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Preface

Infectious diseases are caused by organisms, such as bacteria, viruses, parasites, or

fungi, and can be transmitted from one person to another or by vectors [1]. These

diseases have caused epidemics and pandemics throughout history and in our own

time. For example, the Spanish flu of 1918 is considered the worst pandemic that

affected 500 million people, and it has been estimated between 17 and 50 million

deaths worldwide [2]. Malaria is still an endemic disease in many African countries,

but it has significantly decreased its mortality rate since 2000 [3]. Dengue is another

endemic disease in more than 100 countries around the world, with the highest number

of cases reported in 2019 [4]; particularly, more than 3.1 million dengue cases were

reported in the Americas region during that year [5]. Currently, up to this document

writing date, the COVID-19 pandemic has affected more than 100 million people

worldwide and has caused the death of 2.2 million approximately [6].

These types of diseases do not only directly affect the health of individuals, but

they also have an impact on the economy, resulting in significant losses [7]. For

example, 170 million dollars approximately are spent by the Mexican government on

dengue disease annually, without considering the long-term consequences of dengue,

the impact on travel and tourism, among others [8]. Another example is COVID-19,

which has caused serious damage to the world economy due to the strict measures

implemented by governments to stop its spread [9]. Thus, these diseases are a

serious public health problem, and their effects vary greatly by geographical area

and populations, and low-income countries are the most affected [10].

Human mobility is a key factor in the study of infectious diseases. For example,
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4 Preface

the air transport network has performed a critical role in the global spread of influenza

and SARS [11]. The capacity for an infected human to rapidly travel between

any two points on earth has contributed that infectious diseases can spread more

effectively than at any other time in history [12]. At an urban scale, human mobility

is often composed of commuting patterns between homes and places of employment,

education, or commerce [13]. Thus, human mobility undeniably plays a crucial role

in the temporal and spatial transmission dynamics of infectious diseases [14].

Due to the characteristics of infectious diseases spread, public health authorities

are interested in understanding the demographic and environmental factors that help

establish patterns of spread in space-time [15]. Geographic Information Systems

(GIS) accomplish an important role in the study of infectious diseases. They allow the

capture, manipulation, analysis, and visualization of demographic information on the

population and the disease spread in space-time [15]. Thus, they can help to achieve

a more comprehensive and real vision in public health. This type of tool allows us to

have an approach to the spatio-temporal dynamics of infectious diseases; therefore,

it is key to formulate hypotheses of mathematical models for disease transmission

dynamics.

In mathematics, different tools have been used to attend the problem of

infectious diseases. The mathematical models provide a better understanding of

disease dynamics and can contribute to decision-making regarding the control measures

[16]. In particular, mathematical models based on ordinary differential equations have

been widely used to study different infectious diseases, in which the SIR model has

been the basis of this modeling approach [17–36]. Also, these models usually provide

a threshold value known as the basic reproductive number (R0) that indicates both

the disease severity and the endemic state existence.

The mathematical models have parameters that control the characteristics of the

disease dynamics, such as the size and amplitude of the outbreaks, the acme value,
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the R0, among others. Nowadays, many works estimate model parameters based on

available data from epidemics to obtain some characteristics of the outbreak such as

the R0 or to assess the control measures applied. In this context, most parameters

are usually estimated (sometimes the initial conditions too) using the least-squares

method [18, 20], the maximum likelihood estimation [19], and Bayesian inference

[21, 22]. However, the parameter identifiability problem arises when multiple sets of

parameter values produce a very similar model fit to the data. It can be attributed

to the model structure or the lack of information in a data set [37].

Here we provide frameworks that allow analyzing control and mobility scenarios

for infectious disease dynamics. In all cases, we use mathematical models based on

systems of ordinary differential equations to represent the disease dynamics. On the

one hand, a completely theoretical-numerical study is carried out to analyze mobility

scenarios through a little-explored modeling approach. On the other hand, statistical

methods are used to delimit appropriate study areas based on socio-economic and

socio-demographic information and to estimate reasonable values for the model

parameters. The inclusion of socio-economic and socio-demographic information

resulted from discussions with researchers in public health. Finally, due to the

parameter identifiability problem, an approach based on the Monte Carlo method

is proposed to provide baseline scenarios and assess the applied control measures. In

the following lines, we show a summary of each chapter.

Chapter 1 provides a framework to explore the effect of control measures for a

dengue outbreak in an area of the north side of Hermosillo. For this, we use the

classic host-vector model with control to represent the measures applied during the

2010 dengue outbreak: awareness of the human population, elimination of potential

larval breeding sites, and spraying of adult mosquitoes. We delimit a study area with

approximately homogeneous characteristics based on hierarchical cluster analysis and

Geographic Information Systems. The model parameters are estimated through a

Bayesian approach to find appropriate values for the control parameters and, thus,
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explore some hypothetical scenarios to the outbreak. Based on the scenarios obtained,

we observe that even applying measures early, the accumulated total of cases could

have increased if the measures were not applied with the intensity necessary to

stop the outbreak. Similarly, measures applied later could have generated both a

cumulative higher and lower than the estimated according to the intensity of control

measures.

Chapter 2 introduces an important factor, such as the daily mobility of people to

the host-vector model. Here, we use a little-explored modeling approach for dengue

dynamics based on a system of ordinary differential equations to study the effect

of human movement on characteristics of dengue dynamics such as the endemic

equilibria existence and the start, duration, and amplitude of the outbreak. The

model considers that every day is divided into two periods: high-activity and

low-activity. Periodic human movement between patches occurs in discrete times.

Based on numerical simulations, we show unexpected scenarios such as the disease

extinction in regions where the local basic reproductive number is greater than 1.

Similarly, we obtain scenarios where outbreaks appear even the local basic reproductive

numbers in these regions are less than 1, and their size depends on the length of

high-activity and low-activity periods.

Chapter 3 analyzes mobility scenarios to assess the effect of the daily local stay on

the variations of some characteristics of dengue dynamics, such as the transmission

rates and the local basic reproductive numbers for the 2010 dengue outbreak in

Hermosillo. For this, we use the two-patch mathematical model proposed in Chapter

2. Based on preliminary cluster analysis, we divide the city into two regions, the

south and north sides, which determine each patch of the model. In this case, we

use information about the economically active population density to define the two

regions. We use a Bayesian approach to estimate the transmission rates and local basic

reproductive numbers of some urban mobility scenarios where residents of each patch

spend daily 100% (no human movement between patches), 75%, and 50% of their
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day at their residence place. We obtain that the estimated transmission rates of the

north side do not vary, and it is more likely that the local basic reproductive number

to be greater than one for all three different scenarios. On the contrary, transmission

rates of the south side have more weight in lower values when considering the human

movement between patches compared to the uncoupled case. Moreover, local basic

reproductive numbers less than 1 are not negligible for the south side.

Chapter 4 proposes a novel approach to obtain baseline scenarios for COVID-19

dynamics, which allowed us to study some characteristics of the dynamics in Hermosillo

and to assess the mandatory lockdown applied. Because of the parameter identifiability

problem previously mentioned, our approach consists of proposing different sets of

distributions for the model parameters by three researchers. We select the distributions

and their supports based on the knowledge of the researchers, the versatility of certain

distributions, or the literature on COVID-19. We use a mathematical model for

COVID-19 formulated in [38, 39] and choose the best solutions of the model based on

a threshold value defined as the 50th percentile of the sum of squared errors generated

by comparing the daily data of new cases of infected, hospitalized, ambulatory, and

deaths with its counterpart obtained by the mathematical model. Here we only

present the results based on the set of distributions proposed by the author of this

manuscript. We obtain that the date median of the occurring time of the acme is

close to the acme occurring time in Hermosillo. The results indicate that delaying

the confinement measures for one or two weeks would have significantly increased the

prevalence of cases and deaths.

It is important to mention that the material presented in Chapters 2, 3, and 4 was

published in Mathematical Biosciences, Applied Mathematical Modelling,

and PLoSONE journals, respectively, which can be seen in [39–41].
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Chapter 1

Exploring the effect of dengue control

measures: the 2010 dengue outbreak in

Hermosillo, Mexico

1.1 Introduction

Dengue is a viral disease that affects approximately 390 million people worldwide

each year, occurring mainly throughout the tropics [42]. To attend this problem,

multifaceted interventions are recommended rather than individual ones. Therefore,

a combination of government commitment, authority involvement, and community

mobilization is the best option to control the disease [43]. However, community

participation is a key element because the failure of dengue control in some regions

is attributed to a significant lack of inhabitants participation [44]. Also, assessing

prevention and control strategies is very important since that allows us to identify

successes and shortcomings that can help improve the response to future outbreaks

[45]. Thus, it is important to assess the real impact of the response of both authorities

and inhabitants to an outbreak, although this is complex to do.

Hermosillo, situated in northwest Mexico, is an arid city with high temperatures

in summer, an average August temperature of 38.3 C, and low annual rainfall [46].

Despite its characteristics, it is an endemic area for dengue. In 2010,

9
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Hermosillo recorded the highest number registered by the Health Ministry of Sonora

State in last years. According to the guidelines for epidemiological surveillance,

municipal government reports, and local media [47–53], control measures were taken

in the 2010 dengue outbreak, such as educational campaigns, indoor and outdoor

spraying of insecticides, application of larvicides, elimination of potential breeding

larval sites, among others. It is important to mention that the intensity of the

measures applied was stronger in neighborhoods with the highest number of dengue

cases [48–53]. In particular, a short-term plan was initiated in the 39th epidemiological

week in the northern neighborhoods of the city. As shown in [54], the varying

socio-economic and socio-demographic conditions in the city limited a homogeneous

spatial spread of dengue cases. Therefore, these heterogeneous factors throughout

the city increase the complexity to assess the response to the 2010 dengue outbreak.

Week

33 35 37 39 41 43 45 47 49 51

0
1
0
0

2
0
0

3
0
0

4
0
0

Figure 1.1: New confirmed cases of dengue per week in Hermosillo, 2010. Data from
the Health Ministry of the State of Sonora.
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In this chapter, we focus on exploring hypothetical scenarios for the application

of dengue control measures in an area on the north side of Hermosillo. For this

purpose, we use a basic mathematical model that considers three control measures: (i)

awareness in the human population, (ii) elimination of potential larval breeding sites,

and (iii) spraying of adult mosquitoes. We use real data to identify a study area with

approximately homogeneous conditions by implementing hierarchical cluster analysis

with socio-economic and socio-demographic data. We employ Bayesian inference to

estimate model parameters. These estimated values are used to propose appropriate

scenarios for the dengue outbreak under study.

1.2 Methods

1.2.1 Selection of the study area

According to data provided by the Health Ministry of the State of Sonora, Hermosillo

recorded 2843 dengue-confirmed cases in 2010. In this study, we only consider the

dengue cases with residence place, which represent 96% of cases (2729). Before the

33rd epidemiological week, there were only 15 confirmed cases. Figure 1.1 displays

the temporal distribution of dengue cases from the 33rd to 52nd epidemiological

week. We observe that there are two peaks of dengue cases in the 42nd and 45th

week. This behavior may be related to heterogeneous characteristics through the

city, such as socio-demographic and socio-economic features. Therefore, we select a

study area with approximately homogeneous conditions to reduce the variability that

the phenomenon exhibits.

To select an approximately homogeneous study area, we group AGEBs from

Hermosillo with similar characteristics using hierarchical cluster analysis. In Mexico,

an AGEB is a geographic area composed of a set of blocks and is the minimum

census unit to obtain socio-demographic data. We select a set of socio-economic
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and socio-demographic variables of the AGEBs according to the 2010 census data

given by the National Institute of Statistics and Geography of Mexico (INEGI) and

National Population Council (CONAPO) [55]. We only consider AGEBs whose

selected variables for cluster analysis have complete information. These AGEBs

contain 87.6% of the dengue cases. Figure 1.2 shows the grouping performed by

the Ward method (Group 1 and Group 2). Figure 1.2 also contains AGEBs without

complete information. AGEBs from Group 1 enclose 71.7% of the dengue cases, while

Group 2, 15.9%. Table 1.2.1 displays some characteristics of groups according to used

variables for cluster analysis. In general terms, the number of inhabitants per square

kilometer of Group 1 is almost four times greater than Group 2. The percentage

of the population with no health care of Group 1 is slightly higher than Group 2.

The percentage of the population ≥ 25 years from Group 1 with at least 1 passing

grade of higher education is approximately 11% smaller than Group 2. In addition,

the percentage of households with internet in Group 1 is smaller than in Group 2.

In Group 1, local health authorities reported 1958 confirmed dengue cases along 52

epidemiological weeks resulting in a rate of 44.1 cases/10 000 inhabitants, a very high

rate compared to Group 2 (see Table 1). Therefore, the above characteristics suggest

a special consideration of AGEBs from Group 1.

Based on the previous analysis, we establish the study area in the northeast side

of Hermosillo, around the first case reported on week 33 from Group 1. Taking

this case as a reference, we locate its AGEB and its nearby AGEBs that belong

to the same group, see Figure 1.3(a). The selection of nearby AGEBs is based on

the implementation of epidemiological fences when dengue cases are located in the

community [47]. Thus, our study area is composed of 7 AGEBs and has a population

of 31443 inhabitants. Figure 1.3(b) shows the temporal distribution of dengue cases

from the selected area, where we can observe a peak of cases in the 40th week. There

were 488 dengue cases along 20 epidemiological weeks, corresponding to a rate of

156.2 cases per 10,000 inhabitants in the study area. It is important to mention that
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Figure 1.2: Grouping of AGEBs by cluster analysis.

the selected area contains the main focus of transmission of the outbreak [54].

