UNIVERSIDAD DE SONORA

DIVISION DE CIENCIAS EXACTAS Y NATURALES

DEPARTAMENTO DE FISICA

Presenta:

RAMON ALVARO VARGAS ORTIZ

HERMOSILLO SONORA, MÉXICO.

FEBRERO DE 2002

Universidad de Sonora

Repositorio Institucional UNISON

Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess

AGRADECIMIENTOS

Gracias A mis Padres y a Faviola

A la Dra. Ma. Elena Zayas S., al Geologo Carlos Duarte, al Dr. Humberto Arizpe y al Dr. Felipe Medrano

A Todos los maestros del Departamento de Física

Y a mis amigos

ÍNDICE

I.	INTRODUCCIÓN1			
II.	OBJETIVO4			4
III.	EL VIDR 3.1 De 3.2 Ca 3.3 Es	IO finición aracterísticas tructura del	s del Estado Vítreo vidrio	6 7 9 11
IV.	ANTECE 4.1 Vic 4.2 Vi 4.3 Vi 4.4 Vi	DENTES drios conteni drios conten drios conten drios conten	iendo CdO iendo ZnO iendo CdO y ZnO iendo TeO ₂	13 14 16 18 18
V.	PARTE E 5.1 PRE	EXPERIMENT PARACIÓN D	TAL DE MUESTRAS	22 23
	5.2 MÉT 5.2	ODOS DE CA 2.1 Difracció 5.2.1.1 5.2.1.2 5.2.1.3	ARACTERIZACIÓN ón de Rayos X Descripción General Ley de Bragg Métodos y Equipo	26 26 26 27
	5.2	2.2 Absorcić 5.2.2.1	ón Óptica Descripción General	27
	5.2	2.3 Reflecta 5.2.3.1	ncia Difusa Métodos y Equipo	30
	5.2	2.4 Espectro 5.2.4.1 5.2.4.2	oscopía Raman Descripción General Métodos y Equipo	32 35
	5.2	2.5 Espectro 5.2.5.1 5.2.5.2	oscopía de Infrarrojo Descripción General Métodos y Equipo	35 36
VI.	DISCUS 6.1 D d	IÓN DE RES eterminaciór e vidrio	ULTADOS n del área de formación	38 39
	6.2 Ca 6.2 6.2 6.2 6.2	aracterizació 2.1 Difracció 2.2 Absorció 2.3 Espectro 2.4 Espectro	n Estructural ón de Rayos X ón Óptica oscopía de Infrarrojo oscopía Raman	41 43 45 48

VII.	CONCLUSIONES Conclusiones	53
VIII.	BIBLIOGRAFÍA Bibliografía	55

I. INTRODUCCIÓN

I. INTRODUCCIÓN

Sin duda los materiales vítreos hoy en día tienen diversas y múltiples aplicaciones en la vida cotidiana (vidrios convencionales), en la industria y en la investigación científica (vidrios no convencionales). Actualmente los fabricantes de vidrios convencionales tratan de disminuir los costos de operación, principalmente el consumo de energía eléctrica y productos comburentes utilizados en la fabricación de los vidrios. Por otro lado los fabricantes tratan también de hacer innovaciones tecnológicas en los procesos de fabricación.

Desde el punto de vista de su composición, dado que la calidad de los vidrios comunes de silicato es difícilmente mejorable, que su conocimiento esta prácticamente dominado y sus posibilidades casi agotadas, las vías de investigación que se están siguiendo actualmente, en lo que se refiere a los vidrios convencionales son, aparte de las que van dirigidas a un progresivo perfeccionamiento de los procesos, las que se hayan encaminadas a mejorar el producto mediante su transformación posterior por tratamientos físico-químicos de su superficie¹.

En lo que se refiere al vidrio plano no vasta con que éste sea un elemento de cerramiento diáfano que deje pasar la luz y defienda de la intemperie, sino que también ha de proteger de los ruidos, del calor, de los robos, de las agresiones, del impacto de proyectiles y de la acción del fuego; es decir, demasiadas exigencias para un mismo material.

En lo que se refiere a vidrios no convencionales², se han desarrollado en los últimos años vidrios de composiciones especiales para muy diversas aplicaciones. En la mayoría de los casos no se ha creado para luego buscarle una utilidad, sino que, de la misma manera que la función crea el órgano, ha sido la necesidad de la propia aplicación la que ha generado el material para satisfacerla.

El sistema ZnO-CdO-TeO₂ es un ternario que tiene aplicaciones especiales dado que las propiedades ópticas de los materiales varían con la composición química. Ha sido observado que vidrios con alto contenido en TeO₂ poseen

altas transmisiones en el Infrarrojo arriba de 5.5 μ m y poseen índices de refracción mayores que 2.1; estos vidrios pueden tener aplicaciones como materiales acusto-ópticos³, láseres y vidrios fotocrómicos⁴.

En general los vidrios con alto contenido de Telurio son estudiados en compañía de otros formadores de vidrio como un segundo componente, así por ejemplo el TeO₂ fácilmente forma vidrio con el V₂O₅ y el MoO₃, numerosos estudios estructurales utilizando Espectroscopía de Infrarrojo y Análisis de Rayos X han sido realizados encontrando que al decrecer el contenido de TeO₂ el número de coordinación de Te en relación al oxígeno cambia de 4 a 3. En la tabla I se reúnen algunos de estos vidrios con propiedades especiales.

Tabla I. Nuevos vidrios para aplicaciones especiales				
Vidrios con elevada transmitancia en el IR				
Vidrios ópticos especiales				
Vidrios fotocrómicos				
Vidrios luminiscentes				
Vidrios para láser				
Vidrios semiconductores				
Vidrios para electrolitos sólidos				
Vidrios absorbentes de radiaciones				
Vidrios sensores de oxígeno				
Vidrios con alta resistencia química				
Fibras resistentes a álcalis				
Vidrios para fibras óptica (VIS, IR)				
Microesferas				
Vidrios para almacenamiento de residuos nucleares				
Vidros microporosos				
Biovidrios				
Materiales vitrocristalinos				

II. OBJETIVO

El objetivo del presente trabajo es determinar el área de formación de vidrio del sistema ZnO-CdO-TeO₂ así como caracterizar este material utilizando Espectroscopía de Infrarrojo, Difracción de Rayos X, Espectroscopía Raman y Reflectancia Difusa (absorción Óptica).

III. EL VIDRIO

III. EL VIDRIO

3.1 Definición

El estado físico de los vidrios les proporciona analogías con los sólidos cristalinos, pero les asemeja mucho más a los líquidos, esta característica de los vidrios no permite enunciar con rigor una definición basada en conceptos físicos y estructurales. Por otra parte, su naturaleza química impide definirlos atendiendo a su composición química. Por lo tanto, la imposibilidad de conjugar las exigencias físico-químicas conceptuales con la naturaleza del estado vítreo y sus aplicaciones tecnológicas, no permiten hacer una definición generalizada.

