace of the monodromy map gp1,q1 is constant along the trajectories
of vf , tr gϕt(p1,q1) = tr gp1,q1 , and hence it comes from a function on the orbit space
Orb(vf ). We make also the following assumption:

−2 < tr gp1,q1 < 2 ∀(p1, q1) ∈ S1. (4.4.24)

As is known [26, 79], this condition implies the strong (parametric) stability of
τ(p1, q1)-periodic linear Hamiltonian system (4.4.21) for every (p1, q1).

We observe that the plane {(p2 = 0, q2 = 0} is invariant with respect to the flow
of the perturbed Hamiltonian system (4.4.18) whose first variation system over the
invariant plane is defined by V. First, we observe that condition (4.4.24) means that
perturbed Hamiltonian system (4.4.18) is non-integrable.

Proposition 4.4.3 If condition ( 4.4.24) holds, then perturbed Hamiltonian system
( 4.4.18) does not admit a first integral G defined in a neighborhood of the invariant
submanifold S1 × {0} and such that d2G 6= 0 at S1 × {0}.

Proof. As we have mentioned above the vector field V represents the first variation
equations at the invariant domain foliated by periodic trajectories of Hamiltonian
system (4.4.18). If Hamiltonian system (4.4.18) admits an additional first integral
independent with Hε, then by the well-known criterion [26, 77], the monodromy of
V must satisfy the condition tr gp1,q1 = 2.

Now, we will show that under above hypothesis the unperturbed system admits a
circle first integral. We need the following interpretation of condition (4.4.24) (see,
for example [26]). Let us associate to the unperturbedvector field V the Riccati
equation on S1

LvfD +z11D
2 + 2z12D +z22 = 0. (4.4.25)

Proposition 4.4.4 Stability condition ( 4.4.24) is equivalent to the following: the
Riccati equation ( 4.4.25) admits a unique smooth, complex-valued solution

S1 3 (p1, q1) 7→ D(p1, q1) = D1(p1, q1) + iD2(p1, q1)

satisfying the condition

D2(p1, q1) > 0 ∀(p1, q1) ∈ S1 (4.4.26)

This criterion leads to the following fact.

Proposition 4.4.5 Under above hypotheses, the unperturbed vector field V ( 4.4.19)
admits a circle first integral on S1 × R2 of the form

J =
1

2D2
[(p2 −D1q2)2 + (D2q2)2] (4.4.27)
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where D = D1 + i D2 is the solution of ( 4.4.25), ( 4.4.26). Moreover, this integral
satisfies the the adiabatic condition

〈d1J〉 = 0. (4.4.28)

Here, the average 〈 · 〉 is taken with respect to the the S1-action with infinitesimal
generator V (2)

J .

Proof. By direct computation and by using Riccati equation (4.4.25), we verify that
formula (4.4.61) gives a first integral of V. The 2π-periodicity of the flow of V (2)

J

follows from the following argument. Consider the transformation φ : S1 × R2 →
S1 × R2 given by

φ(p1, q1, p2, q2) =
(
p1, q1,

√
D2p2 +

D1√
D2

q2,
q2√
D2

)
(4.4.29)

it is clear that this is a diffeomorphism with inverse

φ−1(p1, q1, p2, q2) =
(
p1, q1,

p2 −D1q2√
D2

,
√
D2q2

)
(4.4.30)

Moreover, we have

φ∗(
∂

∂p2
∧ ∂

∂q2
) =

∂

∂p2
∧ ∂

∂q2
(4.4.31)

and
J ◦ φ =

1
2
(
p2

2 + q2
2
)

(4.4.32)

It follows that the transformation φ takes the vector field V
(2)
J into the form

φ∗V
(2)
J = V

(2)
J◦φ = −q2

∂

∂p2
+ p2

∂

∂q2

and hence

Flt
V

(2)
J◦φ

(p1, q1, p2, q2) = (p1, q1, p2 cos t− q2 sin t, p2 sin t+ q2 cos t) , (4.4.33)

Flt
V

(2)
J

= φ−1 ◦ Flt
V

(2)
J◦φ
◦φ.

Next, to prove (4.4.28) we observe that

φ∗〈d1J〉 = φ∗d〈J〉 − φ∗〈d2J〉 = d〈φ∗J〉 − 〈φ∗d2J〉.