Time (weeks)

N
e
w

 d
e
n
g
u
e
 c

a
s
e
s

33 37 41 45 49

0
5
0

1
0
0

Figure 1.3: Study area. AGEBs of the study area marked by red lines (on the left
side) and temporal distribution of the new confirmed cases of dengue per week marked
by blue points (on the right side).
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Characteristics
Group 1 Group 2

Total % Total %

Demographic
Total population 444 052 100.0 168 164 100.0

No health care 96 796 21.8 35 247 21.0
Population density (people per km2) 8272.6 - 2254.2 -

Population ≥ 25 years 227 573 100.0 94 205 100.0
≥ 1 passing grade of higher education 60 567 26.6 35 332 37.5

Households
Occupied houses 119 531 100.0 46 377 100.0

With dirt floor 3669 3.1 1947 4.2
With piped water 116 501 97.5 44 954 96.9
With drainage 117 543 98.3 45 295 97.7
With car or truck 83 064 69.5 34 186 73.7
With internet 47 968 40.1 23 675 51.0

Index of marginalization −0.764 (Low) -0.762 (Low)
Epidemiological data
Dengue cases 1958 - 433 -
Rate per 10 000 inhabitants 44.1 - 25.7 -

Table 1.1: Characteristics of groups.

1.2.2 Mathematical model

We consider the classic vector-host model given in [56] as the basis of the mathematical

model with a state-dependent control. We consider the following control measures

(i) awareness of the human population, (ii) elimination of potential larval breeding

sites, and (iii) spraying of insecticides. For this, we add class Ic, which represents the

accumulated number of reported cases. The elimination of potential larval breeding

sites is included by decreasing the recruitment rate of adult mosquitoes from Λ to

κ0Λ after reaching a critical number of accumulated cases η. Similarly, spraying of

insecticides included by increasing the mortality rate of adult mosquitoes from µv to

ω0µv after reaching a critical number of reported accumulated cases η, that is, the

average lifetime of mosquito decreases. On the other hand, awareness of the human
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population is included by reducing the αh and αv transmission rates to βαh and

βαv, respectively, after reaching a critical number of reported accumulated cases η.

Therefore, the vector-host model with a state-dependent control is given by:

Ṡ(t) = −
βαhS(t)I(t)

N
,

İ(t) =
βαhS(t)I(t)

N
− γI(t),

Ṙ(t) = γI(t),

İc(t) =
δβαhS(t)I(t)

N
,

V̇s(t) = κΛ−
βαvI(t)Vi(t)

N
− ωµvVs(t),

V̇i(t) =
βαvI(t)Vi(t)

N
− ωµvVi(t),

(1.1)

where N = S + I +R,

β =







1, if Ic(t) ≤ η

β0, if Ic(t) > η
, κ =







1, if Ic(t) ≤ η

κ0, if Ic(t) > η
, ω =







1, if Ic(t) ≤ η

ω0, if Ic(t) > η
,

with β0 ∈ [0, 1], κ0 ∈ [0, 1], and ω0 ≥ 1. Table 1.2 displays parameter definitions.

Parameter Definition

N Human population.
αh Transmission rate from mosquito to human.
αv Transmission rate from human to mosquito.
1/µv Average lifetime of mosquitoes.
1/γ Average recovery time of humans.
Λ Mosquito recruitment rate.
δ Reporting rate.
β Awareness rate.
η Critical value of infected individuals.
κ Elimination of breeding sites rate.
ω Spraying of insecticides rate.

Table 1.2: Parameter definitions of model (1.1).
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1.2.3 Parameter estimation

Let V := Vs + Vi the total mosquito population, then

lim
t→∞

V (t) =
κΛ

ωµv
.

We set initially that V = Λ
µv

as the total mosquito population. Furthermore, if we

assume that initially there are two mosquitoes per person, we have to Λ = 2Nµv. In

addition, based on previous studies, we take that the average lifetime of a mosquito

(1/µv) is 2 weeks, the reporting rate is 8% (δ = 0.08) [57], and the average recovery

time of humans (1/γ) is 5 days [58]. Therefore, we use the data to estimate the

remaining six parameters (αh, αv, β, η, κ, ω) by Bayesian inference approach.

Since the logarithmic transformations homogenize the variance and provide

computational advantages to apply an MCMC method, we take logarithmic

transformations as α̃h = log(αh) and α̃v = log(αv). Under this transformation we

assume normality, which implies that the parameters follow a log-normal distribution.

To establish the mean and standard deviation of the normal distributions for α̃h and

α̃v, we have taken values inside the reported range in [59]. Due to no information

available for the control parameters, we establish the prior distributions given in Table

1.3. Then, the prior joint probability density function of (α̃h, α̃v, β, η, κ, ω, δ) is given

by

π(α̃h, α̃v, β, η, κ, ω) = π(α̃h)π(α̃v)π(β)π(η)π(κ)π(ω), (1.2)

where π(•) is the probability density function of each parameter according to Table

1.3. Since model (1.1) is in a time-scale of days and starts at t = 0, we define Di to

represent the number of new infectious cases of dengue at ith week (i = 33, ..., 52),

which is given by

D32+k =

∫ 7k

7k−7
İc(t)dt,
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Parameter Prior Distribution

α̃h N (log(0.3), 0.16)
α̃v N (log(0.4), 0.09)
β B(24, 6)
η U(0, 250)
κ B(18, 27)
ω U(1, 5)

Table 1.3: Prior Distribution for model parameters.

where k = 1, 2, ..., 20. Thus, we consider that the new weekly cases at week i follow

a Poisson distribution with a mean λi(θ) = Di, where θ = (α̃h, α̃v, β, η, κ, ω, δ).

Therefore, the sampling distribution is given by

π (~x|θ) =
52
∏

i=33

1

xi!
[λi (θ)]

xi exp [−λi (θ)], (1.3)

where ~x = (x33, x34, ..., x52) are observed data. Therefore, the posterior distribution

π(θ|~x) is given by

π(θ|~x) ∝ π (~x|θ)π(θ),

where π(θ) and π (~x|θ) are given in (1.2) and (1.3), respectively.

We used an MCMC method based on the Metropolis-Hasting algorithm [60]. We

run the algorithm for 200000 iterations, and use the last 50000 to generate samples of

the model parameters. The initial conditions assumed are as follows: S(0) = N1 − 1,

I(0) = 1, Ic(0) = 1, R(0) = 0, Vs(0) = ρN , Vi(0) = 0, where N = 31443.

1.3 Results

Figure 1.4 shows the scatter plot obtained by MCMC for control parameters (κ, ω,

and β). In this figure, we can see the relationship between those parameters. For

example, higher values of κ are related to higher values of ω as well as they are related
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to higher values of β. That is to say, to observe the data under the model, a lower

elimination of potential larval breeding sites is related to a higher mortality rate as

well as it is related to lower awareness of the human population. Moreover, these

values are related to a value of η (the blue to red color scale).
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Figure 1.4: Scatter plot for control parameters κ, β, and ω seen from two different
angles. The blue to red color scale indicates the corresponding value of η.

Parameter 0.25 quantile 0.5 quantile 0.75 quantile
(q0.25) (q0.5) (q0.75)

αh 0.15 0.17 0.20
αv 0.24 0.29 0.34
β 0.77 0.81 0.85
η 71 80 89
κ 0.29 0.34 0.39
ω 1.67 1.77 1.86

Table 1.4: Quantile values of the posterior distributions for model parameters.

We use these obtained values as a framework for exploring hypothetical scenarios

and comparing them with the estimated solution. For this, we use the 0.25, 0.5, and

0.75 quantiles of the posterior distributions obtained for model parameters shown in
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Table 1.4. The 0.5 quantiles are used to define our estimated solution. Thus, we

explore the dynamics of the cumulative number of cases according to the following

scenarios:

Scenario 1. Control measures when it reaches a cumulative number of cases η = 80

(estimated value) with transmission rates reduced to 77% (q0.25) and increased to

85% (q0.75).

Scenario 2. Control measures when it reaches a cumulative number of cases η =

71 (value less than estimated) with transmission rates reduced to 77% (q0.25) and

increased to 85% (q0.75).

Scenario 3. Control measures when it reaches a cumulative number of cases η = 89

(greater value than estimated) with transmission rates reduced to 77% (q0.25) and

increased to 85% (q0.75).

In addition, we consider four intervention strategies given in Table 1.5 for each

scenario.

Strategy Description κ ω

I Lower elimination of potential larval breeding sites q0.75 q0.25
combined with lower spraying of adult mosquitoes.

II Higher elimination of potential larval breeding sites q0.25 q0.25
combined with lower spraying of adult mosquitoes.

III Lower elimination of potential larval breeding sites q0.75 q0.75
combined with higher spraying of adult mosquitoes.

IV Higher elimination of potential larval breeding sites q0.25 q0.75
combined with higher spraying of adult mosquitoes.

Table 1.5: Description of scenarios for control measures.

Figure 1.5 shows the accumulated number of cases according to Scenario 1 (A and

B), Scenario 2 (C and D), and Scenario 3 (E and F). Also, in Figure 1.5-A, we can

see the good fit of the model to the data (red line versus blue points). In general,

we obtain better scenarios than the estimated solution (or similar) when both the
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elimination of potential larval sites and the spraying of insecticides (Strategy IV)

are intensified even applying the measures later. On the other hand, we have worse

scenarios (or similar) than the estimated solution when the effectiveness of both

strategies, the elimination of potential larval sites and the spraying of insecticides,

decreases (Strategy I), even applying the measures early. Therefore, based on these

proposed scenarios, applying measures early may not guarantee the reduction of cases

unless certain control strategies are intensified.

According to the scenarios obtained, if the transmission rates had decreased by

85% combined with Strategies I or II, the total number of dengue cases would have

increased. (see Figure 1.5-B). Furthermore, we would have observed more critical

scenarios if the measures had been applied at the estimated value of η (equal to 80)

or later (η = 89) combined with the transmission rates decrease to 85% and the

application of Strategy I (see Figure 1.5-F). Thus, the delayed implementation of the

control measures, combined with a reduction in their intensity, could have generated

50% more cases (blue solid line on Figure1.5-F). In addition, we observe scenarios with

fewer accumulated cases if the measures had been applied earlier (η = 71) combined

with a 77% reduction in transmission rates and Strategies III or IV, resulting in a

decline of 33% of total cases (blue dotted line on Figure 1.5-C).

1.4 Conclussions and discussions

We have obtained hypothetical scenarios for a dengue outbreak that included the

use of a mathematical model, a proceeding to delimit an appropriate study area, and

statistical inference to estimate parameters. The purpose of using these tools together

was to keep some aspects of the model close to a real context.
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Figure 1.5: Hypothetical scenarios for control measure for η = 80 with transmission
rates reduced to 77% (A) and increased to 85% (B), η = 71 with transmission rates
reduced to 77% (C) and increased to 85% (D), and η = 89 with transmission rates
reduced to 77% (E) and increased to 85% (F)

Based on the explored scenarios, decreasing the mortality rate of mosquitoes

(Strategy III or IV) would have generated fewer cases in comparison to only increasing
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the elimination of potential larval breeding sites, which coincides with [61]. In

addition, the early application of a control measures mixing would have significantly

decreased the total number of cases. However, in spite of applying control measures

early, we would have obtained a higher number of cases compared to the estimated

if control measures had not applied with the intensity necessary to stop the disease

spread.

Previous works explore the impact of applying different control strategies for

dengue [61–64], which are assessed separately or combined, and even some models

consider seasonal factors. Here we use socio-economic and socio-demographic

information to delimit an appropriate study area with similar conditions. This

provided elements to estimate parameters and establish control scenarios over a region

with approximately homogeneous characteristics. Moreover, the non-complex model

was validated by the data, capturing the full dynamics of the outbreak.

Due to no available data on the mosquito population, some assumptions based

on literature were made for the vector parameters. We also assumed that the control

strategies for dengue were applied continuously. More detailed information on when

and how the strategies were implemented could be useful to quantify the control

measures. Thus, we could get a better approximation of the real impact of control

strategies. In addition, it is important to mention that the η parameter is related to

the time that the cumulative number of infected reaches a critical value. Therefore, it

may be more relevant to describe this parameter in terms of time for decision-making

in public health.

Here we have only explored some hypothetical scenarios in a delimited area of

the city without considering the disease spread to contiguous neighborhoods. To

analyze how it spread throughout the city, we would have to include human mobility.

Some works study human mobility between regions to examine the effect of the

application of control strategies to highly endemic areas [65, 66]. In the following
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chapter, we study the impact of daily human movement based on a little-explored

modeling approach.
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Chapter 2

Effect of daily human movement on some

characteristics of dengue dynamics 

2.1 Introduction

Dengue is an endemic disease in many countries around the world, mainly throughout

the tropics [4, 42]. It is estimated that there are a total of 3.97 billion people at risk

of dengue transmission [67]. Risk levels depend strongly on rainfall, temperature, and

the degree of urbanization [42]. Human movement is also a key component of the

transmission dynamics of many vector-borne diseases [68, 69]. For example, dengue

infections have been related to travel to endemic places such as the Caribbean, South

America, South-Central Asia, and Southeast Asia [70].

In urban areas, human movement is frequent and extensive but often composed

of commuting patterns between homes and places of employment, education, or

commerce [13]. At this scale, commuting people occur day-to-day, dominated by

daily activities. In a study conducted at two factories in Bandung [71], authors

suggest that some people may have acquired the dengue virus at work and not at

home. Therefore, local human movement plays an important role in the temporal

and spatial spread of the dengue disease.

 This article was published in Mathematical Biosciences, Vol. 332, Mayra R. Tocto-Erazo, Daniel
Olmos-Liceaga and José A. Montoya-Laos, Effect of daily human movement on some characteristics
of dengue dynamics, 108531, Copyright Elsevier (2020).
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From the mathematical point of view, the role of the human movement on

vector-borne diseases from various perspectives has been studied. In particular,

ordinary differential equations have been used to model human mobility between

two or more locations [25]. One approach is the continuous moving of the human

population between places [26–31]. Other proposal is the residence time, which

represents the proportion of time that humans budget their residence across regions

[32–35]. However, a different approach is to consider the daily movement of people on

the dynamics explicitly. This approach has been studied in [36], where the authors

formulate a star-network of connections between a central city and peripheral villages.