Algunos autores han definido a los vidrios de diferentes maneras como Tamman⁹² que definió a los vidrios como "líquidos subenfriados"; también Morley⁹³ como "Una sustancia inorgánica en una condición análoga a la de su estado líquido, que como consecuencia de un cambio reversible en su viscosidad durante el enfriamiento ha alcanzado un grado de viscosidad tan elevado como para considerarse rígida a efectos prácticos.

La definición adoptada por A. S. T. M.⁹⁴ (American Standard Testing Measure) Considera que un vidrio es un producto inorgánico fundido que se ha enfriado hasta un estado rígido sin experimentar cristalización.

La comisión de terminología de la Academia Rusa de Ciencias⁹⁵ no establece ninguna exclusión basada en la constitución química y enuncia que "bajo la denominación de vidrio se designan todos los sólidos amorfos obtenidos por enfriamiento de una substancia fundida, cualquiera que sea su composición química y la zona de temperatura en la que tiene lugar la solidificación".

La condición de obtención por fusión no puede constituir actualmente un carácter limitativo de la naturaleza del vidrio, ya que existe una técnica moderna de preparación especial por el método conocido como *sol-gel*⁹⁶.

Dietzel⁹⁷ los define como "un vitroide es una sustancia compacta, físicamente uniforme que se encuentra en un estado amorfo (no cristalino y estructuralmente desordenado), que a temperaturas bajas se hace rígida y frágil y a temperaturas elevadas reblandece.

La condición de compacto excluye a los polvos amorfos.

De esta manera el concepto clásico es el del vitroide: Vidrio es un material rígido formado a partir de compuestos inorgánicos que se encuentra en estado vitroidal. Puede ser incoloro o coloreado, transparente u opacificado por la presencia de partículas extrañas.

De acuerdo con la composición, los vidrios se pueden clasificar en forma general, como se muestra en la tabla II.

Tabla II. Clasificación general de diferentes tipos de vidrios según su composición				
	Elementos: No metálicos y Métalicos			
	Oxidos			
Inorgánicos	Calcogenuros			
Jan 19	Halogenuros			
	Oxisales			
	Oxinitruros			
Orgánicos mixtos	Algunas Siliconas			
Orgánicos	Glicoles, azúcares, polímeros, etc.			

3.2 Características del estado vítreo

Una característica particular de los vidrios es que no tienen un punto de fusión definido como los sólidos cristalinos, en el punto de fusión de los sólidos cristalinos coexisten la fase fundida y la fase cristalina mientras que en los cuerpos vítreos pasan de un modo reversible de su forma fundida en estado líquido al estado rígido sin la aparición de nuevas fases.

Fig 1. Variación del volumen respecto a la temperatura para cristales y vidrios, donde T_L es la temperatura de funsión de los cristales y T_G es la temperatura de fusión del vidrio

Durante el enfriamiento de un material fundido (figura 1) tiene lugar una disminución continua de volumen **A-B**. Si el fundido se halla en equilibrio interno, su volumen es una función de la presión y la temperatura. Cuando se alcanza la temperatura de fusión T_L , en el material empiezan a aparecer cristales (cristalización) que va acompañado de una brusca disminución en el volumen **B-C**. A partir de ese momento la fase cristalina se halla en equilibrio estable y continúa su contracción de una forma más lenta (C-D). Por otro lado la transición de líquido fundido a líquido subenfriado (línea A-F) transcurre sin que aparezca discontinuidad en la curva de volumen específico-temperatura. Como la estabilidad de un líquido subenfriado es menor que la de su fase cristalina y

termodinámicamente se halla en un estado metaestable de equilibrio (inestable) basta una pequeña perturbación para que se produzca su cristalización súbita. Si en el líquido subenfriado sigue disminuyendo la temperatura sin la aparición de cristales, su contracción continúa hasta llegar a E (figura 1) en la curva, que coincide con un notable aumento en la viscosidad. La zona en donde tiene lugar el cambio de pendiente se conoce con el nombre de intervalo de transformación. Una vez rebasado este intervalo, el cuerpo continúa contrayéndose de manera continua casi a la misma velocidad que la del cristal de una manera constante (pendiente **E-F** figura 1). El cuerpo resultante no posee, sin embargo, la estructura que le correspondería con arreglo a sus parámetros termodinámicos, sino que se encuentra congelado en unas condiciones estructurales propias de una temperatura superior, dentro del intervalo de transformación, en que alcanzo su rigidez. Su equilibrio no puede determinarse temodinámicamente y es absolutamente inestable. La amplitud del intervalo de transformación (también llamado de congelación o relajación) depende en cada caso de la velocidad con que se lleva a cabo el enfriamiento (ver figura 2). Si la transformación entre el estado líquido subenfriado y el estado vítreo se diera bruscamente podríamos hablar de una temperatura de transformación T_G.

En el punto **E** de la figura 1, que representa la frontera entre la forma plásticoviscosa y el estado vítreo (vidrio), el vidrio presenta independientemente de su composición, una viscosidad entre 10¹³ y 10^{13.5} dPa s aproximadamente.

remperatura[k]Fig 2. Dependencia del intervalo detransformación respecto a la velocidad de enfriamiento

3.3 Estructura del vidrio

Las peculiares características de los vidrios han hecho mucho más difícil el estudio de su estructura.

Las múltiples investigaciones, iniciadas hace más de 60 años, sobre la estructura del vidrio han abordado su estudio desde distintos puntos de vista. Unos autores han tratado de explicar con criterios geométricos la forma en que se encuentran distribuidos los constituyentes que forman la red vítrea.

Muchas de las técnicas instrumentales utilizadas para el estudio de la estructura de los cuerpos en estado sólido no han podido aplicarse con la misma eficiencia al estado vítreo. Así se explica que partiendo de un mismo hecho experimental, se haya llegado a diferentes conclusiones que han conducido incluso a la elaboración de modelos estructurales –como el de los cristalitos y el del retículo al azar, que representan concepciones opuestas.

Modelo del retículo al azar

Zachariasen^{98, 99} parte de la base de que la rigidez mecánica de un vidrio resulta, dentro de un amplio intervalo de temperatura, muy semejante a la que presenta un sólido cristalino de la misma composición. Asimismo la diferencia entre el contenido energético que le corresponde a una sustancia en estado cristalino y en forma vítrea, es muy pequeña, lo que hace suponer que en ambos casos estén formadas por las mismas unidades estructurales, y que las fuerzas de enlace que unen a sus elementos constituyentes sean de intensidad muy parecida. Por otra parte, la aparición de bandas difusas, con ausencias de líneas de interferencia, en los diagramas de difracción de rayos obtenidos en los vidrios, excluye la existencia de una rigurosa ordenación geométrica y conduce a la idea de un extenso retículo distorsionado.

Hipotesis de los cristalitos

La hipótesis de los cristalitos expuesta en 1921 por Lebedev¹⁰⁰ concibe que los vidrios están constituidos por agregaciones de cristales submicroscopicos (cristalitos), unidos entre sí por zonas estructuralemante desordenadas.