Taking into account the equalities

φ∗p2 =
√
D2p2 +

D1√
D2

q2, φ∗q2 =
q2√
D2

,

d2J =
p2 −D1q2

D2
dp2 +

(−D1p2 + (D2
1 +D2

2)q2)
D2

dq2,
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we get

φ∗d2J =
p2√
D2

d

(
D2p2 +D1q2√

D2

)
+

1√
D2

(−D1p2 +D2q2) d
(

q2√
D2

)
. (4.4.34)

The averaging with respect to the trivial S1-action (4.4.33) gives

〈p2
2〉 = 〈q2

2〉 =
1
2

(p2
2 + q2

2), 〈p2q2〉 = 0. (4.4.35)

Using these relations and equalities (4.4.32), (4.4.34), we compute

〈φ∗d2J〉 =
1√
D2
〈p2d

(
D1q2√
D2

)
〉 − D1√

D2
〈p2d

(
q2√
D2

)
〉

+
1√
D2
〈p2d

(√
D2q2

)
〉 −

√
D2〈q2d

(
q2√
D2

)
〉

= d〈1
2

(p2
2 + q2

2)〉 = d〈φ∗J〉.

It follows that φ∗〈d1J〉 = 0.

Now, let us consider the S1-action defined by the infinitesimal generator V (2)
J

associated to the circle first integral (4.4.27). The next proposition gives us effec-
tive formulas for computation of the S1-averages of the symplectic form and the
perturbation term F of Hε in terms of the solution D of the Riccati equation.

Lemma 4.4.6 The S1-average of the symplectic form σ = dp1 ∧ dq1 + εdp2 ∧ dq2

has representation 〈σ〉 = σ − εdθ0, where the 1-form θ0 = θ0
1dp1 + θ0

2dq1 with zero
average is given by

φ∗θ0 = − 1
4D2

(
(q2

2 − p2
2)d1D1 + 2p2q2d1D2

)
. (4.4.36)

Moreover,

φ∗〈F 〉 =
1

4D2

(
z11(D2

1 +D2
2) + 2z12D1 +z22

) (
p2

2 + q2
2

)
. (4.4.37)

Proof. First, we remark that

φ∗(dp2 ∧ dq2) = dp2 ∧ dq2 + dβ, (4.4.38)

where the 1-form β is given by

β = −1
2

(
q2

2

D2
d1D1 +

p2q2

D2
d1D2

)
. (4.4.39)

Indeed, under mapping (4.4.29) the 1-form p2dq2 is transformed as follows

φ∗(p2dq2) =
(√

D2p2 +
D1√
D2

q2

)
d

(
q2√
D2

)
=
(
p2 +

D1

D2
q2

)
dq2 −

1
2

(
p2 +

D1

D2
q2

)
q2
dD2

D2
,
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and hence

φ∗(dp2 ∧ dq2) = d(φ∗(p2dq2)) (4.4.40)

= dp2 ∧ dq2 − d
(
q2

2

2
d(
D1

D2
)
)
− d

(
1

2D2
(p2 +

D1

D2
q2)q2dD2

)
.

Using relations (4.4.35) , we deduce the following formula for the average of 1-form
β (4.4.39) relative to S1-action (4.4.33) :

〈β〉 = − 1
4D2

(p2
2 + q2

2)d1D1. (4.4.41)

Next, by definition of the 1-form θ0, we have 〈dp2∧dq2〉 = dp2∧dq2−dθ0. It follows
from here and identity (4.4.38) that

φ∗〈dp2 ∧ dq2〉 = φ∗〈dp2 ∧ dq2〉 − d(φ∗θ0) (4.4.42)

= dp2 ∧ dq2 + dβ − d(φ∗θ0).

On the other hand, using the property that the trivial S1-action (4.4.33) preserves
the 2-form dp2 ∧ dq2, we get

φ∗〈dp2 ∧ dq2〉 = 〈φ∗(dp2 ∧ dq2)〉 = 〈dp2 ∧ dq2 + dβ〉 = dp2 ∧ dq2 + d〈β〉.