Also, they suppose the commute population is the same every day and the movement

period to the central city is half a day. However, despite there are studies about the

human movement from different approaches, it has been poorly understood.

In this work, our objective is to study the effect of the daily periodic movement on

some characteristics of dengue dynamics, such as the existence of endemic equilibria

and outbreaks (the start, duration and, amplitude). We formulate a two-patch

model based on a system of ordinary differential equations and incorporate human

daily movement, where movement takes place at periodic discrete times every day

as in [36]. Every day is divided into two periods: low-activity and high-activity,

which could represent night and day, respectively. We consider that the low-activity

period represents the time interval where humans stay at their residence patch.

The movement occurs during the high-activity period in which people commute to

school, work, or other daily activities; also, high-activity period can be related to

extraordinary events where large numbers of humans interact. To study this model,

we first analyze the patches separately without considering a piecewise definition in

time. Then, based on numerical simulations, we study the complete model to observe

some effects of the periodic human movement on the dynamics.

This work is divided into the following sections. First, the formulation of the

model and the analysis of uncoupled patches are given in Section 2.2. Then, in Section
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2.3, we study the effect of daily human movement on some characteristics of model

dynamics based on numerical studies under some scenarios. Finally, conclusions and

discussions about our results are presented in Section 2.4.

2.2 Formulation of model

The classic vector-host mathematical model is given by the following system

Ṡ(t) = µhN −
βS(t)Q(t)

N
− µhS(t),

İ(t) =
βS(t)Q(t)

N
− (δ + µh)I(t),

Ṙ(t) = δI(t)− µhR,

Ṗ (t) = Λv −
βvP (t)I(t)

N
− µvP (t),

Q̇(t) =
βvP (t)I(t)

N
− µvQ(t),

(2.1)

where S, I and, R represent the susceptible, infected, and recovered population,

respectively, and P and Q the susceptible and infected mosquito population,

respectively.

We include the daily periodic movement between two patches in model (2.1) as

follows. The interval [tk, tk+1) is the time period corresponding to the kth day and

Tl ∈ (0, 1) the fraction of the day of low-activity such that for the interval [tk, tk+Tl)

we have in each patch only resident population composed of Ni individuals (i = 1, 2).

Thus, the time interval [tk, tk + Tl) is named the low-activity period. For a fixed

day k, αi represents the proportion of the population from patch i that moves every

day to another patch j at time tk + Tl and returns to patch i at time tk+1. Thus,

human movement takes place on the time interval [tk + Tl, tk+1), which is named the

high-activity period.
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For the low-activity period, the susceptible, infected, and recovered human

population from patch i are represented by Sl
i, I

l
i , andR

l
i, respectively. The susceptible

and infected vector population from patch i are represented by Pi andQi, respectively.

On the other hand, for the high-activity period, the human population from patch i is

divided into two subpopulations. The first subpopulation is composed of people from

patch i who do not move to another patch, that is, (1 − αi)Ni. This subpopulation

is subdivided into susceptible (Sh
ii), infected (Ihii), and recovered (Rh

ii). The second

subpopulation is composed of residents from patch j who move to patch i, αjNj .

This subpopulation is subdivided into susceptible (Sh
ji), infected (Ihji), and recovered

(Rh
ji). Since we assume that the vector population does not move between patches,

susceptible and infected vectors remain represented by Pi and Qi, respectively. Thus,

the following equations represent the dynamics of the populations for the low-activity

period [tk, tk + Tl):

Ṡl
i(t) = µhN

l
i −

βiS
l
i(t)Qi(t)

N l
i

− µhS
l
i(t),

İ li(t) =
βiS

l
i(t)Qi(t)

N l
i

− (δi + µh)I
l
i(t),

Ṙl
i(t) = δiI

l
i(t)− µhR

l
i(t),

Ṗi(t) = Λvi −
βviPi(t)I

l
i(t)

N l
i

− µviPi(t),

Q̇i(t) =
βviPi(t)I

l
i(t)

N l
i

− µviQi(t),

(2.2)

where N l
i := Ni and i = 1, 2.
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Parameter Definition

αi Proportion of humans from patch i who move to patch j
at time tk + Tla.

Ni Resident humans of patch i.
1/µh Average lifetime of humans.
1/µvi Average lifetime of mosquitoes in patch i.
βi Transmission rate from mosquito to human in patch i.
βvi Transmission rate from human to mosquito in patch i.
1/δi Average recovery time of humans in patch i.
Λvi Mosquito recruitment rate in patch i.

Table 2.1: Parameter definition of model (2.2)-(2.3).

For the high-activity period [tk + Tl, tk+1), the set of equations become:

Ṡh
ii(t) = (1− αi)µhN

l
i −

βiS
h
ii(t)Qi(t)

Nh
i

− µhS
h
ii(t),

İhii(t) =
βiS

h
ii(t)Qi(t)

Nh
i

− (δi + µh)I
h
ii(t),

Ṙh
ii(t) = δiI

h
ii(t)− µhR

h
ii(t),

Ṡh
ji(t) = αjµhN

l
j −

βiS
h
ji(t)Qi(t)

Nh
i

− µhS
h
ji(t),

˙Ihji(t) =
βiS

h
ji(t)Qi(t)

Nh
i

− (δi + µh)I
h
ji(t),

Ṙh
ji(t) = δiI

h
ji(t)− µhR

h
ji(t),

Ṗi(t) = Λvi −
βviPi(t)(I

h
ii(t) + Ihji(t))

Nh
i

− µviPi(t),

Q̇i(t) =
βviPi(t)(I

h
ii(t) + Ihji(t))

Nh
i

− µviQi(t),

(2.3)

where Nh
i := (1 − αi)Ni + αjNj , and i, j = 1, 2, i 6= j. All model parameters are

defined in Table 2.1.

We observe that model (2.2)-(2.3) can be reduced to uncoupled patches in the

form of system (2.1). This is done by taking Tl = 1, that is, having only low-activity
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periods.

In order to study our coupled model (2.2)-(2.3), we first analyze each system

separately without considering a piecewise definition in time. Then, we focus on

understanding the dynamics of the daily human movement.

2.2.1 Uncoupled case

System (2.2) is positively invariant in Ωi = {(Sl
i, I

l
i , R

l
i, Pi, Qi) ∈ R

5 : Sl
i ≥ 0, I li ≥

0, Rl
i ≥ 0, Sl

i + I li + Rl
i = N l

i , Pi ≥ 0, Qi ≥ 0, Pi + Qi ≤ Λvi/µvi} [56].

Then, the disease-free equilibrium of system (2.2) is given by (S̄i, Īi, R̄i, P̄i, Q̄i) =

(N l
i , 0, 0,Λvi/µvi , 0) and, using the next generation matrix approach as in [72], the

basic reproductive number (Ril) of the uncoupled system is given by

Ril :=
βiβviΛvi

µ2vi(δi + µh)N
l
i

.

Previous work [56] has shown that if Ril > 1, then there exists an endemic equilibrium

(S̃i, Ĩi, R̃i, P̃i, Q̃i), where

S̃i =
µh(N

l
i )

2

βiQ̃i + µhN
l
i

, Ĩi =
βiµhN

l
i Q̃i

(βiQ̄i + µhN
l
i )(δi + µh)

,

R̃i = N l
i − S̃i − Ĩi, P̃i =

Λvi(βiQ̃i + µhN
l
i )(δi + µh)

βviβiµhQ̃i + µvi(βiQ̃i + µhN
l
i )(δi + µh)

,

Q̃i =
µhµviN

l
i (δi + µh)[Ril − 1]

βi[βviµh + µvi(δi + µh)]
.

In addition, authors in [56, 73] also have shown that the disease-free equilibrium is

globally asymptotically stable (GAS) when Ril < 1, and the endemic equilibrium is

GAS when Ril > 1.

For the high-activity period (2.3), we define Si∗ := Sh
ii + Sh

ji, Ii∗ := Ihii + Ihji,

Ri∗ := Rh
ii +Rh

ji, N
h
i := Si∗ + Ii∗ +Ri∗ = (1− αi)N

l
i + αjN

l
j . Thus, the dynamics of

uncoupled system (2.3) can be written as:



2.2 Formulation of model 31

Ṡi∗(t) = µhN
h
i −

βiSi∗(t)Qi(t)

Nh
i

− µhSi∗(t),

İi∗(t) =
βiSi∗(t)Qi(t)

Nh
i

− (δi + µh)Ii∗(t),

İi∗(t) = δiIi∗(t)− µhRi∗(t),

Ṗi(t) = Λvi −
βviPi(t)Ii∗(t)

Nh
i

− µviPi(t),

Q̇i(t) =
βviPi(t)Ii∗(t)

Nh
i

− µviQi(t),

(2.4)

for each i = 1, 2.

Since the structure of system (2.4) is the same as (2.2), results concerning the

stability of the equilibrium points are analogous to system (2.2). In particular, the

disease-free and endemic equilibrium points are given by (N l
i , 0, 0,Λvi/µvi , 0) and

(S̃i∗, Ĩi∗, R̃i∗, P̃i∗, Q̃i∗), respectively, where

S̃i∗ =
µh(N

h
i )

2

βiQ̃i∗ + µhN
h
i

, Ĩi∗ =
βiµhN

h
i Q̃i∗

(βiQ̄i + µhN
h
i )(δi + µh)

,

R̃i∗ = Nh
i − S̃i∗ − Ĩi∗ P̃i∗ =

Λvi(βiQ̃i∗ + µhN
h
i )(δi + µh)

βviβiµhQ̃i∗ + µvi(βiQ̃i∗ + µhN
h
i )(δi + µh)

,

Q̃i∗ =
µhµviN

h
i (δi + µh)[Rih − 1]

βi[βviµh + µvi(δi + µh)]
.

In addition, the basic reproductive number (Rih) for uncoupled system (2.4) is given

by

Rih =
βiβviΛvi

µ2vi(δi + µh)N
h
i

.

We observe that each local basic reproductive number Ril and Rih depend on the

actual number of individuals in patch i. In this sense, the theoretical results on

the existence and stability of the equilibrium points are given for the uncoupled

subsystems. However, when the patches are coupled, these local basic reproductive

numbers lose meaning to describe the global dynamics and only provide appropriate
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information about stability and existence of equilibria when the patches are uncoupled.

It is important to mention that the solutions for the coupled case are non-negative

and bounded (see proof in Appendix 2.A). Moreover, the bounds for the solutions are

given by N l
i and Nh

i for low-activity and high-activity periods, respectively. In this

case, a global R0 is not well defined and, therefore, we cannot have a measure for the

global and coupled case. Thus, in order to provide information about the behavior of

the coupled system, we will focus our understanding based on the theoretical values

of the basic reproductive numbers for the uncoupled case.

2.3 Effect of daily human movement on the endemic

levels and the outbreaks

In this section, we focus on understanding some effects due to daily human movement

on the existence of the endemic equilibrium points and the outbreaks for coupled

model (2.2)-(2.3). For this, we proceed to study such effects in three stages. In

the first stage, we characterize the local basic reproductive number and the endemic

equilibrium values of each patch as a function of the total population size to see how

changes in the population affect both, the R0 and equilibrium point values. In the

second stage, we show the changes that the local basic reproductive numbers in each

patch may experiment after migration. Finally, in the last stage, based on numerical

studies, we evidence the effects of daily human movement on some characteristics of

the dynamics, such as the existence and disappearance of endemic equilibria, duration,

size and peak of the outbreak.
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2.3.1 Dependence on the basic reproductive number and the endemic

equilibria as a function of population size

In general, the basic reproductive number (R0) and the endemic equilibrium (I∗) of

model (2.2)-(2.3) for a disconnected patch with human population N can be written

as

R0 =
ββvΛv

µ2v(δ + µh)N
(2.5)

and

I∗ =
βµhNQ

∗

(βQ∗ + µhN)(δ + µh)
, where Q∗ =

µhµvN(δ + µh)[R0 − 1]

β[βvµh + µv(δ + µh)]
. (2.6)

From (2.5) and (2.6), we have that R0 = 1 at a point N = ββvΛv/[µ
2
v(δ + µh)],

and I∗ reaches its maximum at point N̂ is given by

N̂ =
−2µ2vβΛva+ 2µvβΛv

√

µ2va
2 + µhµvβva

2µhµ3va
,

where a = δ + µh. From Figure 2.1, we observe that a patch with N smaller (larger)

than N leads to have R0 > 1 (R0 < 1). The basic reproductive number is a measure

that gives conditions for the existence of endemic equilibria and disease propagation

in each patch separately. Thus, R0 < 1 means that there is no favorable conditions

for the disease spread, whereas R0 > 1 implies that the conditions are favorable for

an outbreak in each disconnected patch. In addition, while N < N̂ , the value of the

endemic equilibrium I∗ increases as N grows up and decreases when N > N̂ .

2.3.2 Changes in R0 after one migration process

The findings in the previous subsection can be applied to see how the disease propagation

conditions change in each patch when there is human migration between them.

For this, we define A as the difference between the population that moves from

patch 1 to patch 2 and the population that moves from patch 2 to patch 1, that
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Figure 2.1: R0 and I∗ versus N . Parameter values: Λv = 1200, β = 0.25, βv = 0.15,
µh = 0.000036, µv = 0.0714, and δ = 0.1428.

is, A := α1N
l
1 − α2N

l
2. Table 2.2 shows a list of possible outcomes of the basic

reproductive numbers after the interchange of populations from one patch to another.