Un estudio abordado por Porai-Koshits¹⁰¹ mediante el empleo de rayos X en vidrios de tipo Vycor y Pyrex dejo fuera de toda duda que la estructura de los vidrios ni posee la ordenación reticular que propone el modelo de los cristalitos, ni la homogeneidad estadística que propone el retículo al azar. La mayor parte de los vidrios presentan intrínsecamente microheterogeneidades de naturaleza vítrea que no son, por lo tanto, atribuibles a defectos en la homogeneidad de la muestra.

IV. ANTECEDENTES

IV. ANTECEDENTES

4.1 Vidrios conteniendo CdO

Melnick y col.⁵ (1951) determinaron la zona de formación de vidrios en el sistema B_2O_3 -CdO-SiO₂, usando en pequeñas cantidades de CaF₂ como fúndente y Al₂O₃ como homogeneizante y obteniendo materiales estables con aplicaciones en la industria nuclear.

El sistema ternario K₂O-CdO-SiO₂ fue estudiado primeramente por Appen y Bresker⁶, midieron la tensión superficial y la constante dieléctrica. Posteriormente se determinaron las siguientes propiedades: valor del parámetro elástico⁷, microdureza⁸ y viscosidad⁹.

Janakirama¹⁰ hace énfasis en la separación de fases al estudiar los sistemas Bi₂O₃-CdO-SiO₂, Bi₂O₃-CdO-B₂O₃ y Bi₂O₃-CdO-GeO₂ que tienen interesantes propiedades eléctricas.

Mc Millan y Hodgson¹¹ han estudiado vidrios del sistema CdO- In_2O_3 -SiO₂ y CdO- In_2O_3 -GeO₂ como materiales vitrocerámicos útiles para la absorción de neutrones lentos para la industria nuclear.

Izumitami y Azahara¹² han investigado la influencia del TiO₂ en el fenómeno de separación de fases del sistema binario CdO-B₂O₃, encontrándose que estos vidrios son inestables al exponerse a la intemperie, por que los grupos boratos producen anormalidades en su esctructura por la misma natuleza del B₂O₃ pero al adicionar SiO₂ se logra su estabilidad.

Caslavska y col.¹³ han estudiado los sistemas GeO_2 -CdO- B_2O_3 y PbO-CdO- B_2O_3 con adiciones de TiO₂ y ZnO cuya aplicación es: absorción de neutrones, rayos X ó rayos gamma. Vidrios del sistema CaO-Gd₂O₃-CdO- B_2O_3 han sido utilizados como fase dispersa en los componentes metálicos de control de reactores nucleares¹⁴.

Aleinkov¹⁵ concluye que el sistema CdO-PbO-SiO₂ presenta buenas propiedades de conductividad eléctrica.

Kunetsova^{16,17} determina en el sistema ternario CdO-MnO₂-SiO₂ la conductividad eléctrica, la constante dieléctrica, coeficiente de expansión térmica y la densidad.

Meiling¹⁸ logra vidrios fotocrómicos con pequeñas adiciones de cobre en el sistema CdO-B₂O₃-SiO₂. El cadmio puede favorecer la absorción óptica en estos vidrios; sin embargo, sus mecanismos de oscurecimiento aún no son bien conocidos, se piensa que un estado reducido del cadmio, como Cd⁺, podría favorecer esta absorción.

Otros autores¹⁹ han realizado estudios de fotoconductividad de vidrios de oxicalcogenuros en el sistema As₂Se₃-CdO.

Tarlakov y col.²⁰ caracterizan el sistema binario CdO-SiO₂ y obteniéndose valores de densidad, coeficiente de expansión térmica y conductividad eléctrica.

En otras investigaciones²¹ se ha determinado la fotocorriente y la absorción óptica fotoinducida de vidrios fotocrómicos de composición 47.5CdO.47.5SiO₂.5Na₂O. Los resultados sugieren que el fotocromismo surge cuando la luz excitada cerca del borde de absorción óptica genera la transición de interbandas y los electrones libres son atrapados en una red central, funcionando como centros de color.

Rincón²² ha estudiado el sistema Li₂O-CdO-SiO₂ con el objeto de obtener materiales vitrocerámicos con aplicaciones potenciales en la industria nuclear.

Matecki y col.²³ definieron la zona de formación de vidrio en sistemas que involucra CdF₂ y CdCl₂ en los siguientes ternarios: CdF₂-BaF₂-ZnF₂, CdCl₂-CdF₂-BaF₂. Estos vidrios de haluros de cadmio tienen la desventaja de ser altamente higroscópicos; pero poseen aplicaciones potenciales para la transmisión en el infrarrojo.

Porotnikov y col.²⁴ han investigado las fases de equilibrio en el sistema CdO-In₂O₃-CaO en la región de subsólidus.

Buludov²⁵ construye diagramas de fase en el sistema binario LiBO₂-CdO usando análisis térmico diferencial, difracción de rayos X y espectroscopía infrarroja encontrándose dos compuestos: Li₃CdB₃O₇ y LiCdBO₃.

Fukatsu y col.²⁶ han estudiado las fases de equilibrio en el sistema Cd-S-O y la estabilidad en la región de la nueva fase: 2CdO-2CdS-CdSO₄.

Rivera y Rincón²⁷ han realizado recientemente un estudio teórico y experimental sobre la formación y caracterización de vidrios ópticos de alto índice de refracción del sistema Na₂O-CdO-Al₂O₃-SiO₂.

4.2 Vidrios conteniendo ZnO

La adición de óxidos de zinc²⁸ en proporciones hasta del 5% resulta generalmente favorable a la mayoría de los vidrios convencionales. Este componente actúa mejorando la resistencia química del vidrio y elevando el índice de refracción, por lo que desde hace tiempo su adición es de interés en la producción de vidrios ópticos.

Russ²⁹ (1928) analizó el sistema Na₂O-ZnO-SiO₂ determinando los coeficientes de dilatación térmica de varias composiciones. Posteriormente se ha medido la tensión superficial³⁰ y en ese mismo año Appen y Bresker⁶ obtuvieron la constante dieléctrica. Hoffman y col.³¹; la viscosidad. Mazurin y Brailovskaya³² dieron a conocer los valores de conductividad eléctrica y de su energía de activación. Appen y col.⁷ determinan el parámetro elástico. También Malkin y Mogutnov³³ determinan la difusión iónica. El módulo de young, la razón de poisson y microdureza fueron determinados por Aleinkov^{34,35,36}. Finalmente Hurt y Phillips³⁷ han dado los valores de índice de refracción, coeficientes de expansión térmica y densidad.

El diagrama de fases del sistema binario ZnO- SiO₂ fue determinado ya en 1930 ³⁸. Posteriormente³⁹, se han determinado las condiciones de obtención de las fases Zn₂SiO₄ y ZnSiO₃ a presiones elevadas. Asimismo, los binarios ZnO-P₂O₅⁴⁰, ZnO-TiO₂⁴¹, ZnO-Nb₂O₅⁴² han sido determinados desde hace tiempo.