Comparing this equality with (4.4.42) gives

β − φ∗θ0 = 〈β〉+ γ, (4.4.43)

where γ is a closed 1-form which has the representation γ = γ1dp1 + γ2dq1. By
closedness of γ, the coefficients γ1 and γ2 are independent of the variables p2, q2

and hence γ is the the pull-back under π1 of a 1-closed on S1. This means that γ is
invariant with respect to the S1-action (4.4.33), 〈γ〉 = γ. Moreover, by the property
〈θ0〉 = 0 and equality (4.4.43) we conclude that 〈γ〉 = 0. Therefore, γ = 0 and the
identity

φ∗θ0 = β − 〈β〉 (4.4.44)

together with identities (4.4.39) and (4.4.41) implies (4.4.36). Finally, from

φ∗F =
1

2D2

(
z11D

2
2p

2
2 + 2(z11D1D2 +z12D2)p2q2 + (z22 +z11D

2
1 + 2z12D1)q2

2

)
,

relations (4.4.35) and the identity φ∗〈F 〉 = 〈φ∗F 〉 we deduce representation (4.4.37).

Remark 16 Formula ( 4.4.37) can be also derived from identity

φ∗〈F 〉 = φ∗F − iv̂fφ
∗θ0

which is a consequence of ( 4.3.78).
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Remark 17 By the same arguments as in the proof of Lemma 4.3.16, one can
show that the circle first integral J in ( 4.4.27) satisfies the relation J = i

V
(2)
J

η,

where η = 1
2(p2dq2 − q2dp2).

Resuming, we arrive at the following result.

Proposition 4.4.7 Under above assumptions, for small enough ε, there exists a
near identity transformation Tε such that the pull back of the original perturbed
Hamiltonian system ( 4.4.18) by the mapping Tε ◦ φ is ε2-close to the completely
integrable Hamiltonian system (σ̃, H̃ε) given by

σ̃ = d

(
p1dq1 + εp2dq2 −

ε

4D2
(p2

2 + q2
2)d1D1

)
, (4.4.45)

H̃ε = f(p1, q1) +
ε

4D2

(
z11(D2

1 +D2
2) + 2z12D1 +z22

) (
p2

2 + q2
2

)
. (4.4.46)

The corresponding additional first integral is just J ◦ φ = 1
2 [p2

2 + q2
2].

Proof. Let Tε be a near identity transformation defined in Theorem 4.3.1. Then,
T ∗ε σ = 〈σ〉, Hε ◦ Tε = f ◦ π1 + ε〈F 〉+O(ε2). Applying transformation φ (4.4.29) by
formulas (4.4.38), (4.4.44), we get

σ̃ := φ∗T ∗ε σ = φ∗ 〈σ〉 = dp1 ∧ dq1 + εφ∗(dp2 ∧ dq2)− εd(φ∗θ0),

= dp1 ∧ dq1 + εdp2 ∧ dq2 + εd(β − φ∗θ0),
= dp1 ∧ dq1 + εdp2 ∧ dq2 + εd〈β〉.

This together with representation (4.4.41) leads to (4.4.45). Moreover,

Hε ◦ Tε ◦ φ = f ◦ π1 + ε〈F 〉 ◦ φ+O(ε2)

and from (4.4.37) we derive representation (4.4.46) for H̃ε = f ◦ π1 + ε〈F 〉 ◦ φ.

It follows from this theorem and the Liouville-Arnold theorem that for small
enough ε 6= 0, the motion along the trajectories of the model Hamiltonian system
(4.4.45), (4.4.46) is quasiperiodic and the corresponding Liouville tori in the phase
space (S1 × R2, σ̃) are given as

T2
c1,c2(ε) =

{
f +

ε

2D2

(
z11(D2

1 +D2
2) + 2z12D1 +z22

)
c2 = c1,

1
2

(p2
2 + q2

2) = c2

}
.