In general, the results of Table 2 are based on how many individuals we need to move

from one patch to another (the value of A) in order to have our population Nh
i

smaller or larger than the threshold value N given that N l
i is smaller or larger than

N . The first column of the table shows the value of the basic reproductive number

in each patch before migration is considered (R1l and R2l). The second column

shows the possible outcomes after a proportion of humans from patch 1 moves to

patch 2, and vice versa (R1h and R2h). The third column displays the conditions

that the populations must satisfy in order for every scenario to occur. The scenarios

are used to understand the daily human movement between patches. Some of the

conditions given in Table 2.2 are explained in detail in Appendix 2.B. In order to

show how the displacement of people from one patch to another may influence the

disease propagation conditions, we examine the scenario R1l < 1 and R2l > 1, that

is, during the low-activity period, in patch 1, the disease propagation conditions are

not favorable, and in patch 2, the conditions are favorable. To this, we consider

the following resident populations: N l
1 = 90000 and N l

2 = 45000 for patch 1 and 2,
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Scenarios before Scenarios after Conditions
migration migration

(1) R1l < 1 and R2l > 1

(a) R1h < 1 and R2h < 1 N −N l
2 < A < N l

1 −N

(b) R1h < 1 and R2h > 1 A < min
{

N l
1 −N,N −N l

2

}

(c) R1h > 1 and R2h < 1 A > max
{

N l
1 −N,N −N l

2

}

(d) R1h > 1 and R2h > 1 N l
1 −N < A < N −N l

2

(2) R1l < 1 and R2l < 1

(a) R1h < 1 and R2h < 1 N −N l
2 < A < N l

1 −N

(b) R1h < 1 and R2h > 1 A < N −N l
2

(c) R1h > 1 and R2h < 1 A > N l
1 −N

(d) R1h > 1 and R2h > 1 It is not possible

(3) R1l > 1 and R2l > 1

(a) R1h > 1 and R2h > 1 N l
1 −N < A < N −N l

2

(b) R1h > 1 and R2h < 1 A > N −N l
2

(c) R1h < 1 and R2h > 1 A < N l
1 −N

(d) R1h > 1 and R2h > 1 It is not possible

Table 2.2: Possible scenarios for R1h and R2h after population exchange.

respectively, and parameter values given in Table 2.3. Based on the parameter values,

we obtain that R1l = 0.68 and R2l = 1.37. Figure 2.2 shows under which conditions

R1h and R2h are smaller or greater than 1, where the latter results in the existence

of endemic equilibria according to α1 and α2 values. Note that Figure 2.2 shows only

the first three outcomes for the case R1l < 1 and R2l > 1 given by Table 2.2. Observe

that there are no values of α1 and α2 where both R1h and R2h are simultaneously

greater than 1. From now on, to study the effect of daily periodic movement with

complete model (2.2)-(2.3), we take variables I1 and I2 to represent infected residents

from patches 1 and 2, respectively. That is,

Ii(t) =







I li(t) if t ∈ [tk, tk + Tl),

Ihii(t) + Ihij(t) if t ∈ [tk + Tl, tk+1).
(2.7)



36 Effect of daily human movement on some characteristics of dengue dynamics

Parameter Value

µh 0.000036
µv1, µv2 0.0714
β1, β2 0.25
βv1, βv2 0.15
δ1, δ2 0.1428
Λv1, Λv2 1200

Table 2.3: Parameter values for the different scenarios. All parameter values are
taken from [59].
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Figure 2.2: Value regions for R1h and R2h according to the α1 and α2 values for
the scenario R1l < 1 and R2l > 1 in (A) patch 1 and (B) patch 2. The thick gray
lines denote the region where R1h = 1 (A) and R2h = 1 (B). The vertical black lines
represent the scenarios that will be studied in the next section.

for i, j = 1, 2, i 6= j. Observe that Ii counts the infected individuals from patch i,

no matter where the disease was acquired, which is consistent with the information

collected by the epidemiological surveillance systems.
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2.3.3 Numerical studies

In this subsection, we study, by means of numerical simulations, some effects of

daily human movement on characteristics of the coupled model solutions, such as

the existence of endemic equilibria, and the start, duration, and amplitude of the

outbreak.

2.3.3.1 Disappearance and appearance of endemic equilibria

Here we show the importance of Tl, α1, and α2 on the existence of endemic equilibria

whenR1l < 1 andR2l > 1. We present numerical simulations for different combinations

of these parameters to observe whether or not the existence of endemic equilibria of

the uncoupled patches is preserved. Here we study the following cases of the presented

scenario in Figure 2.2: α1 = 0.1 (black solid line), α1 = 0.5 (black dotted line), and

α1 = 0.9 (black dashed line), and for every case, we vary α2 in [0, 1] and Tl in

[0.1, 0.9]. Figures 2.3 to 2.6 summarize the results of these experiments where we

show the values of asymptotic solutions of I1 and I2 regarding α2 and Tl. These

values will give us an endemic state or a disease-free state.

 Case α1 = 0.1

From Figure 2.2, theoretically R1l < 1 and R1h < 1, that is, there are no

favorable conditions at any time during the day in patch 1 for an endemic

equilibrium to exist. However, from Figure 2.3, there exists an endemic

equilibrium of patch 1 for almost any combination of α2 and Tl values. Taking

α1 = 0.1, that is, 10% of individuals from patch 1 move to patch 2, generates

endemic levels in patch 1. In general, while the resident people from patch 2

spend more time every day in their own patch, the dynamics are dominated by

the theoretical values of R2l and R2h, which are greater than 1. From Figure

2.3, for values of α2 close to 1 and Tl approximately 0.5, the opposite scenario
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Figure 2.3: Existence of endemic equilibria for (A) I1 and (B) I2, against α2 and Tl
for case α1 = 0.1. Population sizes N l

1 = 90000 and N l
2 = 45000.

also occurs. If in a patch there are favorable conditions for the existence of

endemic levels all the time (R2l > 1 and R2h > 1), we might get no endemic

equilibrium in any patch. To get a better understanding of this phenomenon, we

examine the behavior of the endemic equilibrium from patches when α2 = 1.0.

Figure 2.4 shows the existence of endemic equilibria of I1 and I2 for N
l
1 = 90000

with N l
2 = 45000 (black solid lines) and N l

2 = 18000 (black dashed lines) when

α1 = 0.1 and α2 = 1.0. For N l
1 = 90000 and N l

2 = 45000, we have that

R1l = 0.68, R2l = 1.37, R1h = 0.49 and R2h = 6.86. We observe a set of Tl

values where the disease disappears in both patches when N l
2 = 45000. This

phenomenon is explained as follows. Since α1 = 0.1 and α2 = 1.0, then, at

the beginning of the high-activity period, 10% of the population from patch 1

moves to patch 2 and the whole population from patch 2 moves to patch 1. In

the extreme case Tl = 0.9 (the low-activity period is very large), there is an

endemic equilibrium in patch 2 due to the fact that almost all the time the

population remains in their residence patch and the basic reproductive number

(R2l) is greater than 1. In this case, we could approximate the R0 value of
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patch 2 by the R0 value of the disconnected patches. For individuals residing in

patch 1, we observe that by taking 10% of individuals from patch 1 who move

to patch 2, for a short time period, it is sufficient to generate endemic levels in

patch 1 despite theoretically R1l and R1h are less than 1. Now, for the extreme

case Tl = 0.1 (short low-activity period), the presence of an endemic level in

patch 1 is due to the fact that most of the time the 10% of the population that

belongs to patch 1, is in patch 2. This 10% carries the endemic levels acquired

from patch 2 to patch 1. The endemic levels in patch 2 are due to the presence

of endemic levels of mosquitoes that are present in the medium due to the 10%

of individuals from patch 1. Finally, for intermediate values of Tl, the disease

disappears in both patches. For this scenario, both the resident individuals from

patch 2 and the visiting population from patch 1 spend almost the same time

in each patch. As the basic reproductive numbers are smaller than 1 in patch

1 and larger than 1 in patch 2, we need to know why the disease cannot be

sustained by patch 2. When populations are in patch 2, they do not stay long

enough to increase the number of new infected individuals significantly. When

individuals move to patch 1, the infective process is much less than in patch 2

(as R1l = 0.68 < 1 and R1h = 0.49 < 1) and new infections are imperceptible as

the corresponding values of the basic reproductive numbers are very small and

not close to 1. The overall effect leads to having a small enough infection rate

compared to the disease recovery process and the disease disappears in both

patches. However, from Figure 2.4, this region of disease extinction disappears

when N l
2 decreases to 18000 (black dashed lines). In this case, we have that

R1h goes up from 0.49 to 0.62 and the region of disease extinction disappears.

 Cases α1 = 0.5 and α1 = 0.9

Similar behavior of existence and non-existence of endemic equilibria arise for

these values of α1 and scenario R1l < 1 and R2l > 1.
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Figure 2.4: Existence of endemic equilibria for (A) I1 and (B) I2, for α1 = 0.1 and
α2 = 1.0, and population sizes from patch 2 as N l

2 = 45000 (black solid line) and
N l

2 = 18000 (black dashed line).

Figure 2.5 displays the existence of endemic equilibria of infected residents I1

and I2 for α1 = 0.5. There are endemic levels in both patches for long periods

of low-activity (Tl ≥ 0.7), except for some values of α2 and Tl. In this case

(α1 = 0.5), the region of disease extinction is larger than case α1 = 0.1. Here,

the effect of human movement is more pronounced due to the fact that, for

α1 = 0.5, the values of the basic reproductive numbers for the high-activity

period in both patches are in the interval [0.68, 1.37], whereas for α1 = 0.1,

even though R1h is smaller than 1 (R1h ∈ [0.49, 0.76]), R2h takes values in the

interval [1.14, 6.54] (see Figure 2.2).

Regions of disease extinction can be more complex as is observed in Figure 2.5,

which shows the existence of endemic equilibria of I1 and I2 in case α1 = 0.9. As

in the case α1 = 0.1 and α1 = 0.5, although there are favorable conditions for

the existence of endemic equilibria in one of the patches during the low-activity

period, the disease disappears for a set of values of α2 and Tl. For this scenario,

the values of R1h and R2h are opposite to R1l and R2l, that is, R1h > 1 and
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Figure 2.5: Existence of endemic equilibria for (A) I1 and (B) I2, against α2 and Tl
for case α1 = 0.5. Population sizes N l

1 = 90000 and N l
2 = 45000.

R2h < 1. Clearly, depending on the settings of parameters α1, α2, Tl and the

intensity of the basic reproductive numbers (values of R1l, R2l, R1h, and R2h),

different regions of disease extinction can be obtained as observed in Figure 2.6.
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Figure 2.6: Existence of endemic equilibria for (A) I1 and (B) I2, against α2 and Tl
for case α1 = 0.9. Population sizes N l

1 = 90000 and N l
2 = 45000.
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2.3.3.2 Effect on the outbreaks

In this subsection, we present scenarios to observe some effects of the periodic human

movement on the outbreak dynamics. For this, we will use the variables I1 and I2

defined in equation (2.7), which represent the infected residents of patches 1 and 2,

respectively, and the parameter values from Table 2.3 for the numerical simulations.

Further, small population sizes for patches (N l
1 and N l

2 between 15000 and 90000

inhabitants for all simulations) are taken because we assumed the daily movement of

people within a city, where the concept of patch can be seen as neighborhoods or city

regions with similar demographic or socio-economic properties.

 Disappearance of outbreaks

We first explore the scenario given in Subsection 2.3.3.1, where conditions for

the emergence of an outbreak exist only in one of the patches. The purpose is

to analyze the complete outbreak in a scenario where the disease disappears.

As shown in Figure 2.3, there are no endemic equilibria in any patch for α2

values close to 1 and Tl in [0.4, 0.7]. From Figure 2.7, we observe that there

is an outbreak in patch 2 but not in patch 1 when the patches are uncoupled

(see dashed lines), which coincides with the fact that R1l < 1 and R2l > 1

(R1l = 0.68 and R2l = 1.37). If we take α1 = 0.1 and α2 = 1.0, implies

that R1h = 0.49 and R2h = 6.86. Under this scenario, from Figure 2.7, we

notice there are outbreaks in both patches for very long periods of high-activity

(Tl = 0.1) and very long periods of low-activity (Tl = 0.9). However, for Tl

values in [0.4, 0.7], outbreaks disappear in both patches. That means that this

combination of parameters affects not only the existence of endemic equilibria

but also the complete existence of the outbreak.

 Emergence of outbreaks

Here we show the scenario where even though there are no conditions in any of
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Figure 2.7: Disappearance of outbreaks. Numerical solutions of infected residents
(A) I1 and (B) I2, for N

l
1 = 90000, N l

2 = 45000, α1 = 0.1 and α2 = 1.0.

the patches for the existence of an outbreak when patches are uncoupled, there

is one due to the human movement. For this, human populations are taken as

N l
1 = N l

2 = 70000, and α1 = 0 and α2 = 0.9. For uncoupled patches, there are

no outbreaks in both patches, which coincides with the fact that both R1l and

R2l are smaller than 1 (R1l = R2l = 0.88), and, when there is human movement,

theoretically R1h = 0.46, and R2h = 8.82. From Figure 2.8, we observe that an

outbreak appears in both patches when Tl = 0.5 approximately and becomes

longer as the high-activity period increases. In addition, the time in which

the outbreak reaches the highest incidence of cases occurs earlier and is larger

as Tl decreases. This phenomenon occurs because as the high-activity period

increases, the dynamics of patch 2 are governed byR2h = 8.82, generating earlier

and larger outbreaks in patch 2. For patch 1, in contrast to Figure 2.7, there is

an outbreak in patch 1 despite the fact that there are no favorable conditions for

the disease development (R1l = 0.88 and R1h = 0.46). However, as outbreaks

appear earlier in patch 2 than in patch 1, those infected individuals from patch

2, who move to patch 1 (90% of individuals), interact with mosquitoes from
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patch 1, generating an outbreak in that patch.
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Figure 2.8: Emergence of outbreaks. Numerical solutions of infected residents (A) I1
and (B) I2, for N

l
1 = N l

2 = 70000, α1 = 0 and α2 = 0.9.