El sistema K₂O- ZnO-SiO₂ empezó a ser investigado por Appen y Bresker⁶ al medir la constante dieléctrica y la tensión superficial y hasta 1960 Makarova y col.⁴³ reinician el análisis de este sistema al obtener la constante dieléctrica. Asimismo, se cuantifican otras propiedades de este sistema en el orden siguiente: Appen y Totesh^{7,8} dan a conocer los resultados del parámetro elástico y la microdureza respectivamente. Treť yakova⁹ aporta el valor de viscosidad. Vargin y col.⁴⁴ obtuvieron la densidad, coeficiente de dilatación térmica e índice de refracción. Hamilton y col.⁴⁵ estudiaron el coeficiente de dilatación térmica, parámetro elástico e índice de refracción del sistema ternario ZnO-B₂O₃-SiO₂.

Las propiedades dieléctricas así como la tensión superficial de los vidrios del sistema de composición Li₂O-ZnO-SiO₂ fueron determinados en 1952⁶ y en 1953⁴⁶. Por otro lado, el módulo de Young y la microdureza fueron determinados una década después^{8,47}. En 1970⁴⁸ se vuelven a determinar las constantes dieléctricas en este sistema, así como la densidad, coeficiente de dilatación e índice de refracción⁴⁴. Más recientemente, en 1983^{49,50}, se han dado nuevos datos sobre conductividad térmica e índice de refracción.

Las propiedades de vidrios en el sistema de composición ZnO-Al₂O₃-SiO₂ han sido determinadas por varios autores, que investigan: la viscosidad⁵¹, densidad e índice de refracción⁵², coeficiente de dilatación térmica⁵³ y resistencia química al ataque por ácidos⁵⁴.

Los vidrios del sistema de composición PbO-ZnO-SiO₂ han sido estudiados por Sack y col ⁵⁵. Algunos investigadores egipcios^{56,57,58} han determinado la viscosidad y microdureza. Vickers e investigadores rusos¹⁵ se han interesado por la constante dieléctrica de los vidrios de este sistema.

En los vidrios de los sistemas: BaO-ZnO-SiO₂ y CaO-ZnO-SiO₂ se han determinado, el índice de refracción, coeficiente de dilatación⁵⁹ y comportamiento de la viscosidad con la temperatura⁶⁰, respectivamente.

Vidrios de sistemas más complejos tales como: El BaO-ZnO-B₂O₃ y el PbO-ZnO-B₂O₃-SiO₂ han sido obtenidos a temperaturas menores de 1000 °C estudiándose sus propiedades⁶¹ y comportamiento de viscosidad⁶², así como el desplazamiento de los radicales OH⁻ en el caso de los vidrios del segundo sistema citado⁶².

El efecto de algunos aditivos sobre los vidrios de composición ZnO-B₂O₃-SiO₂ ha sido estudiado por Misawa en 1984⁶³. Las propiedades eléctricas en este tipo de vidrio fueron estudiadas un año después por otro investigador japonés⁶⁴.

Los puntos de fusión de vidrios del sistema cuaternario ZnO-CaO-B₂O₃-P₂O₅ han sido determinados por Clinton y Coffeen⁶⁵.

En el sistema de composición $Li_2O-ZnO-SiO_2-P_2O_5$ se pueden obtener vidrios tanto transparentes como devitrificados con buenas propiedades eléctricas cuyos valores dependen de las fases que componen estos materiales⁶⁶.

Nie Chun Sheng y col.⁶⁷ hacen un estudio enfocado a determinar: el tiempo de exposición a la radiación UV, tiempo y temperatura del color desarrollado, temperatura de crecimiento de cristales en función del espesor de la muestra para vidrios del sistema Na₂O-ZnO-Al₂O₃-SiO₂.

Por último, en el sistema cuaternario $Li_2O-ZnO-Al_2O_3-SiO_2$ se obtiene vidrios con una amplia zona de inmiscibilidad líquido-líquido (separación de fases) con alta tendencia a la cristalización de manera que pueden ser útiles para la producción de materiales vitrocerámicos⁶⁸.

4.3 Vidrios conteniendo ZnO y CdO

En el sistema ternario ZnO-CdO-P₂O₅ se han obtenido vidrios con interesantes propiedades ópticas y eléctricas^{69,70}.

Para el sistema ZnO-CdO-B₂O₃ se han fabricado vidrios en los que se han investigado algunas propiedades: densidad, índice de refracción, coeficiente de dilatación térmica, comportamiento de viscosidad y conductividad eléctrica⁷¹. A partir de vidrios de este sistema en composiciones situadas en el centro de la zona de formación de vidrio, se puede formar un compuesto ternario de fórmula: ZnO.2CdO.2B₂O₃ que funde más fácilmente que los correspondientes binarios. Por otro lado en vidrios del sistema cuaternario ZnO-CdO-B₂O₃-SiO₂⁷² conteniendo cantidades menores del 50% mol de CdO y/o ZnO % mol, se han determinado sus propiedades fotocrómicas frente a la irradiación por la luz U V.

4.4 Vidrios conteniendo TeO₂

Parece ser que berzelius $(1834)^{73}$ fue el primero en comprobar que podrían obtenerse vidrios a base de TeO₂. Describió vidrios hechos por enfriamiento de fundidos de tetratelurato de bario y metales alcalinos. Después, Lehner y Wolesenky⁷⁴ (1913) confirmaron que la formación de vidrio ocurre en los sistemas K₂O-TeO₂ y NaO-TeO₂. La tecnología del vidrio de esa época no prestó suficiente atención a este trabajo, de manera que el estudio detallado de estos vidrios no

fue emprendido hasta que fueron redescubiertos por Stanworth⁷⁵ en 1952. Una patente provisional de 1950 que no fue publicada hasta 1956 recoge el procedimiento de obtención de los mismos⁷⁶.

Dimitrova – Pankova y col.⁷⁷ investigaron la influencia de óxidos modificadores sobre la estructura de vidrios de telurio en la región espectral del infrarrojo, encontrando que los iones modificadores Ag⁺ y Ba²⁺ crean enlaces no-puente de Te-O, los cuales actúan como defectos y destruyen la red tridimensional del vidrio. Los índices de refracción de vidrios de telurio son considerablemente altos (mayores que 2.0) debido a la alta polarizabilidad del ión teluro, siendo buenos transmisores en el infrarrojo. Aunque su estabilidad química no es sobresaliente, esto es totalmente adecuado para muchas aplicaciones, por ejemplo, en componentes ópticos.

Importantes investigaciones sobre la formación de vidrio en sistemas binarios de telurio incluyendo óxidos de metales de elementos que no son de transición han sido realizadas por Imaoka⁷⁸, siendo recopilados los resultados tal y como se expresa en la tabla III.