By (4.3.82) the Hamiltonian vector field of (4.4.46) is ε-close to the vector field φ∗V
which has two first integrals f ◦ π1 and J ◦ φ. The level sets of these functions give
quasiperiodic 2-tori

T2
c1,c2(0) = {f(p1, q1) = c1} × {

1
2

(p2
2 + q2

2) = c2},
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that is, the trajectory through a point (p1, q1, p2, q2) ∈ T2
c1,c2(0) is quasiperiodic with

frequencies ω1 = $(p1, q1) = 2π
τ(p1,q1) and ω2 = ω2(p1, q1), where

2 cos
(

2π
ω2

ω1

)
= tr gp1,q1 . (4.4.47)

This formula follows from the Floquet theory for linear periodic systems [26]. More-
over, there are two commuting vector fields Υ̃(1) and Υ̃(2) on S1 × R2 whose flows
are 2π-periodic and such that

φ∗V = ω1Υ̃(1) + ω2Υ̃(2). (4.4.48)

Here, Υ̃(2) = V
(2)
J◦φ = p2

∂
∂q2
− q2

∂
∂p2

is just the infinitesimal generator of the trivial
S1-action (4.4.33). Remark also that the“normal” frequency ω2 is just the Floquet
exponent of linear periodic system (4.4.21) and can be expressed in terms of the
solution of the Riccati equation as follows [26]

ω2 = 〈z11D2〉1.

Here 〈·〉1 denotes the average with respect to the S1-action on S1 associated to the
periodic flow of vf .

Therefore, combining Theorem 4.4.7 and the KAM-theory [6, 14] one can try
to establish the persistence of the quasiperiodic tori T2

c1,c2(0) for the perturbed
Hamiltonian system (σ̃, Hε ◦ Tε ◦ φ).

Now, let us consider the resonance case. Taking into account equalities (4.4.47),
(4.4.48), we get the following criterion.

Proposition 4.4.8 (The Resonance Case) The flow of the unperturbed vector field
V is periodic if the parameter κ satisfies the condition

tr gp1,q1 = 2 cos
(

2π
m

k

)
(4.4.49)

for arbitrary coprime integers m, k ∈ Z such that and 0 < m < k
2 . The corresponding

period function T : S1 × R2 → R is given as

T = kτ(p1, q1). (4.4.50)

and presents an adiabatic invariant of system ( 4.4.18).

Condition (4.4.49) means that ω2
ω1

= m
k and hence we have

φ∗V =
ω1

k

(
kΥ̃(1) +mΥ̃(2)

)
.

The S1-action associated with periodic flow of φ∗V is the product of two S1-actions
with infinitesimal generators kΥ̃(1) and mΥ̃(2). Therefore, under condition (4.4.49),
Theorem 4.3.18 and Averaging Theorem 3.2.15 to the perturbed vector field φ∗V+
εφ∗W̃+O(ε2) coming from the non-integrable Hamiltonian system, we get

(σ̃, Hε ◦ Tε ◦ φ = f ◦ π1 + ε〈F 〉 ◦ φ+
ε2

2
K ◦ φ+O(ε3)).
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4.4.4 Hamiltonian systems of Yang-Mills type

As an application of the above results, we consider a family of Hamiltonian systems
of the Yang -Mills type [41] on the slow-fast space (R4, σ = dp1 ∧ dq1 + εdp2 ∧ dq2):

Hε =
1
2
p2

1 +
1
4
q4

1 +
ε

2

[
p2

2 +
κ(κ + 1)

2
q2

1q
2
2

]
, (4.4.51)

where ε � 1 is a perturbation parameter and κ ∈ R is a constant. Therefore, the
perturbed Hamiltonian is of the form (4.3.3) with

f =
1
2
p2

1 +
1
4
q4

1, and F =
1
2

[
p2

2 +
κ(κ + 1)

2
q2

1q
2
2

]
(4.4.52)

The corresponding Hamiltonian equations of motions are

dp1

dt
= −q3

1 − ε
κ(κ + 1)

2
q1q

2
2,

dq1

dt
= p1, (4.4.53)

dp2

dt
= −κ(κ + 1)

2
q2

1q2 − εq3
2,

dq2

dt
= p2. (4.4.54)

The unperturbed and perturbation vector fields are written as follows

V = p1
∂

∂q1
− q3

1

∂

∂p1
+ p2

∂

∂q2
− κ(κ + 1)

2
q2

1q2
∂

∂p2
, (4.4.55)

and
W = −κ(κ + 1)

2
q1q

2
2

∂

∂p1
− q3

2

∂

∂p2
. (4.4.56)