 Delay and advance of outbreaks

To end our study cases, we present scenarios where delay and advance of

outbreaks are observed when patches separately have conditions for the existence

of outbreaks.

We first take N l
1 = 50000, N l

2 = 15000, α1 = 0.5 and α2 = 0.1. For these

values, we obtain R1l = 1.23, R2l = 4.11, R1h = 2.33 and R2h = 1.60. In

Figure 2.9, we notice that if the patches are uncoupled (black dashed lines),

the dynamics of both patches are governed by the R1l and R2l values. In this

case, the maximum incidence of cases in patch 2 is greater than in patch 1,

which coincides with the fact that R2l is much larger than R1l. Compared to

the dynamics of the decoupled patches, the outbreaks for Tl = 0.98 occur earlier

in patch 1, and the one in patch 2 remains practically the same. In this case,

the temporal dynamics of the uncoupled system are inherited, that is, although

the behavior of the outbreak in patch 1 is preserved, this outbreak is advanced
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because patch 2 has a high incidence of cases. As the high-activity period

increases, the maximum incidence in patch 1 goes up and the one in patch 2

decreases. In addition, the outbreak in patch 2 is delayed as Tl goes from 0.98 to

0.02. Clearly, these effects are due to R1l < R2l for the low-activity period, but

during the high-activity period, the intensity of the basic reproductive numbers

is inverted, that is, R1h > R2h.
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Figure 2.9: Delay and advance of the outbreaks. Numerical solutions of infected
residents (A) I1 and (B) I2, for N

l
1 = 50000, N l

2 = 15000, α1 = 0.5 and α2 = 0.1.

Finally, we set N l
1 = N l

2 = 45000, α1 = 0.2 and α2 = 0.8. Thus, we have that

R1l = R2l = 1.37, R1h = 0.85 and R2h = 3.43. In Figure 2.10, we observe

that there are outbreaks when patches are uncoupled (black dashed lines) and

these appear earlier when the coupled model is taken into account. Also, the

maximum incidence of cases increases as the high-activity period gets longer.

In general, this behavior is observed for different settings of α1 and α2. To get

a better understanding of outbreaks behavior, we analyze how the R1h and R2h

values change according to proportions of people who move between patches

(α1 and α2). In fact, since the conditions of disease spread are identical in both

patches, this scenario can be studied directly considering only the difference
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between the population that moves from patch 1 to patch 2 and the population

that moves from patch 2 to patch 1 (A), defined in Subsection 2.3.2. For this,

we assume, without loss of generality, R1h < R2h. From Figure 2.11, we have

that while R1h decreases, R2h take very large values. In fact, R1h ∈ [0.68, 1.37],

while R2h can be greater than 20. That is, while R2h take values very high and

R1h is at least 0.68, the outbreaks appear earlier and the maximum incidence

of cases increases.
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Figure 2.10: Advance of the outbreaks. Numerical solutions for infected residents
(A) I1 and (B) I2, for N

l
1 = N l

2 = 45000, α1 = 0.2 and α2 = 0.8.

2.4 Conclusion and discussion

In this work, our goal was to investigate how the daily human movement affects

some characteristics of dengue dynamics based on a two-patch model. The model

assumed that the patches are connected by the periodic human movement at discrete

times. Given the complexity of the model dynamics, an explicit expression could not

be found for the basic reproductive number and the endemic equilibrium points.

However, knowing the structure and stability of the equilibrium points and the

basic reproductive numbers of the uncoupled system have been useful to determine
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.

when there could be favorable or unfavorable conditions for the existence of endemic

equilibrium points and outbreaks for the complete model.

This work studies the effects of daily commuters on the disease dynamics under

a little-explored approach, different from traditional multi-patch models. We believe

that modeling the spread of infectious diseases, where the division of more than one

region is clearly defined, needs to be analyzed with a more complete view. Thus,

this approach is helpful for well-defined areas where there is daily human movement

between them. Moreover, mixing information from different regions to model it as a

single region through a one-patch model without considering movement might give

rise to different dynamics than those found in this work. In addition, under this

approach, it is possible to recognize where individuals became infected. This fact is

important because before applying control measures against possible outbreaks, we

should recognize if the cases were imported or autochthonous.

Our scenarios focused on understanding only the effect of human movement on

endemic disease levels and on the outbreak dynamics. Some cases of interest were,

for example, that although there are regions with disease propagation conditions,



48 Effect of daily human movement on some characteristics of dengue dynamics

the disease does not necessarily subsist. In addition, there could be regions without

favorable conditions for the development of the disease, but human movement might

lead to the appearance of outbreaks which is consistent with that reported in [32,

33, 74], where the main carriers of the disease between patches are humans or cattle.

However, the advantage of the scenarios presented in this work is that it is possible

to have a better biological description of the phenomenon.

From Figures 2.3 to 2.6, the region of disease extinction varies greatly. We have

observed that these regions become larger when the basic reproductive numbers of the

uncoupled patches are relatively close to 1. Thus, this fact is dependent on the size

of interacting populations and the time spent by the populations in their residence

patch. These results are not intuitive and might not have been observed unless the

movement between two patches is considered. In addition, it is important to mention

that although there is no explicit expression for the endemic equilibria points (if any),

if a solution tends to an equilibrium point, it will imply that such a point belongs

to the system’s biological interest. This follows from the results in Appendix 2.A.

Therefore, the endemic equilibrium points in Figures 2.3 to 2.6 fall in the system’s

biological interest region.

Other different scenarios might occur if we assume that the patches have different

propagation intensities not related to humans. For example, regions with different

sanitary measures or abundant vegetation could lead to different transmission rates,

mosquito mortality rate, and mosquito recruitment rate. Thus, table 2.2 could be

generalized considering that the parameter values are not the same in both patches.

Also, the model can be extended to a network of patches where individuals from each

patch spend different high-activity and low-activity periods in neighboring patches.

This extended model might give rise to other effects not reported in this work.

Our approach can be useful not only for vector-borne diseases such as zika or

chikungunya but also for those with direct transmission such as SARS and COVID-19,
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diseases that might generate pandemics due to human movement. In this respect,

an infected human might be exposed to different populations during its complete

period of infection, leading to a more complex understanding of the basic reproductive

number and the disease dynamics. Moreover, to obtain a generalization of the basic

reproductive number for our complete model might be useful to establish control

policies that consider the human movement.

Finally, we comment on some limitations of the work. The study was mostly

computational; however, it was quite complex. This is due to the number of parameters

involved in the model dynamics, such as the population sizes of both patches, the

proportion of people moving between patches, and the time period individuals spend

in their residence patch. Nevertheless, the theoretical behavior for uncoupled patches

was essential to provide the information shown in this work. We have also assumed

that infected people move between patches without distinguishing between

asymptomatic or symptomatic. On the other hand, in most cases, the lengths of

the outbreaks given in Figure 2.7 to 2.10 were too long compared to those in the

revised literature, which are between 3 months to 1 year [5, 75]. This problem could

be due to the absence of seasonality in our model, which controls the presence of

disease vectors.
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Appendix de Chapter 2

Appendix 2.A Positivity and boundedness of the solution

for model (2.2)-(2.3)

In this section, we prove that the solutions of model (2.2)-(2.3) are non-negative and

bounded. Since our system (2.2)-(2.3) is piecewise defined in time, we need to know

the behavior of the solutions of high-activity and low-activity systems separately.

Based on the invariance properties of these systems, we can state the invariance

properties of the complete system (2.2)-(2.3). For this, we first prove that any solution

of system (2.2) that starts at time t = t0 is non-negative and bounded ∀t ≥ t0.

Likewise, any solution of system (2.3) that starts at time t = t1 is also non-negative

and bounded ∀t ≥ t1.

Proposition 1. The set

Ωl = {(Sl
1, I

l
1, R

l
1, P1, Q1, S

l
2, I

l
2, R

l
2, P2, Q2) ∈ R

10 : Sl
i ≥ 0, I li ≥ 0, Rl

i ≥ 0, Pi ≥ 0,

Qi ≥ 0, Sl
i + I li +Rl

i = N l
i , Pi +Qi ≤ Λvi/µvi, for i, j = 1, 2 with i 6= j}.

is positively invariant for the system of the low-activity period (2.2).

Proof. This proposition follows from the fact that Ωl is the disjoint union of the

positively invariant sets Ω1 and Ω2 given in Subsection 2.2.1 for system (2.2) with

state variables Sl
1, I

l
1, R

l
1, P1, and Q1 (i = 1), and with state variables Sl

2, I
l
2, R

l
2, P2,

and Q2 (i = 2), respectively. Therefore, Ωl is invariant under system (2.2) with state

variables Sl
1, I

l
1, R

l
1, P1, Q1, S

l
2, I

l
2, R

l
2, P2, and Q2.
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Proposition 2. The set

Ωh = {(Sh
11, I

h
11, R

h
11, S

h
21, I

h
21, R

h
21, P1, Q1, S

h
22, I

h
22, R

h
22, S

h
12, I

h
12, R

h
12, P2, Q2) ∈ R

16 :

Sh
ii ≥ 0, Ihii ≥ 0, Rh

ii ≥ 0, Sh
ij ≥ 0, Ihij ≥ 0, Rh

ij ≥ 0, Pi ≥ 0, Qi ≥ 0,

Sh
ii + Ihii +Rh

ii + Sh
ji + Ihji +Rh

ji = Nh
i , Pi +Qi ≤ Λvi/µvi, for i, j = 1, 2

with i 6= j}

is positively invariant for the system of the high-activity period (2.3).

Proof. This is proven analogously to proposition 1 since system (2.3) can be reduced

to system (2.4) given in Subsection 2.2.1.

Proposition 3. If propositions 1 and 2 hold, then the solutions of the complete system

(2.2)-(2.3) are non-negative and bounded.

Proof. Let xl00 = (Sl0
1 , I

l0
1 , R

l0
1 , P

l0
1 , Q

l0
1 , S

l0
2 , I

l0
2 , R

l0
2 , P

l0
2 , Q

l0
2 ) the initial condition for

system (2.2) in t = t0 such that x0 ∈ Ωl. From proposition 1, we have that the flow of

system (2.2) given by Φl(xl00 , t) is in Ωl, ∀t ≥ t0 and, in particular, t ∈ [t0, t1]. Then, let

xh00 = (Sh0
11 , I

h0
11 , R

h0
11 , S

h0
21 , I

h0
21 , R

h0
21 , S

h0
22 , I

h0
22 , R

h0
22 , S

h0
12 , I

h0
12 , R

h0
12 , P

h0
1 , Qh0

1 , P
h0
2 , Qh0

2 ),

where

Sh0
11 = (1− α1)S

l
1(t1), I

h0
11 = (1− α1)I

l
1(t1), R

h0
11 = (1− α1)R

l
1(t1), S

h0
21 = α2S

l
2(t1),

Ih021 = α2I
l
2(t1), R

h0
21 = α2R

l
2(t1) S

h0
22 = (1− α2)S

l
2(t1), I

h0
22 = (1− α2)I

l
2(t1),

Rh0
22 = (1− α2)R

l
2(t1) S

h0
12 = α1S

l
1(t1), I

h0
12 = α1I

l
1(t1), R

h0
12 = α1R

l
1(t1), P

h0
1 = P1(t1),

Qh0
1 = Q1(t1), P

h0
2 = P2(t1), Q

h0
2 = Q2(t1).

Since that (Sl
1(t1), I

l
1(t1), R

l
1(t1), S

l
2(t1), I

l
2(t1), R

l
2(t1), P1(t1), Q1(t1), P2(t1), Q2(t1))
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is in Ωl, then we have that

Sh0
ii ≥ 0, Ih0ii ≥ 0, Rh0

ii ≥ 0, Sh0
ij ≥ 0, Ih0ij ≥ 0, Rh0

ij ≥ 0, P h0
i ≥ 0, Qh0

i ≥ 0,

Sh0
ii + Ih0ii +Rh0

ii + Sh0
ji + Ih0ji +Rh0

ji = Nh
i , P

h0
i +Qh0

i ≤ Λvi/µvi,

for i = 1, 2, i 6= j, which implies that xh00 ∈ Ωh. Then, we take xh00 as the initial

condition for system (2.3) at t = t1. Therefore, from proposition 2, it follows that

Φh(xh00 , t) ∈ Ωh ∀t ≥ t1 and, in particular, for t ∈ [t1, t2].

Similarly, we define xl10 = (Sl1
1 , I

l1
1 , R

l1
1 , P

1
1 , Q

1
1, S

l1
2 , I

l1
2 , R

l1
2 , P

1
2 , Q

1
2), where

Sl1
1 = Sh

11(t2) + Sh
12(t2), I

l1
1 = Ih11(t2) + Ih12(t2), R

l1
1 = Rh

11(t2) +Rh
12(t2), P

l1
i = Pi(t2),

Sl1
2 = Sh

22(t2) + Sh
21(t2), I

l1
2 = Ih22(t2) + Ih21(t2), R

l1
2 = Rh

22(t2) +Rh
21(t2), Q

l1
i = Qi(t2).