El sistema V₂O₅-TeO₂ ha sido investigado para contenidos del 10 al 60 % en peso de V₂O₅⁷⁹. Asimismo, en el sistema MoO₃-TeO₂ conteniendo 15-50 % en peso de MoO₃ se pueden obtener vidrios. Por último, estudiando el binario B₂O₃-TeO₂ se ha encontrado una amplia zona de formación de vidrio⁸⁰.

Volkova⁸¹ ha enfocado su atención sobre matrices de telurio de los sistemas La_2O_3 -Te O_2 - B_2O_3 y Te O_2 - P_2O_5 - B_2O_3 los cuales dan lugar a vidrios con altos valores de índice de refracción en el rango del visible.

Ovcharenko⁸² ha investigado las propiedades fisico-químicas y la estructura de vidrios en el sistema Bi_2O_3 -Te O_2 - V_2O_5 observando que la alta constante dieléctrica y la baja movilidad de iones portadores de cargas hacen este tipo de vidrios adecuados para su uso en la fabricación de condensadores.

La influencia de óxidos colorantes sobre la absorción óptica de un vidrio óptico de TeO₂ con índice de refracción muy elevado, ha sido estudiada por la adición de un 0.001 % en peso de CoO, $Cr_2O_3 + CrO_3$, Mn_2O_3 , CuO, NiO, V_2O_5 , Fe_2O_3 ⁸³.

Vidrios del sistema complejo Fe_2O_3 -MnO-Te O_2 -B₂O₃ así como la presencia de inmiscibilidad líquida en este tipo de vidrios han sido investigados recientemente⁸⁴. Investigaciones sobre el alto índice de refracción y la alta transmitancia de vidrios del sistema PbO-Al₂O₃-TeO₂-B₂O₅ muestran que las composiciones 50TeO₂.26PbO.10B₂O₃.5Al₂O₃.7ZnO.2Bi₂O₃ y 62TeO₂.21PbO.12B₂O₃.5Al₂O₃ (% mol) son convenientes como moduladores acustico-ópticos⁸⁵.

Tabla III. Región de formación de vidrio en sistemas				
binarios de Teluros ⁷⁸ .				
Sistema	Zona de formación de vidrio			
Sistema	% mol*	% peso*		
$K_2O - TeO_2$	4.5 - 23.0	2.7 – 14.9		
$Na_2O - TeO_2$	8.5 - 40.5	3.5 - 20.9		
$Li_2O - TeO_2$	13.0 - 30.5	2.7 - 7.8		
$BaO - TeO_2$	7.0−20.0 y	6.7 – 19.3 y		
1	36.0 - 36.5	35.0 - 35.5		
$SrO - TeO_2$	10.0 - 13.0	6.7 - 8.9		
$CaO - TeO_2$		_		
$MgO - TeO_2$	12.0 - 34.5	3.3 – 11.6		
$BeO - TeO_2$	11.0 - 23.0	3.0 - 7.0		
$La_2O_3 - TeO_2$	4.5 – 9.5	8.8 - 17.6		
$Al_2O_3 - TeO_2$	4.5 - 15.5	2.9 - 10.5		
$ThO_2 - TeO_2$	8.5 - 10.0	13.3 - 15.5		
$TiO_2 - TeO_2$	-	-		
$Ta_2O_5 - TeO_2$	1.5 - 2.0	4.0 - 5.3		
$Nb_2O_5 - TeO_2$	2.0 - 25.0	3.3 – 35.7		
$WO_3 - TeO_2$	6.0 - 35.0	8.5 - 43.9		
$Tl_2O - TeO_2$	13.5 - 37.5	29.3 - 61.3		
$In_2O_3 - TeO_2$	6.5 - 14.0	10.8 - 22.0		
$ZnO - TeO_2$	9.5 - 39.5	5.1 - 24.9		
$CdO - TeO_2$	_	-		
$PbO - TeO_2$	10.5 - 22.0	14.1 - 28.2		

* óxido añadido al TeO₂

La transmisión y propiedades de vidrios de sistemas de composición del tipo: $[R_nO_m, R_nX_m, R_n(SO_4)_m y B_2O_3] - TeO_2$ han sido determinadas por Bürger y col.⁸⁶. El objeto de dicho trabajo fue señalar la falta de centros de simetría en la estructura de estos vidrios, debido al efecto de pares de electrones libres, y discutir la absorción de multifonón en la región de las 6μm. Previamente, Cheremisinov y Zlomanov⁸⁷ determinaron la existencia de una fuerte banda de absorción a la 3.2 μm, así como una banda débil en 4.4 μm, siendo la transmisión prácticamente cero en 6.3 μm. Otros autores, han obtenido las transmisiones en el IR en sistemas binarios más sencillos, tales como 20ZnO.80TeO₂⁸⁸, 20Na₂.80TeO₂⁸⁹, 20WO₃.80TeO₂⁸⁹, 9.1Al₂O₃.89.9TeO₂⁹⁰ y 3.67Bi₂O₃.96.3TeO₂⁹¹ (en todos los casos es % mol).

Todos los espectros de este tipo de vidrios presentan una fuerte banda de absorción en las 3 μ m (3427 cm⁻¹) debida a los grupos OH⁻¹ y una banda débil pero muy definida en el intervalo 4.4 - 4.5 μ m (2250-2300 cm⁻¹).

V. PARTE EXPERIMENTAL

5.1 PREPARACIÓN DE MUESTRAS

Se inicia el estudio con formulaciones teóricas haciendo una revisión de composiciones en el sistema ternario ZnO-CdO-TeO₂ para determinar la zona de formación de vidrio (ver figura 3).

Las muestras se formulan con variaciones grandes (de los diferentes óxidos introducidos) en sus composiciones, definiéndose un total de 29 mezclas cuya composición teórica se muestra en la tabla IV.

Fig 3. Formulaciones experimentales realizadas en el sistema ZnO-CdO-TeO₂

Las materias primas (ZnO, CdO y TeO₂) son óxidos de alta pureza (grado reactivo). Las cantidades de cada uno de los óxidos que forman la mezcla de materias primas, son pesadas en una balanza de torsión de 400 g. Si se emplean cantidades menores (fracciones de gramos), se pesan en una balanza analítica con capacidad de 100 g y una precisión de 0.0001 g. Una vez listas todas las materias primas se mezclan en un vaso de precipitado durante varios minutos con la finalidad de evitar gradientes de concentración que se traducen en estrías o cordones en el producto final.

TeO ₂							
Muestra	ZnO	CdO	TeO ₂	Muestra	ZnO	CdO	TeO ₂
5	10	10	80	19	20	60	20
6	10	20	70	20	20	70	10
7	10	30	60	21	20	80	0
8	10	40	50	22	30	10	60
9	10	50	40	23	30	20	50
10	10	60	30	24	30	30	40
11	10	70	20	25	30	40	30
12	10	80	10	26	30	50	20
13	20	0	80	27	30	60	10
14	20	10	70	28	40	0	60
15	20	20	60	29	40	10	50
16	20	30	50	30	40	20	40
17	20	40	40	31	40	30	30
18	20	50	30	32	40	40	20
				33	40	50	10

Tabla IV. Formulaciones experimentales realizadas en el sistema ZnO-CdO-TeO₂

Para la fabricación de las muestras se realizan corridas experimentales cuyo peso total de las materias primas es de 10 g y se funden en crisoles de platino.