The plane {p2 = 0, q2 = 0} ⊂ R4 is invariant under the flow of system (4.4.53),
(4.4.54) and the unperturbed vector field V just represents the first variation system
at the invariant plane. Under natural projection π1 : R4 → R2, the vector field V
descends to the Hamiltonian vector field

vf = −q3
1

∂

∂p1
+ p1

∂

∂q1

of the Hamiltonian system (R2, dp1∧dq1, f) with one degree of freedom. The trajec-
tory of vf through each point (p1, q1) in the open domain S1 = R2 \ {0} is periodic
with minimal period

τ(p1, q1) =
τ0

(4f)
1
4

=
τ0

(2p2
1 + q4

1)
1
4

where τ0 = 4
√

2
∫ 1

0
dz√
1−z4

. Therefore, the flow ϕt of vf is periodic with frequenct
function $ : R2

0 → R given by

$(p1, q1) =
2π
τ0

(2p2
1 + q4

1)
1
4 .

The monodromy of V at a point (p1, q1) ∈ R2
0 is a linear symplectomorphism gp1,q1 :

R2 → R2 given by
gp1,q1 = Gp1,q1(t) |t=τ(p1,q1) .
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Here Gp1,q1(t) ∈ Sp(1;R) is the fundamental solution of the linear periodic system
(4.4.21), (4.4.22) with

V(p1, q1) :=
(

0 −κ(κ+1)
2 q2

1

1 0

)
.

Notice that the trajectory of vf passing through a point (p0
1, q

0
1) ∈ R2

0 intersects
the semiline {p1 = 0, q1 > 0} exactly at the point (0, (4f(p0

1, q
0
1))

1
4 ). This says that

the dependence of the mondromy mapping in varibles p1, q1 is determinated up to
conjugacy by symplectomorphisms g0,q1 . In terms of the Jacobi elliptic functions
[4], the flow of vf is represented as

ϕt(0, , q1) = ((4f)
1
4 cn((4f)

1
4 t,

1√
2

),−2f
1
2 sn(4f)

1
4 t,

1√
2

) dn(4f)
1
4 t,

1√
2

)).

For the function G0,1(t), system (4.4.53) takes the form

d

dt
G0,1 =

(
0 −κ(κ+1)

2 cn2(t, 1√
2
)

1 0

)
G0,1. (4.4.57)

The coefficients of this system are periodic in t with minimal period 1
2τ(0, 1) = τ0

2 .
By the Yoshida formula [77] for the monodromy of time periodic system (4.4.57),
we have

tr G0,1(
τ0

2
) = 2

√
2 cos

(π
4

(1 + 2κ)
)
.

It is clear that
g0,1 = G0,1(τ0) = G0,1(

τ0

2
) ·G0,1(

τ0

2
)

Moreover,

G0,q1(t) =

(
1

(4f)
1
4

0

0 1

)
G0,1((4f)

1
4 t)
(

(4f)
1
4 0

0 1

)
and hence

g0,q1 =

(
1

(4f)
1
4

0

0 1

)
g0,q1

(
(4f)

1
4 0

0 1

)
.

Taking into account the identity tr(G2) = (tr G)2 − 2, for any symplectic matrix
G ∈ Sp(1;R), we arrive at the following fact.

Proposition 4.4.9 For every (p1, q1) ∈ R2
0, the trace of the monodromy map of V

is given by the formula

tr gp1,q1 = 8 cos2
(π

4
(1 + 2κ)

)
− 2. (4.4.58)

By Proposition 4.4.3, a necessary condition for the existence of an additional
first integral of system (4.4.53),(4.4.54) is tr gp1,q1 = 2. By formula (4.4.58), this
condition is written as cos

(
π
4 (1 + 2κ)

)
= ±1

2 .
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Corollary 4.4.10 If the parameter κ is not integer,

κ /∈ Z (4.4.59)

then original perturbed Hamiltonian system ( 4.4.53),( 4.4.54) is not integrable in the
sense that does not admit an additional first integral in a neighborhood of R2

0 × {0}
which is functionally independent with Hε.

In the non-integrable case (4.4.59), using above results we will approximate the
perturbed system (4.4.53),(4.4.54) by a completely integrable Hamiltonian system.