Since that (Sh
11(t2), I

h
11(t2), R

h
11(t2), S

h
21(t2), I

h
21(t2), R

h
21(t2), S

h
22(t2), I

h
22(t2), R

h
22(t2),

Sh
12(t2), I

h
12(t2), R

h
12(t2), P

h
1 (t2), Q

h
1(t2), P

h
2 (t2), Q

h
2(t2)) ∈ Ωh, then we have that

Sl1
i ≥ 0, I l1i ≥ 0, Rl1

i ≥ 0, P l1
i ≥ 0, Ql1

i ≥ 0,

Sl1
i + I l1i +Rl1

i = N l
i , P

l1
i +Ql1

i ≤ Λvi/µvi,

for i = 1, 2, i 6= j, which implies that xl10 ∈ Ωl. Then, we have xl10 as the initial

condition for system (2.2) at t = t2. Therefore, we have proved that solutions that

start in Ωl are sent to values inside Ωh at the switching times. These values are initial

conditions in Ωh, which in turn will generate solutions that are sent back to values in

Ωl, and therefore, repeating the whole process, we obtain that solutions for system

(2.2)-(2.3) are non-negative and bounded where the upper bound is given by each of

the bounds of Ωl and Ωh.
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Appendix 2.B Deduction of conditions given in Table

2.2

Here we deduce the conditions for scenarios (a) to (d) for case R1l < 1 and R2l > 1.

For case (1), we have R1l < 1 and R2l > 1 which implies N l
1 > N and N l

2 < N .

We now look for conditions such that

(a) R1h < 1 and R2h < 1 (Nh
1 > N and Nh

2 > N),

(b) R1h < 1 and R2h > 1 (Nh
1 > N and Nh

2 < N),

(c) R1h > 1 and R2h < 1 (Nh
1 < N and Nh

2 > N),

(d) R1h > 1 and R2h > 1 (Nh
1 < N and Nh

2 < N),

holds. From the definition of A, Nh
1 and Nh

2 , we have

Nh
1 = N l

1 −A,

Nh
2 = N l

2 +A.

We now proceed to find the conditions for Nh
1 and Nh

2 .

Case (a): We look for conditions in A such that Nh
1 > N and Nh

2 > N holds. This

follows if N l
1 −A > N and N l

2 +A > N . Therefore, we need N −N l
2 < A < N l

1 −N

to have our statement.

Case (b): In this case we look for conditions in A such that Nh
1 > N and Nh

2 < N

holds. This follows if N l
1−A > N and N l

2+A < N . Then, we need A < N l
1−N and

A < N −N l
2 which implies A < min

{

N l
1 −N,N −N l

2

}

.

Case (c): Here we look for conditions in A such that Nh
1 < N and Nh

2 > N . This

follows if N l
1 − A < N and N l

2 + A > N which implies that A > N l
1 − N and

A > N −N l
2. Then, we need A > max

{

N l
1 −N,N −N l

2

}

to have our statement.
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Case (d): In this case we look for Nh
1 < N̄ and Nh

2 < N . This follows if N l
1−A < N

and N l
2 + A < N . Then, we need A > N l

1 −N and A < N −N l
2 which implies that

N l
1 −N < A < N −N l

2 to have our statement. Note that this range of values for A

will be empty if Case (a) holds.
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Chapter 3

Effect of daily periodic human movement on

dengue dynamics: The case of the 2010

outbreak in Hermosillo, Mexico 

3.1 Introduction

An important factor in the spread of infectious diseases as dengue is the human

movement [68]. Due to this fact, dengue can be expanded from endemic to non-endemic

places [70]. It has been suggested that infectious diseases may persist in a region where

transmission rates are very low due to interaction with people from other areas with

high transmission rates [25]. On an urban scale, daily movement occurs motivated

by commuting people to workplaces, schools, commerce, among others [13].

Human mobility has been included in the latest generation of models in

epidemiology using two main approaches: agent-based modeling and metapopulations

[76]. Metapopulation models divide the population into interacting population groups

defined by spatial or demographic information [77]. This mathematical modeling

approach, based on ordinary differential equations, has been used to theoretically

evaluate the effect of human mobility on the dynamics of infectious diseases in

 This article was published in Applied Mathematical Modelling, Vol. 97, Mayra R. Tocto-Erazo,
Daniel Olmos-Liceaga and José A. Montoya-Laos, Effect of daily periodic human movement on dengue
dynamics: The case of the 2010 outbreak in Hermosillo, Mexico, 559-567, Copyright Elsevier (2021).
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heterogeneous regions connected by mobility [25, 31–34, 78]. The

consequences of mobility between cities have been analyzed in [27, 75, 79], whereas

between an urban and suburban regions in [35, 36, 80], or between areas within the

same city in [81]. There are some efforts to use real data to validate the effect of

human movement, but there are few studies yet [35, 75, 81]. Authors in [75, 81]

have concluded that infectious diseases could spread in disease-free areas or with

a local basic reproductive number less than one due to the human movement. In

particular, authors in [75] study different factors for the transmission of dengue

disease in a Chinese province using a residence time approach. They analyze the

human movement between seven regions, estimate model parameters for each patch

based on a fixed residence time matrix and explore some hypothetical scenarios by

reducing the values of such matrix.

Similar to [75], we are interested in studying the daily human mobility between

two regions from an urban area to explore how the transmission rates and the local

basic reproductive numbers may vary depending on the time period of daily local

stay of a population within their residence place. For this, we use a two-patch

mathematical model under a little-explored approach [36, 40] and data from the

2010 dengue outbreak in Hermosillo, Mexico. We used the ideas of a previous work

[40] and applied them to a scenario where the commutation between patches emerges

naturally. To define each of two patchs of the model, we divide Hermosillo into two

regions, which was derived from a preliminary cluster analysis. Finally, we use a

Bayesian approach to estimate some parameters of the model and compare mobility

scenarios.

This work is divided into the following sections. The description of the model

used, the data, and the inference method are given in Section 3.2. Then, in Section

3.3, we show the estimation results. Finally, the conclusions and discussions on our

results are presented in Section 3.4.



3.2 Methods 59

3.2 Methods

3.2.1 Mathematical model

We consider a previous two-patch model without vital dynamics in humans and

daily human movement, where movement ocurs at periodic discrete times [40]. Here

the interval [tk, tk+1) represent the kth day and is divided into two time periods:

low-activity period [tk, tk + Tl) and high-activity period [tk + Tl, tk+1), where Tl

represents the fraction of the kth day of low activity and Tl ∈ (0, 1). The daily

dynamics between the periods of low-activity and high-activity are as follows. At

the beginning of high-activity periods, people move to the other patch to carry out

their daily activities. Then, at the end of high-activity periods, people return to their

residence patch and stay there during the low-activity periods.

The following equations represent the dynamics of the populations for the

low-activity period [tk, tk + Tl):

Ṡl
i(t) = −

αhiS
l
i(t)Qi(t)

Nil

,

İ li(t) =
αhiS

l
i(t)Qi(t)

Nil

− γiI
l
i(t),

Ṙl
i(t) = γiI

l
i(t),

Ṗi(t) = µviMi −
αviPi(t)I

l
i(t)

Nil

− µviPi(t),

Q̇i(t) =
αviPi(t)I

l
i(t)

Nil

− µviQi(t),

(3.1)

where Nil := Ni and i = 1, 2.

For the high-activity period [tk + Tl, tk+1), the set of equations become:
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Ṡh
ii(t) = −

αhiS
h
ii(t)Qi(t)

Nih

,

İhii(t) =
αhiS

h
ii(t)Qi(t)

Nih

− γiI
h
ii(t),

Ṙh
ii(t) = γiI

h
ii(t),

Ṡh
ji(t) = −

αhiS
h
ji(t)Qi(t)

Nih

,

˙Ihji(t) =
αhiS

h
ji(t)Qi(t)

Nih

− γiI
h
ji(t),

Ṙh
ji(t) = γiI

h
ji(t),

Ṗi(t) = µviMi −
αviPi(t)(I

h
ii(t) + Ihji(t))

Nih

− µviPi(t),

Q̇i(t) =
αviPi(t)(I

h
ii(t) + Ihji(t))

Nih

− µviQi(t),

(3.2)

where Nih := (1 − αi)Ni + αjNj , and i, j = 1, 2, i 6= j. All model parameters and

meaning of the state variables are defined in Table 3.1.

We assume that the infected classes both Ih12 and Ih21, who move between patches,

represent only individuals with mild or no symptoms. On the other hand, uncoupled

case (Tl = 1) is obtained considering α1 = α2 = 0 in model (3.1)-(3.2). That is,

system (3.1)-(3.2) is reduced to the dynamics of a vector-host model as in (3.1) for

all time t.

Using the next generation matrix approach as in [72], the basic reproductive

number (R0i) of the uncoupled case is given by

R0i :=
αhiαviρi
µviγi

, (3.3)

where ρi = Mi/Ni. Given the complexity of the model, the basic reproductive

number for model (3.1)-(3.2) was not found. However, R01 and R02 can give us an

approximation of a local indicator of the severity of the disease for both the uncoupled

and the coupled cases.
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Variable or Definition
parameter

Ni Total population from patch i.
Nih Total population in patch i during the high-activity period.
Mi Total population of mosquitoes from patch i.
Sl
i Susceptible residents from patch i.
I li Infected residents from patch i.
Rl

i Recovered residents from patch i.
Sh
ii Susceptible residents from patch i who do not commute to another

patch during the low-activity period.
Ihii Infected residents from patch i who do not commute to another

patch during the low-activity period.
Rh

ii Recovered residents from patch i who do not commute to another
patch during the low-activity period.

Sh
ji Susceptible residents from patch j who commute to patch i during

the high-activity period.
Ihji Infected residents from patch j who commute to patch i during the

high-activity period.
Rh

ji Recovered residents from patch j who commute to patch i during

the high-activity period.
Pi Susceptible vector population.
Qi Infected vector population.
αhi Transmission rate from mosquito to human in patch i.
αvi Transmission rate from human to mosquito in patch i.
1/γi Average recovery time of humans in patch i.
1/µvi Average lifetime of mosquitoes in patch i.
αi Proportion of humans from patch i who move to patch j at time

tk + Tl.

Table 3.1: Variable and parameter definition of model (3.1)-(3.2).

3.2.2 Data

Hermosillo is a city located in the north of Mexico, with a total population of 715061

inhabitants according to the 2010 Census data provided by the National Institute

of Statistics, Geography and Informatics from Mexico (INEGI). To divide the city

of Hermosillo into two regions, we group the AGEBs using a hierarchical cluster
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analysis and a Geographic Information System (GIS). We construct the economically

active population density variable using data from the 2010 census given by INEGI.

According to the cluster analysis, we observe that most of the AGEBs in the north

of the city belong to the same group. Based on this, we divided the city into two

regions: north and south side (see Figure 3.1). The north side has 374102 inhabitants

and the south side 340959. On the south side are located the municipal and state

government offices, the city center, the largest university, and industrial parks, among

others. Thus, we consider that the flow from north to south of the city is greater

than from south to north.

!"#$%

&"'$%

()*+",-

Figure 3.1: Geographical division of Hermosillo in two regions: north (dark gray) and
south (light gray).

According to data provided by the Health Ministry of the State of Sonora, 2139

dengue cases were located on the north aloneng 52 epidemiological weeks resulting

in a rate of 57.17 cases/10000 inhabitants, and 590 dengue cases in the south with

a rate of 17.3 cases/10000 inhabitants during 2010. In this study, we use the weekly

incidence from epidemiological week 33 to 40 for both regions north and south from

Hermosillo.
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3.2.3 Mobility scenarios

According to information from the 2010 census by INEGI, the economically active

population of the north side is approximately 45%. Moreover, as mentioned above,

workplaces of the city are mostly located on the south side. Therefore, we assume

that all that 45% of economically active people from the north side (α1 = 0.45) moves

to the south side during the high-activity period, while we establish that only 10% of

the resident population from the south side (α2 = 0.1) moves to the north side.

On the other hand, to represent that the time people spend daily on another patch

is 6 and 12 hours, we take Tl = 0.75 and Tl = 0.5, respectively. In addition, because

our objective is to explore the effect of daily local stay on some characteristics of the

dynamics, Tl = 1 was selected, which allowed us to compare the scenario without

mobility versus with mobility (Tl < 1).

3.2.4 Parameter estimation

We first add a class Ci (i = 1, 2) to system (3.1)-(3.2), which represents the accumulated

number of reported infected residents from patch i, and is given by

Ċi(t) =







δ ×
αhiS

l
i(t)Qi(t)
Nil

if tk ≤ t < tk + Tl

δ ×
αhiS

h
ii(t)Qi(t)
Nih

+ δ ×
αhjS

h
ij(t)Qj(t)

Njh
if si tk + Tl ≤ t < tk+1

(3.4)

where i 6= j (j = 1, 2), and δ represents the proportion of infected individuals

confirmed by the surveillance system of the state government of Sonora. The new

parameter (δ) will be estimated. Equation (3.4) will calculate the number of new

weekly cases.

For our estimation process, we have taken values for the parameter model inside

the reported range in Table 3.2. We take the average lifetime of mosquitoes (1/µvi,

i = 1, 2) as two weeks and the number of mosquitoes per person equal to 2. For
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each Tl fixed value (1, 0.75 and 0.5) with α1 = 0.45 and α2 = 0.1, we use the

data to estimate the remaining seven parameters (αh1, γ1, αv2, αh2, γ2, αv2, and δ) by

Bayesian inference approach.

Parameter Value or range

1/µv1, 1/µv2 (days) 4− 50 [59]
ρ 1− 10 [82]
δ 0.08 [83]

αh1, αh2 0.03− 0.75 [59]
αv1, αv2 0.15− 1 [59]

1/γ1, 1/γ2 (days) 3− 7 [58]

Table 3.2: Parameter source.