Considerando que los procesos industriales se realizan en crisoles sílicoaluminosos que incorporan Al₂O₃ al producto final, se llevaron a cabo pruebas experimentales en crisoles de alta alúmina de la marca Coor, que al igual que los de platino se colocan dentro de un horno eléctrico de fundición marca Thermolyne con temperatura máxima de 1750°C y con resistencias eléctricas como elementos de calentamiento.

El crisol es colocado en la cámara de cocimiento del horno y protegido con una tapadera de platino para evitar la fuga de gases durante el proceso de cocción; posteriormente, se procede a programar la historia térmica para la cocción del material. Así la velocidad de calentamiento del horno fue de 10 °C/min. Con temperaturas finales en el rango de 900 a 1200°C y 90 minutos con la temperatura final (de 900 a 1200°C).

El proceso de elaboración de vidrio puede considerarse en seis etapas más o menos diferenciadas:

- 1. Reacción de los componentes y formación de vidrio.
- 2. Disolución del excedente de óxido formador sin reaccionar.
- 3. Afinado y homogeneización.
- 4. Reposo y acondicionamiento térmico.

- 5. Conformación.
- 6. Enfriamiento y recocido.

Las cuatro primeras etapas se suceden sin solución de continuidad dentro del horno de acuerdo a un programa térmico (ver figura 4) cuidadosamente establecido que, de modo general comprende un aumento progresivo en la temperatura hasta un máximo de 900 a 1200°C.

Fig 4. Diagrama de la historia térmica de las muestras.

El vidrio fundido es un líquido viscoso que puede homogeneizarse por agitación. En esta etapa se aceleran las etapas químicas y se liberan burbujas de gas atrapadas en la masa de vidrio, seguido de un enfriamiento y de un periodo de estabilización en el que la masa vítrea debe alcanzar la rigurosa homogeneidad térmica requerida para su inmediata conformación. Posteriormente el vidrio fue moldeado sobre placas de bronce precalentadas a 300°C cuando así fue requerido y en otras ocasiones fue enfriado lentamente dentro del horno con la caída de enfriamiento natural del mismo.

5.2 MÉTODOS DE CARACTERIZACIÓN

5.2.1 Difracción de Rayos X

5.2.1.1 Descripción General

Al igual que con los otros tipos de radiación electromagnética, la interacción entre el vector eléctrico de la radiación X y los electrones de la materia por la que pasa da lugar a una dispersión. Cuando los rayos X son dispersados por el entorno ordenado de un cristal, tienen lugar interferencias (tanto constructivas como destructivas) entre los rayos dispersados ya que las distancias entre los centros de dispersión son del mismo orden de magnitud que la longitud de onda de la radiación (del orden de 1.54 Å). El resultado es la difracción de Rayos X.

5.2.1.2 Ley de Bragg.

Cuando un rayo X alcanza la superficie de un cristal a cualquier ángulo θ , una porción es dispersada por la primera capa de átomos de la superficie. La porción no dispersada penetra hasta la segunda capa de átomos donde otra vez una fracción es dispersada y la que queda pasa a la tercera capa (Figura 5). El efecto acumulativo de esta dispersión desde los centros regularmente espaciados del cristal es la difracción del haz. Los requisitos para la difracción de rayos X son: i) que el espaciado entre capas de átomos sea aproximadamente el mismo que la longitud de onda de la radiación y ii) que los centros de dispersión estén distribuidos en el espacio de una manera muy regular. Así:

Fig 5. Esquema de La Ley de Bragg

$$AP + PC = \boldsymbol{n}\lambda \tag{1}$$

Donde **n** es un entero, la radiación dispersada estará en fase en *OCD* y el cristal parecerá reflejar la radiación *X*. Pero en realidad se ve que

$$AP = PC = d Sen \theta$$
 (2)

Donde *d* es la distancia interplanar del cristal. Así, se puede describir que las condiciones para una interferencia constructiva del haz con ángulo θ son

$$\mathbf{n}\lambda = 2d\,Sen\,\,\theta\tag{3}$$

La Ecuación 3 se llama *ecuación de Bragg* y es de fundamental importancia en la Difracción de Rayos X (DRX).

5.2.1.3 Métodos y Equipo

Las muestras fueron preparadas pulverizandose en un mortero de ágata con una molienda final de apariencia física como el talco y colocadas en un portamuestras para usar la técnica geométricade polvos de Bragg-Brentano y llevar a cabo su observación.

El equipo usado es un Difractómetro Bruker Advance D8. Se usó la radiación k α (1.54 Å) del cobre y con unas condiciones del equipo de 35 KV y 25 mA. La velocidad de barrido fue de 2 °/min.

5.2.2 ABSORCIÓN ÓPTICA

5.2.2.1 Descripción General

Los espectros de Absorción Óptica permiten identificar las regiones donde la muestra es transparente y donde no lo es. Ésta absorción permite identificar la clase de materiales (sólidos o líquidos) que componen una mezcla. El espectro de

la luz abarca un rango en el orden de 160 nm hasta casi 0.02 cm, de acuerdo a la tabla V:

Tabla V . Longitud de Onda (λ) correspondiente al color.			
COLOR	Longitud de onda (nm)		
Ultravioleta cercano	160 – 380		
Violeta	380 – 450		
Azul	450 – 500		
Verde	500 – 570		
Amarillo	570 – 590		
Naranja	590 – 610		
Rojo	610 – 750		
Infrarrojo	750 – 200,000		

La energía que transporta un fotón (partícula de luz) es:

$$\mathsf{E} = \mathsf{h} \mathsf{v} \tag{4}$$

En donde la v es la frecuencia de la luz, que a su vez está dada como:

$$C = \lambda v \qquad (5)$$

Con λ la longitud de onda correspondiente a ese nivel de energía.

Los espectros que componen las moléculas de un material, son capaces de absorber luz de cierta longitud de onda, pasando a ocupar órbitas de mayor energía en los átomos individuales (Figura 6).

Fig 6. Absorción de luz por un átomo monoelectrónico

Moléculas compuestas de átomos con un solo electrón, absorbiendo luz en una sola longitud de onda, tendrían un espectro de absorción de la forma: (Figura 7).

Fig 7. Absorción de luz de un solo color por un átomo electrónico

Pero si esos electrones pueden pasar a distintas órbitas, entonces absorben luz en varias longitudes de onda, lo que es equivalente a decir que absorben luz de diferentes energías (Figura 8).