Proposition 4.4.11 Suppose that the parameter κ takes values in the open set

κ ∈
⋃
s∈Z

(2s, 2s+ 1). (4.4.60)

Then, the unperturbed vector field V ( 4.4.55) admits a circle first integral on R2
0×R2

of the form

J =
1

2D2
[(p2 −D1q2)2 + (D2q2)2] (4.4.61)

where D1 = D1(p1, q1) + i D2(p1, q1) is a smooth complex valued solution on R2
0 of

the Riccati equation

LvfD +D2 +
κ(κ + 1)

2
q2

1 = 0 (4.4.62)

with D2 > 0. Moreover, the circle first integral satisfies the adiabatic condition
( 4.4.28).

Proof. It follows from (4.4.58) that condition (4.4.24) holds for the monodromy gp1,q1

if and only if the parameter κ satisfies (4.4.60). Then, the statement follows from
Proposition 4.4.5.

It follows from this proposition and Theorem 4.4.7 that for every parameter κ
satisfying (4.4.60) and ε� 1, Hamiltonian systems of the Yang -Mills type (4.4.53),
(4.4.54) is approximated by the completely integrable Hamiltonian system relative
to the symplectic form σ̃(4.4.45) and Hamiltonian

H̃ε =
1
2
p2

1 +
1
4
q4

1 +
ε

4D2

(
D2

1 +D2
2 +

κ(κ + 1)
2

q2
1

)(
p2

2 + q2
2

)
.

By Proposition 4.4.8 and formula (4.4.58), we derive the resonance criterion.

Proposition 4.4.12 The flow of vector field V ( 4.4.55) is periodic if the parameter
κ satisfies the condition

√
2 cos

(π
4

(1 + 2κ)
)

= cos
(
π
m

k

)
(4.4.63)

for arbitrary coprime integers m, k ∈ Z such that and 0 < m < k. The corresponding
period function T : R2

0 × R2 → R,

T = kτ(p1, q1)

is an adiabatic invariant of system ( 4.4.53), ( 4.4.54).
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Remark that the parameter κ satisfying condition (4.4.63) runs over an dense nu-
merable subset in the open set

⋃
s∈Z(2s, 2s+1). Therefore, by Theorem 4.2.2, under

condition (4.4.63), perturbed system (4.4.53), (4.4.54) admits a first order normal-
ization relative to V and the function f = 1

2p
2
1 + 1

4q
4
1 is an adiabatic invariant of this

system.

4.5 Particle Dynamics with Spin in a Magnetic Field

Let us consider a slow-fast phase space (M = S1 × S2, σ = σ(1) + εσ(2)) in the case
when S1 is an arbitrary symplectic manifold and S2 = S2 ⊂ R3 = {x = (x1, x2, x3)}
is the unit sphere equipped with standard area form. Therefore,

σ(1) =
1
2
σ

(1)
ij (ξ)dξi ∧ dξj ,

σ(2) =
1
2
εijkx

idxj ∧ dxk.

Suppose that we are given a smooth mapping n : S1 → S2 and define the function
J ∈ C∞(M) by

J(ξ,x) = n(ξ) · x (4.5.1)

for ξ ∈ S1 and x ∈ S2. Then, we have the S1-action on M associated to the
infinitesimal generator

V
(2)
J = −n× x · ∂

∂x
which is given by the rotations exp(−tΛ ◦ n) in R3

x about the axis −n. Here Λ ◦ n
denotes the matrix of the cross product in R3

x with n. We have the following explicit
formula for the S1-action

Flt
V

(2)
J

(ξ,x) = cos tx + (1− cos t)(n(ξ) · x)n(ξ)− sin t(n(ξ)×x). (4.5.2)

Lemma 4.5.1 The S1-average of the symplectic form has the representation 〈σ〉 =
σ − εdθ0, where

θ0 = (n× x) · d1n. (4.5.3)

Moreover,

d1θ
0 = x · d1n ∧ d1n, (4.5.4)

{θ0 ∧ θ0}2 = 0, (4.5.5)

and, function J in ( 4.5.1) satisfies the adiabatic condition 〈d1J〉 = 0. Hence, the
S1-action is Hamiltonian relative to 〈σ〉 with momentum map εJ .