Similar to Chapter 1, we take logarithmic transformations as

α̃h1 = log(αh1), γ̃1 = log(γ1), α̃v1 = log(αv1), (3.5)

α̃h1 = log(αh1), γ̃1 = log(γ1), α̃v1 = log(αv1). (3.6)

Thus, we assign a normal distribution to the six parameters given in (3.5)-(3.6). We

take a mean equal to log(0.3) and a standard deviation of 0.4 for the distribution

of α̃h1 and α̃h2, a mean equal to log(0.22) and a standard deviation of 0.1 for the

distribution of γ̃1 and γ̃2, and a mean equal to log(0.4) and a standard deviation of

0.3 for the distribution of α̃v1 and α̃v2. On the other hand, given that the support

of the beta distribution is [0, 1] and its known versatility to assign a greater or lower

probability density to values of interest, we assign a priori beta distribution for δ with

shape parameters α = 5 and β = 50. To establish the mean and standard deviation

of the normal distributions for parameters (3.5)-(3.6) and shape parameters for δ, we

considered the values or ranges given in Table 3.2. Therefore, the prior joint density

function of (α̃h1, γ̃1, α̃v1, α̃h2, γ̃2, α̃v2, δ) is given by

π(α̃h1, γ̃1, α̃v1, α̃h2, γ̃2, α̃v2, δ) = π(α̃h1)π(γ̃1)π(α̃v1)π(α̃h2)π(γ̃1)π(α̃v2)π(δ), (3.7)
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where π(•) is the normal density function of each parameter defined above.

Since model (3.1)-(3.2) is in a time-scale of days and starts at t = 0, we define Di
w

to represent the number of new infectious cases of dengue at wth week (w = 33, ..., 40)

in patch i, which is given by

Di
32+k =

∫ 7k−7

7k
Ċi(t)dt,

where k = 1, 2, ..., 8, and Ci(j) defined as (3.4). We define patch 1 as the north area

and patch 2 as the south area. Thus, we consider that the new weekly cases at week w

from patch 1 and patch 2 follow a Poisson distribution with a mean λ1w(θ) = D1
w and

λ2w(θ) = D2
w, respectively, where θ = (α̃h1, γ̃1, α̃v1, α̃h2, γ̃2, α̃v2, δ). Thus, the sampling

distribution is given by

π (~x|θ) =
40
∏

w=33

1

x1w!

[

λ1w (θ)
]x1

w exp
[

−λ1w (θ)
]

40
∏

w=33

1

x2w!

[

λ2w (θ)
]x2

w exp
[

−λ2w (θ)
]

,

(3.8)

where (xi33, x
i
34, ..., x

i
40) is the observed data from patch i, and ~x = (x133, x

1
34, ..., x

1
40,

x233, x
2
34, ..., x

2
40). Therefore, the posterior distribution π(θ|~x) is given by

π(θ|~x) ∝ π (~x|θ)π(θ),

where π(θ) and π (~x|θ) are given in (3.7) and (3.8), respectively.

To obtain the estimated probability density of the model parameters, we used

an MCMC method based on the Metropolis-Hasting algorithm [60]. We run the

algorithm for 200000 iterations but we use the last 50000 to generate the posterior

densities of the parameters and the posterior predictive distributions to check the fit.

The initial conditions assumed are as follows: Sl
1(0) = N1 − 1, I l1(0) = 1, Rl

1(0) = 0,

P1(0) = ρN1, Q1(0) = 0, Sl
2(0) = N2 − 1, I l2(0) = 1, Rl

2(0) = 0, P2(0) = ρN2, and

Q2(0) = 0, where N1 = 374102 and N2 = 340959. To generate the posterior density of



66 Effect of daily periodic human movement on dengue dynamics: the case of...

R01 and R02, we replace each sample of (αh1, γ1, αv1, αh2, γ2, αv2, δ) in equation (3.3).

The code used to calculate the posterior predictive distribution is available online at

https://github.com/MayraTocto/DailyHumanMobility DengueOutbreak.

3.3 Results

The results are based on three scenarios: Tl = 1, Tl = 0.75, and Tl = 0.5. Case

Tl = 1 represents that there is no flow of people between the north and south regions.

Cases Tl = 0.75 and Tl = 0.5 indicate that the residents from each patch spend 75%

and 50% of their day at their residence place, respectively. To check the fit of the

model to the data, we construct 95% predictive intervals of the posterior predictive

distributions using the 0.025 and 0.975 quantiles for the north and south sides, as

shown in Figure 3.2. This figure shows that the three scenarios are plausible. In the

following lines, we will see some differences in the estimates of the model parameters,

which implies that the local basic reproductive numbers may drastically change.
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Figure 3.2: The 95% predictive intervals for the estimated posterior predictive
distributions from the north side (A) and south side (B) versus data from dengue
cases in Hermosillo.

Figure 3.3 shows the posterior densities of transmission rates for the north and
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south regions. The range of most likely values for estimated local transmission rates

from the north side (αh1 and αv1) coincides for Tl = 1, Tl = 0.75, and Tl = 0.5

(Figure 3.3A and 3.3B). Based on our mobility scenarios, this fact could indicate that

the daily mobility of people does not affect the disease dynamics on the north side of

the city. On the contrary, the posterior density for local transmission rates (αh2 and

αv2) from the south region, when Tl < 1, has more weight in lower values compared

to the case Tl = 1 (Figure 3.3C and 3.3D). That is, it would be more likely to obtain

smaller values for the transmission rates on the south side when Tl goes down from

1 to 0.5, and, therefore, local contagions decrease. In this case, according to the Tl

value (Tl < 1), infected individuals from the south side who get the dengue virus

during their visit to the north side is more credible than local contagions. Thus, the

results may suggest that some dengue cases from the south side may have emerged by

the interaction between a susceptible individual from the south side that gets bitten

by an infected mosquito from the north of the city during his visit. The median and

95% confidence intervals of the posterior distributions for γ1, γ2, and δ are given in

Table 3.3.

Parameter Median (95% CI) Median (95% CI) Median (95% CI)
for Tl = 1 for Tl = 0.75 for Tl = 0.5

γ1 0.250 ([0.206, 0.305]) 0.252 ([0.207, 0.307]) 0.253 ([0.208, 0.309])
γ2 0.230 ([0.189, 0.280]) 0.231 ([0.192, 0.283]) 0.233 ([0.192, 0.284])
δ 0.429 ([0.337, 0.526]) 0.436 ([0.344, 0.530]) 0.436 ([0.342, 0.532])

Table 3.3: Estimation of γ1, γ2, and δ parameters.

Based on the samples obtained for the parameters and replacing them in expression

(3.3), we obtain the estimated density of local basic reproductive numbers (for Tl = 1,

Tl = 0.75, and Tl = 0.5). As we have already mentioned, for Tl < 1, the local basic

reproductive number is used as a local indicator of the disease, that is, these values

would tell us how severe could be the disease locally. Figure 3.4 shows the posterior
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Figure 3.3: The posterior density of parameters from the north patch (A and B) and
south patch (C and D).

densities of R01 and R02. From Figure 3.4A, we have that R01 is more likely to take

values greater than 1 for all three cases. However, if we consider Tl = 0.75, we have

that the most probable values for R02 are smaller compared to the case Tl = 1 as we

can see in Figure 3.4B. Furthermore, if Tl = 0.5, the probability that R02 takes on

values less than 1 is not negligible.

The estimates obtained above coincides with the fact that there was only 1

confirmed case of dengue on the south side from 33th to 35th week, while on the
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Figure 3.4: The posterior density of R0 from the north side (A) and the south side
(B).

north side there were 18 cases in the same period of time, see Figure 3.2. Thus,

the appearance of a dengue outbreak in the south region may be due to the daily

movement of people. These results may suggest that not considering daily human

movement overestimates the transmission rates and the local basic reproductive number

of the south side of the city. The daily mobility between both patches decreased the

estimated values of the local transmission rates of the South side, attributing the

outbreak on that side due to the connection with the North side.

3.4 Conclusions and discussions

Many mathematical models based on ordinary differential equations have been used

to model infectious disease dynamics throughout a country or a city. We believe it is

essential to consider that an area may have, for example, different demographic and

socio-economic characteristics which may be affected by the daily mobility of people.

Considering these factors for modeling the disease dynamics and estimating the model

parameter are very important because they take into account heterogeneities within
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a region and provides a way to analyze possible effects on each local dynamics of the

disease.

Here we have explored a scenario of human mobility by fitting data of a dengue

outbreak from Hermosillo to a two-patch mathematical model. For the estimation

process, we have only used data from the initial stage of the outbreak because many

factors can influence the disease dynamics for the complete outbreak. In addition,

since no data are available on the mosquito population, some assumptions based on

literature were made for parameters related to the vector. On the other hand, despite

not having an overall R0 of coupled model (3.1)-(3.2), the expression for the basic

reproductive number given in (3.3) was helpful to measure the local severity of the

disease in each patch.

Based on the results, we have observed that not considering the daily mobility

between connected areas may lead to inappropriate conclusions of some characteristics

of the disease dynamics. For example, we have obtained higher estimates of

transmission rates and local basic reproductive numbers on the south side if it is

assumed that there is no flow of people between the north and south sides of the city.

This fact could lead to suppose that the conditions for the spread of the disease on

the south side may be relatively similar to the north side. However, the results may

suggest that some infected residents of the south side could be a contribution of daily

mobility, but not because of the conditions on that side of the city, which is consistent

with previous results [68, 75, 81]. The latter could lead to more appropriate decisions

regarding where to focus the control measures when an outbreak is stronger. Thus,

despite having a reasonable fit of the uncoupled model to the data (case Tl = 1), we

must consider the role of human mobility and how this could significantly affect the

dynamics in regions without conditions of disease development. Similar conclusions

were obtained for other settings of the proportions that move between patches (α1

and α2, with α1 > α2).
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This work is supported by the available data of dengue cases within a population

and a socio-economic and socio-demographic analysis to study the city as two regions

connected by the human movement. However, in general, we could better understand

the local properties of a community if we had more documented information about

mobility. This latter could help to detect contagion risk areas within the same

community.

The current problem was addressed initially to study vector-borne infectious

diseases, where the vector has much more limited mobility than hosts (humans).

However, this approach can be applied to infectious diseases with human-to-human

transmission via direct contact. The COVID-19 pandemic is a clear example that the

human movement represents a critical factor in the spread of infectious diseases. In

this sense, this mobility approach can be used to analyze situations where the human

movement has a periodic nature. Examples of this idea are schools, workplaces, or

even large events that last more than one day. Multiple connected patches can also

be considered under this same approach. These types of studies allow analyzing the

weight of commuters in the disease dynamics, which may be useful to propose control

policies and reduce cases or prevent outbreaks in certain city locations.

Finally, in this work, we have assumed that the length of the high-activity periods

is the same each day. However, not only may this length change on weekends, but also

the start and end of high-activity periods may vary. We also can consider the peak

biting periods of mosquitoes: early in the morning and in the evening before dusk

[4]. These types of differentiated mobility behaviors will follow from this study. We

consider the present work as a starting point to address these new mobility scenarios.
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Chapter 4

A Monte Carlo study for COVID-19 in

Hermosillo 

On March 16, 2020, the state government of Sonora declared mandatory confinement

for the COVID-19 pandemic. Given this, at the request of the state authorities, the

biomathematics team of the University of Sonora proposed a mathematical model to

explore Covid-19 spread scenarios in Sonora [38]. As a consequence of work done by

the biomathematics team, the author of this manuscript was invited to participate

in the team to explore some characteristics of COVID-19 dynamics in Hermosillo,

such as the acme value and acme date, and to compare the implemented measures

with other hypothetical scenarios such as the delay of one or two weeks of the start

date of the lockdown. In this sense, a methodology based on a Montecarlo method

was proposed joined with Dr. José Arturo Montoya Laos and MSc. Jorge Alberto

Esṕındola Zepeda.

Next, we present the methodology and results according to a scenario proposed

by the author of this manuscript for the COVID-19 dynamic in Hermosillo.

 Most of the material presented in this chapter was published in PLoS ONE journal, Vol.
97, Mayra R. Tocto-Erazo, Jorge A. Esṕındola-Zepeda, José A. Montoya-Laos, Manuel A.
Acuña-Zegarra, Daniel Olmos-Liceaga, Pablo A. Reyes-Castro, and Gudelia Figueroa-Preciado,
Lockdown, relaxation, and acme period in COVID-19: A study of disease dynamics in Hermosillo,
Sonora, Mexico, e0242957 (2020).
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4.1 Montecarlo study

We will first present the mathematical model used, and then we will provide the steps

to apply the Monte Carlo method.

4.1.1 Mathematical model

The mathematical model is an extension of the SIR model that considers the following

classes: susceptible (S), exposed (E), asymptomatic infectious (IA), symptomatic

infectious (IS), recovered (R), quarantined (Q), hospitalized (H), dead individuals

(D), protected individuals who decided to stay at home (P ), and protected individuals

released who break control measures (PR). According to the compartmental diagram,

as shown in Figure 4.1, the mathematical model is given by

Ṡ = −

(

αaIA + αsIS
N∗

)

S − ω1(t)S

Ṗ = ω1(t)S −

(

α̃aIA + α̃sIS
N∗

)

P − ω2(t)P

ṖR = ω2(t)P −

(

α̂aIA + α̂sIS
N∗

)

PR

Ė =

(

αaIA + αsIS
N∗

)

S +

(

α̃aIA + α̃sIS
N∗

)

P +

(

α̂aIA + α̂sIS
N∗

)

PR − δE

İA = (1− θ) δE − ηaIA

İS = θδE − γsIS

Ḣ = βγsIS + τψQ− µH

Q̇ = (1− β) γsIS − ψQ

Ṙ = ηaIA + (1− ν)µH + (1− τ)ψQ

Ḋ = νµH

(4.1)
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where N∗ = S + E + IA + IS +R+ P + PR, and

ω1 (t) =



















0 , 0 ≤ t < TL1
,

w10 , TL1
≤ t < TU1

,

0 , TU1
≤ t ,

(4.2)

ω2 (t) =



















0 , 0 ≤ t < TL2
,

w20 , TL2
≤ t < TU2

,

0 , TU2
≤ t .

(4.3)

[TL1
, TU1

] represents the period in which the susceptible population move to the

protected class until a certain percentage of the population is reached, and [TL2
, TU2

]

represents the period in which a percentage of the population that breaks the

confinement is reached. Values for ω10 is obtained using the following equation:

ω10 =
1

TU1
− TL1

ln

(

1

k

)

(4.4)

where (1 − k) is the population proportion that is protected until time. Similarly,

values for ω20 are obtained. Parameter definitions are given in Table (4.1). For details

on the model description, see [39].