Fig 8. Absorción de luz de varios colores por un átomo monoeletrónico

En esta figura se aprecian saltos electrónicos a 4 distintas órbitas.

Por otro lado, un material está compuesto de numerosas clases de átomos, con distintas configuraciones electrónicas. Por tanto, al sumar todas las absorciones individuales, la absorción total del material forma bandas, es decir, una amplia región del espectro luminoso puede ser absorbida (Figura 9).

Fig 9. Absorción de luz por átomos de varios electrónes

Ésta absorción nos permite caracterizar un material, pues es posible determinar la clase de objetos que lo componen.

5.2.3 REFLECTANCIA DIFUSA

5.2.3.1 Métodos y Equipo

Es posible obtener la absorción óptica de una muestra opaca, cuando ésta es reducida a polvo. En este caso se envía sobre el polvo un haz de luz y se mide la reflectancia. Para realizar las mediciones de Reflectania Difusa las muestras tuvieron que ser pulverizadas. Para la molienda se utilizó un mortero de ágata.

Cuando la muestra quedo lista en forma de polvo muy fino, se puso en una lamina que tiene una hendidura (recipiente donde se coloca el polvo) de aproximadamente 0.5 cm de hondo por 1 cm de diámetro. Cuando el recipiente esta lleno con la muestra en polvo se coloca en un porta objetos el cual consiste

de una ranura (entrada del recipiente) lateral y dos orificios en la parte superior que están a 90° y 45° de inclinación por donde entra el haz de luz (VIS y UV) a través de una fibra óptica (Figura 10).

A la muestra en el porta objetos se le suministra luz que va del espectro continuo Ultra Violeta (UV) hasta el espectro continuo del Visible (VIS) (200~1100nm). Esta luz es generada por una fuente marca Ocean Optics DT-1000 CE UV/VIS Ligth Source de Halogeno-Tugsteno. La radiación que excita a la muestra (vidrio pulverizado) llega desde la fuente a través de un tramo de fibra óptica que consiste en seis hilos irradiadores de luz. Cuando la luz llega a la muestra esta refleja hacia todos lados (reflexión difusa), parte de esta luz reflejada es recuperada por una fibra lectora y enviada directamente a un espectrómetro el S2000 Miniature Fiber Optic Spectrometer, el cual es sensible desde 200 hasta 1100nm, el espectrómetro esta conectado a una PC donde se generan las gráficas.

El modelo de Kubelka-Munk nos permite deducir la absorción. Este modelo predice que la Absorción A(λ) está dada en términos de la reflexión R, de acuerdo a la expresión:

$$A(\lambda) = (1 - R/100)^2 / (2R/100)$$
(6)

Fig 10. Esquema del arreglo experimental para medir la Reflectancia Difusa de las muestras.

5.2.4. ESPECTROSCOPÍA RAMAN

5.2.4.1. Descripción General

Este fenómeno de dispersión de la luz fue descubierto en 1928, con una instrumentación muy rudimentaria, por el científico hindú C. V. Raman, galardonado con el premio Nobel en 1930. Él recogió la luz del sol con una lente, y la dirigió hacia la muestra con un telescopio. Las fuentes luminosas se han ido mejorando desde entonces, y se han usado elementos incandescentes como el helio, bismuto, plomo, zinc, etc.

La energía de una molécula consiste de una parte traslacional, una parte rotacional, una parte vibracional y una parte energía electrónica. La energía electrónica da lugar a la absorción (o emisión) en el ultravioleta y en el visible, mediante transiciones de los electrones a distintas órbitas en el átomo. Ésta corresponde a la absorción óptica discutida en la sección anterior. La rotación da lugar a absorción en la región de las microondas (10⁵-10⁷ nm). Las vibraciones de la molécula dan lugar a bandas de absorción en la región infrarroja del espectro. En esta región tiene lugar el fenómeno de absorción Raman. La energía absorbida da lugar a vibraciones de las moléculas, y cambios en la configuración de los arreglos moleculares.

Mientras que la radiación luminosa se caracteriza por la longitud de onda λ (longitud de una oscilación) y por la frecuencia v (número de oscilaciones por segundo), la radiación Raman se caracteriza mediante el número de onda ϑ . Éste se define como:

$$\vartheta = \nu/c = 1/\lambda \ (cm^{-1}) \tag{7}$$

Por tanto, las unidades en que se mide la intensidad de absorción Raman son cm⁻¹. Estas transiciones aparecen entre 200 y 3000 cm⁻¹. La absorción de energía para transiciones electrónicas, para vibraciones moleculares y rotaciones de las moléculas, están íntimamente relacionadas entre sí. En un experimento típico pueden aparecer las tres clases mezcladas. En la tabla VI se muestran algunos valores observados para ciertas clases de moléculas diatómicas:

Tabla VI. Valores de absorción de algunas moléculas.				
MOLÉCULA	Posición de la Absorción Observada θ (cm ⁻¹)			
H ₂	4160			
HCI	2886			
HBr	2558			
N ₂	2331			
CO	2141			
NO	1877			
O ₂	1555			

En moléculas diatómicas, la vibración ocurre a lo largo del enlace químico que conecta los núcleos. En moléculas poliatómicas, la situación es más complicada. Para poder visualizar el efecto de las vibraciones en esta clase de moléculas, hay que "superponer" un conjunto de "vibraciones normales" que son independientes entre sí. Consideremos el caso de una molécula diatómica, como el CO₂ (dióxido de carbono). Para visualizar el concepto de "vibración normal", podemos representar los átomos C y O como tres esferas, de tamaño proporcional a sus pesos atómicos, según se muestra en la figura 11:

Fig 11. Esquema de molécula diatómica de CO₂

Estos átomos oscilan entre sí a lo largo de la línea que los une, como si fueran "resortes". Supongamos que estos resortes son encogidos hacia el centro y luego soltados simultáneamente. Una de las tres configuraciones vibracionales que aparecen en la figura 12, pueden ocurrir (CO₂):

Fig 12.Modos normales de vibración en una molécula diatómica

En moléculas reales de CO₂, la oscilación v1 corresponde a un pico de absorción Raman en 1340 cm⁻¹. El modo de oscilación v2 llamado "antisimétrico" ocurre a una frecuencia Raman 2350 cm⁻¹. La absorción Raman para el modo v3 ocurre a 667 cm⁻¹.

Si la molécula de CO₂ es desconfigurada violentamente (ó golpeada por luz de un láser de cierta longitud de onda), puede ocurrir una vibración totalmente complicada, que no corresponda a ninguna de las tres mencionadas. En este caso, una lámpara estroboscópica podría fotografiar cada posición, y podrían reconocerse los tres tipos de oscilación descritos, actuando de manera independiente y simultánea. Estas tres oscilaciones, sumadas, dan cualquier movimiento complicado.