Proof. First, we have that d1J = x ·d1n. Hence, (Flt
V

(2)
J

)∗d1J = Flt
V

(2)
J

(ξ, x) ·d1n. By

(4.5.2) and direct computations, we have 〈d1J〉 = (n · x)(n·d1n). Since n has cons-
tant norm, the adiabatic condition holds. Analogously, we get that θ0 = S(d1J) =
(n× x) · d1n. Therefore, formula (4.5.4) tell us the the curvature of the Hannay-
Berry connection associated to 1-form (4.5.3) is nonzero.
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Now, suppose that on the slow fast space we are given a perturbed Hamiltonian
system of the form

Hε(ξ,x) = f(ξ) + εB(ξ) · x, (4.5.6)

for some f ∈ C∞(S1) and a smooth vector function B : S1 → R3 which will play the
role of a magnetic field. The corresponding unperturbed and perturbation vector
fields are given by

V = v̂f −B× x · ∂
∂x

, (4.5.7)

W = −[σ(1)]ij(xk
∂Bk
∂ξi

)
∂

∂ξj
,

where v̂f = [σ(1)]ij ∂f
∂ξi

∂
∂ξj

.

Lemma 4.5.2 Function J in ( 4.5.1) is a circle first integral of unperturbed vector
field ( 4.5.7) if and only if the vector functions n and B are related by the condition

Lv̂fn + B× n = 0, (4.5.8)

where v̂f = [σ(1)]ij ∂f
∂ξi

∂
∂ξj

.

Proof. Let v̂f = (v̂f )j ∂
∂ξj

. By straight forward computation, we get ∂f
∂ξi

= −1
2(v̂f )jσ

(1)
ji .

Since σ1 in nondegenerate, v̂f = [σ(1)]ij ∂f
∂ξi

∂
∂ξj

. Now, we compute the Lie derivative
of J along V.

LVJ = (Lv̂fn) · x−B× x · n = (Lv̂fn + B× n) · x·

Hence, J is first integral of V if and only if condition (4.5.8) holds.
Now, let us apply this result to the equations describing the motion of a non rela-
tivistic particle with spin in a slow varying magnetic field [12, 46, 76]. In this case,
the slow phase space S1 = R3

p×R3
q is equipped with symplectic form

σ(1) =
1
2
dp ∧ dq +

1
2

(B(q)× dq) ∧ dq,

where B = B(q) is a divergence free field on R3
q, div B = 0. Therefore, σ(1) equals

to the canonical symplectic form on R3
p×R3

q pulse the “ magnetic” term. Putting

f = p2

2 into (4.5.6), we get he following perturbed Hamiltonian dynamical system
on M = (R3

p×R3
q)× S2:

dq
dt

= p,

dp
dt

= p×B− ε(∂B
∂q

)Tx,

dx
dt

= x×B.

This system describes the motion of a non relativistic particle with spin in a slow
varying magnetic field, where the mass and charge of the particle m = 1 and e = 1,
the gyromagnetic ratio g = 2. The unperturbed system is of the form

dq
dt

= p, (4.5.9)
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dp
dt

= p×B, (4.5.10)

dx
dt

= x×B. (4.5.11)

System (4.5.9), (4.5.10) corresponds to the Lorentz force equations and equation
(4.5.11) describes the spin precession.

Lemma 4.5.3 Condition ( 4.5.8) holds for the following choice of the vector func-
tion n :

n =
1
‖ p ‖

p.

Proof. The vector field V generating the system (4.5.9), (4.5.10) and (4.5.11) has
the form

V = p · ∂
∂q

+ p×B · ∂
∂P

+ x×B · ∂
∂x

By direct computation, we have

LVJ = p×B · ( x
‖p‖
− p · x
‖p‖3

p) + x×B · p
‖p‖

,

=
1
‖p‖

p×B · x−
(

p · x
‖p‖3

)
p×B · p− 1

‖p‖
p×B · x = 0.

It follows that the infinitesimal generator of the Hamiltonian S1-action and the
momentum map are of the form

VJ =
1
‖ p ‖

x× p and J =
1
‖ p ‖

p · x. (4.5.12)

Moreover,

θ0 = − 1
p2

(x× p) · dp.

Finally, we get that the approximate Hamiltonian system with S1-symmetry is

〈σ〉 =
1
2
dp ∧ dq +

1
2

(B(q)× dq) ∧ dq +
ε

2
(x× dx) ∧ dx− εx · d1(

p
‖p‖

) ∧ d1(
p
‖p‖

),

and

〈Hε〉 =
p2

2
+

ε

p2
(p · x)(p ·B).
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