Figure 4.1: Compartmental diagram for the mathematical model. Reprinted from
[39].
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Parameter Definition

αa, (α̃a, α̂a) Transmission contact rates for susceptible (protected,
protected released) class linked to asymptomatic individuals

αs, (α̃s, α̂s) Transmission contact rates for susceptible (protected,
protected released) class linked to symptomatic individuals

δ Incubation rate
θ Proportion of symptomatic individuals
ηa Recovery rate for asymptomatic individuals
γs Output rate from the symptomatic class by register
β Proportion of hospitalized individuals
ψ Output rate from the quarantined class by hospitalization/recovery
µ Output rate from the hospitalized class by recovery/death

Table 4.1: Parameter definitions of model (4.1). Reprinted from [39]

4.1.2 Method

The Monte Carlo method considered consists of the following steps.

1. Initial conditions for the model: The first COVID-19 case confirmed by

the Sonoran Health System was in March 16, 2020, being March 11 the onset

symptoms date [84]. Based on this, we consider March 11 as the beginning of the

COVID-19 dynamics in Hermosillo for model (4.1) with the initial conditions:

S(0) = 930668, IS(0) = 1, and E(0) = IA(0) = H(0) = D(0) = Q(0) = R(0) =

P (0) = PL(0) = 0. Total population of Hermosillo for the year 2020 was taken

according to the Mexican National Population Council (CONAPO) projections

[85].

2. On-and-off periods of social distancing: We assumed that the period

from March 16 to April 15 was the first period of social distancing, where

a considerable proportion of the susceptible population became protected. A

second period was fixed from April 30 to May 15. Therefore, we set [TL1
, TU1

]

and [TL2
, TU2

] as [5, 35] and [50, 65], respectively.
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3. Model parameter distributions: We selected a set of distributions for model

parameters given in Table 4.2. The selection of the probability distributions was

based both on previous experience and the versatility of certain distributions.

An initial fit of the model solutions was made to the data reported through an

application created in RStudio [86]. The latter allowed to delimit the supports

of these distributions considering wide ranges and a bibliographic review given

in Table 4.3 as a starting point.

Parameter Distribution Parameter Distribution

αa N0,∞(1.198, 0.05) γs IG(3, 1)
αs N0,∞(0.657, 0.05) β B(8, 50)
α̃a N0,∞(0.02, 0.05) τ U(0.1, 0.3)
α̃s N0,∞(0.02, 0.05) ψ U(0.06, 0.1)
α̂a N0,∞(0.02, 0.05) µ U(0.05, 0.1)
α̂s N0,∞(0.02, 0.05) ν U(0.2, 0.4)
δ IG(25, 5) w10 U(0.04, 0.08)
θ U(0.17, 0.25) w20 U(0.007, 0.03)
ηa IG(105, 10) - -

Table 4.2: Model parameter distributions.

In particular, distributions for ω10 and ω20 were obtained assuming a U(0.7, 0.9)

distribution for the protected proportion of susceptible individuals and a

U(0.1, 0.35) distribution for the proportion of people who have broken the

confinement. Once we have a sample for each proportion, we applied the

equation (4.4) to these samples, considering that protected and

released population proportions are achieved within 30 and 15 days, respectively.

The values obtained for ω10 and ω20 allowed us to propose the corresponding

distributions given in Table 4.2 and the parameters range shown in Table 4.3.
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Parameter Reference Parameter Reference

αa 0.5944–1.68 [87] 1/γs 0.8–8.2 [88]
αs 0.5944–1.68 [87] β 0.1–0.3∗

α̃a 0–0.5∗ τ 0–0.5∗

α̃s 0–0.5∗ 1/ψ 8.2–15.6 [89]
α̂a 0–0.5∗ 1/µ 4.7–10.3∗; 11-25 [90]
α̂s 0–0.5∗ ν 0–0.4∗

1/δ 2–14 [91] w10 0.04–0.08∗

θ 0–0.8∗ w20 0.007–0.03∗

1/ηa 8.2–15.6 [89] - -

Table 4.3: Initial parameter ranges and values, taken from current literature or
assumed (*).

4. Empirical constraint on prevalence: Based on a prevalence study carried

out in Spain [92], we include solutions where the cumulative number of infected

people, from the first case until day 200, were at most 21.6% of the total

population in Hermosillo.

5. Data. The dataset used was downloaded from the official website of the

Mexican Federal Government on July 19, 2020 [84]. According to some lifting

confinement measures adopted by the Mexican government, the study period

was from March 11 to May 31. The cases considered for the study were the

positive cases for SARS-CoV-2 with residence in Hermosillo and treated in a

medical unit in the Sonora state. The selected variables were daily cases by

symptom onset date, hospitalized and ambulatory by date of admission to a

health service unit, and daily deaths (see Figure 4.2).

6. Empirical restriction on epidemic curves: To ensure reasonable solutions,

we considered an inclusion criterion that consisted of selecting those solutions

whose sum of squared errors about the data was smaller than some specific

upper bound. For this, we perform the following steps:
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Figure 4.2: COVID-19 data from Hermosillo from March 11 to May 31 [84].

Step 1 We first define the following variables with respect model (4.1):

DIS (k) =

∫ k

k−1
θδE (t) dt,

DH (k) =

∫ k

k−1
βγsIs (t) dt,

DQ (k) =

∫ k

k−1
(1− β)γsIs (t) dt,

DD (k) =

∫ k

k−1
νµH (t) dt.

(4.5)

whereDIS(k), DH(k), DQ(k), andDD(k) are the number of symptomatic

infected, hospitalized, ambulatory and death cases, respectively, on the kth

day.

Step 2 Then, we obtained m = 1000 parameter samples set according to the

distributions defined for model parameters in Table 4.2 and, for each

parameter sample set, we solve system (4.1) and calculate the sums of
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squared errors given by

SSE(IS) =

82
∑

k=1

(xk −DIS(k))
2 ,

SSE(H) =

82
∑

k=1

(yk −DH(k))2 ,

SSE(Q) =
82
∑

k=1

(zk −DQ(k))2 ,

SSE(D) =
82
∑

k=1

(wk −DD(k))2 ,

(4.6)

where xk, yk, zk, and wk represent the daily data of symptomatic infected,

hospitalized, ambulatory, and deaths, respectively, at day k, shown in

Figure 4.2.

Step 3 Finally, once the 1000 sets of sums of squared errors are obtained, we

calculate the 25th percentile of the sum of the squared errors for each

variable. It is considered the upper bound to admit solutions for system

(4.1).

4.2 Results

We obtained 5000 solutions from system (4.1) that hold the criteria previously

explained. Figure 4.3 shows the band that covers the 5000 solution curves obtained for

daily new cases by symptom onset date (DIs), daily hospitalized (DH) and ambulatory

(DQ) by date of admission to a medical unit, and deaths daily (DD). We can observe

a good fit of the real data to the solution curves obtained. In Figure 4.4, we can

see the histograms of the parameter values obtained after applying the proposed

methodology.

According to the solution curves obtained for Figure 4.3, we calculate the date
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Figure 4.3: Solution curve bands for new daily cases (A), new daily hospitalizations
(B), new daily ambulatory (C), and new daily deaths (D).

of occurrence of the acme for every one of the solutions. Figure 4.5 shows the

distributions of the estimated date of the acme for the daily new reported, hospitalized,

ambulatory, and death variables. The 95% quantile-based interval is from July 13

to August 30 for the peak of cases, from July 16 to September 2 for the peak of

hospitalizations, from August 3 to September 22 for the peak of deaths. In particular,

the median date for the acme of incidence cases occurs on August 3, which is a

date close to the peak of incidence that happened in Hermosillo (around the 31st

epidemiological week).

Finally, we evaluate implications on the prevalence of hospitalized and the

cumulative deaths if the lockdown had been implemented one or two weeks later

than our real scenario. For this, we calculate the quantile 0.5 for each parameter



82 A Monte Carlo study for COVID-19 in Hermosillo

0

500

1000

1500

1.1 1.4

αa

c
o

u
n

t

0

500

1000

1500

0.45 0.75

αs

c
o

u
n

t

0

300

600

900

0.00 0.15

α~a

c
o

u
n

t

0

500

1000

0.0 0.2

α~s

c
o

u
n

t

0

500

1000

1500

0.0 0.2

α̂a

c
o

u
n

t

0

500

1000

0.0 0.2

α̂s

c
o

u
n

t

0

500

1000

1500

0.2 0.4

δ

c
o

u
n

t

0

200

400

600

0.16 0.24

θ

c
o
u

n
t

0

500

1000

1500

0.08 0.14

ηa

c
o
u

n
t

0

1000

2000

3000

0 3

γs

c
o

u
n

t

0

500

1000

0.1 0.3

β

c
o

u
n

t

0

200

400

600

0.1 0.3

τ

c
o
u

n
t

0

200

400

600

0.06 0.10

ψ

c
o
u
n
t

0

200

400

600

0.06 0.10

µ

c
o
u
n
t

0

200

400

600

0.2 0.4

ν

c
o
u
n
t

0

300

600

900

0.05 0.08

ω10

c
o
u
n
t

0

200

400

600

0.01 0.03

ω20

c
o
u
n
t

Figure 4.4: Histogram for each one of the parameters.

of all 5000 combinations, and, with these values, we obtain our baseline scenario

(lockdown from March 16 to April 15). We carried out simulations considering that

lockdown took place over a time interval from March 23 to April 22 and from March

30 to April 29. Figure 4.6 shows the solution for our baseline scenario and those

two hypothetical scenarios. We observe that a significant increase in the number of

daily new hospitalizations and cumulative deaths would have occurred if lockdown

had taken one or two weeks after the original date.
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Figure 4.5: Histograms of acme dates for the epidemic curves: daily new reported
cases (A), daily hospitalizations (B), daily ambulatory (C), and daily deaths (D).
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4.3 Conclusions and discussions

Since the characteristics of COVID-19 are not well known yet, it was more appropriate

to consider different scenarios for model parameters. Thus, a Monte Carlo study

was more suited to fit the data. In [39], we can see the other two sets of selected

distributions also provide solutions that fit the data. This fact highlights the parameter

identifiability problem.

Based on the proposed scenario, the model described the temporal dynamic of

the COVID-19 in Hermosillo. Moreover, the acme occurrence time is close to the real

date of Hermosillo. Although the other two sets of distributions proposed by two

other researchers do not totally coincide with the one presented here, the dynamics

preserved the property of the acme occurrence time.

We also explore the hypothetical delay of one and two weeks of the implementation

of lockdown measures. According to our scenario, a week late would have led to about

five times more accumulated deaths than what was obtained in our dynamic baseline,

by May 31, whereas a two-week late would have increased about 26 times. Thus,

the measures applied on March 16 allowed to avoid a high number of deaths and

hospitalizations.



Chapter 5

General conclusions

In this work, we have proposed theoretical-numerical and applied approaches to

explore scenarios in infectious disease dynamics. Although the approaches were

applied to Dengue and COVID-19, they can be adapted according to problems that

need to be addressed and applied to infectious diseases such as Chikungunya, Zika, or

SARS, among others. Moreover, information about applied control strategies (dates

and locations), mobility patterns of humans and vectors, or reliable data of cases may

generate more realistic scenarios, which may be helpful for decision-making in public

health.

The use of GIS, socio-demographic and socio-economic information played an

important role throughout this work because they allowed us to delimit appropriate

study areas. These tools helped us to identify heterogeneous conditions for the disease

spread in the city of Hermosillo. Moreover, we recognized behaviors in the dengue

data associated with spatio-temporal dynamics; for example, the double peak of cases

observed in Figure 1.1 of Chapter 1. Therefore, we believe these tools are essential

to comprehend the spatio-temporal dynamics better and formulate more appropriate

hypotheses of mathematical models.

Chapters 2 and 3 allowed us to emphasize the role of human mobility in the spread

of infectious diseases. Although it was not possible to find the expression of the

global R0 for the model, the local basic reproductive numbers were used as indicators
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of favorable conditions for the existence or not of endemic equilibria and outbreaks.

Identifying the local conditions for the spread of infectious diseases in a population can

allow to focus control measures better and avoid spreading to another neighborhood.

Future works may use the modeling approach to a network of connected patches to

study the infectious disease dynamics, where the patches may be defined considering

socio-economic and socio-demographic information, and mobility patterns.

In Chapters 1 and 3, we have used statistical methods to obtain reasonable

values of the parameters and propose hypothetical scenarios. First, we identified

the parameter values that needed to be fixed at specific values. Then, we employed

the Bayesian approach to obtain different scenarios due to the lack of available

information. Here, Bayesian approach was used in another way what is traditionally

applied. On the other hand, due to some characteristics of the COVID-19 disease

are not very clear yet, we needed another way to explore scenarios. For example, the

role of asymptomatic individuals in the disease dynamics is not entirely clear yet. In

this context, together with other researchers, we presented a methodology based on

the Monte Carlo method to obtain different scenarios by proposing different sets of

distributions for the model parameters. As we have seen in Chapter 4, we believe that

sometimes we must evaluate other alternatives before estimating parameters because

there could be a parameter identifiability problem serious.
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Manuel A. Acuña-Zegarra, Daniel Olmos-liceaga, Pablo A. Reyes-castro,

and Gudelia Figueroa-Preciado. Lockdown, relaxation, and acme period in

COVID-19: A study of disease dynamics in Hermosillo, Sonora, Mexico. PLoS

ONE, 15(12):e0242957, 2020. doi:10.1371/journal.pone.0242957.

[40] Mayra R. Tocto-Erazo, Daniel Olmos-Liceaga, and José A. Montoya-Laos.
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