La absorción óptica en Infrarrojo es distinta de la absorción Raman. En la primera, simplemente la materia absorbe luz en esta región, cuando es iluminada con luz roja. En Raman, la muestra es iluminada con una radiación intensa en cualquier rango UV-VIS, con una frecuencia v_o y la luz dispersada se obtiene a

frecuencias distintas de la frecuencia incidente. Esta luz dispersada es muy débil (del orden de 10^{-5} veces menos intensa que la luz incidente), y tiene las frecuencias v_0 y v_m , en donde v_m es la frecuencia vibracional de la molécula. Ésta última es la que se mide en un experimento real. Se llama "Desplazamiento Raman". En contraste a un espectro de absorción IR, el pico de absorción Raman puede aparecer en cualquier región del espectro UV-VIS.

5.2.4.2 Métodos y Equipo

Nosotros dispusimos de un equipo de baja resolución de fibra Óptica marca Ocean Optics Raman-2001, con una fuente excitadora de luz láser de 714 nm de longitud de onda. Se muestra en la figura 13:

Fig 13. Esquema del montaje para absorción Raman

Para su caracterización las muestras fueron tomadas en volumen (trozo de vidrio) dado que se requería una alta cantidad de polvo para efectuar la medida.

5.2.5. ESPECTROSCOPÍA DE INFRARROJO

5.2.5.1 Descripción General

La región del infrarrojo del espectro electromagnético se extiende desde el extremo del rojo visible del espectro hasta la región de las microondas. Esta región incluye radiación de longitudes de onda comprendidas entre 0.7 y 500 μ m o, en número de onda, entre 14000 y 20 cm⁻¹. La región espectral más utilizada es la región del infrarrojo intermedio, que cubre frecuencias de 4000 a 200cm⁻¹ (2.5 a 50 μ m). La Espectroscopía de Infrarrojo involucra el examen de los modos vibracionales y rotaciones de torsión y flexión de los átomos en una molécula (ver Figura 12). En la interacción con la radiación, parte de la radiación es absorbida a longitudes de onda específicas; la multiplicidad de vibraciones que ocurren simultáneamente produce un espectro de absorción muy complejo que es característico solamente de los grupos funcionales que están presentes en la molécula y de la configuración global de la molécula.

Los átomos o los grupos atómicos en las moléculas están en movimiento continuo. Los átomos se representan como esferas y sus pesos son iguales a los pesos de los átomos correspondientes, y están distribuidos conforme a la geometría espacial de la molécula; resortes con fuerzas iguales a las de los enlaces químicos conectan las esferas entre sí y equilibran la estructura. Si el modelo se suspendiera en el espacio y se dejara a la deriva, parecería que las esferas sufren movimientos caóticos; sin embargo, si el modelo vibracional se observara con luz estroboscópica de frecuencia variable, se encontrarían algunas frecuencias luminosas a las que las esferas parecerían estar en reposo: esto representa las frecuencias específicas de los movimientos observados.

5.2.5.2 Métodos y Equipo

Los Espectros se obtuvieron en un Espectrofotometro de Infrarrojo de Transformada de Fourier FTIR Perkin-Elmer mod. 1600 acoplado a una estación de datos (Perkin-Elmer 3600 que a su vez presenta una configuración serial de un micro ordenador Olivetti P60 66).

Cada una de las muestras de vidrio se pulverizó (aprox. 0.25 g) y se mezcló con sal de bromuro de potasio anhidro (aprox. 300 mg). Esta mezcla se transfiere a una prensa manual con cámara de vacío que permite eliminar el aire ocluido entre granos y obtener una pastilla comprimida entre 500-1000 Kg/cm². Estas se colocaron en un soporte frente a la fuente de radiación del aparato y el análisis empezó a efectuarse.

VI. DISCUSIÓN DE RESULTADOS

VI. DISCUSIÓN DE RESULTADOS

6.1 Determinación de la Zona de Formación de Vidrio

El área de formación de vidrio del sistema ZnO-CdO-TeO₂ en un rango de temperatura de 900 a 1200°C es mostrada en la figura 14. Se han obtenido vidrios transparentes, opales, vitrocerámicos y vidrios parcialmente cristalizados. Los vidrios transparentes se sitúan en el área que corresponde a la esquina del TeO₂ y son de color verde, café obscuro y negro. La composición 5 y 7 dan un color verde brillante que podría ser debido al alto contenido del TeO₂.

El área de formación en vidrios conteniendo ZnO es más amplía pero se estrecha más para altos contenidos de CdO. Como es bien conocido, las adiciones de ZnO pueden favorecer la devitrificación y reducir la tendencia a la formación de vidrio.

Fig. 14 Localización de las composiciones investigadas dando diferentes tipos de vidrios obtenidos en el rango de temperatura de 900 a 1200°C señalando los vidrios transparentes (área blanca) y vidrios ópales y parcialmente cristalizados (área sombreada).

Por otro lado en la figura 15 se aprecia el triángulo de Gibbs que presenta el punto de la formulación teórica y el tipo de material obtenido como producto final, así es posible ver diferentes tipos de vidrios que van desde los transparentes hasta los infundidos (mezclas heterogéneas). En esta figura es posible observar una zona de formación de vidrios transparente y opaca paralela al binario ZnO-TeO₂ mientras que la zona paralela al binario CdO-TeO₂ es un poco más reducida debido a que las presiones de vapor en el momento de la preparación de los vidrios no permite una buena convivencia entre el CdO y el TeO₂ dado a que estos dos óxidos son fuertemente volátiles. Una observación palpable en la preparación de vidrios con telurio es que finalmente el crisol de platino no es el adecuado para la preparación de estos materiales porque al final las paredes del crisol de platino se ven ligeramente atacadas por un suave efecto de corrosión ocasionado por los óxidos.

Fig 15. Diagrama ternario de composiciones indicando que formulaciones producen:

- Vidrio transparente
- Vidrio que devitrifica parcialmente
- \triangle Vitrocerámicos
- Polvos Sinterizados

6.2 CARACTERIZACIÓN ESTRUCTURAL

6.2.1 Difracción de Rayos X

La figura 16 muestra los patrones de difracción de rayos X de vidrios transparentes (5, 6, 7, 13, 14, 15, 22, 28 y 29). Las medidas fueron hechas en el ángulo 20 en el rango de 20 a 70°.

Se comprueba que todos ellos corresponden a materiales amorfos sin picos de difracción de fases cristalinas, pero con un fondo pronunciado en el intervalo 20 = 25-35 (paras las muestras 5, 6 y 7) lo que informaría de la existencia de un cierto grado de orden inicial o bien sobre la presencia de precipitados en tamaño y fracción de volumen por debajo del límite de detección de la técnica de DRX o separación de fases líquido-líquido.

Fig 16. Difractogramas de Difracción de rayos X de las muestras de estructuras amorfas

En esta figura también puede apreciarse los difractogramas para las muestras 22, 28 y 29 que presentan patrones diferentes a las muestras anteriores ya que hay una pronunciada banda en el rango de 20-35° y un ligero hombro entre 43-60° en el ángulo 20, característico de los materiales vítreos que nos pueden indicar también la presencia de muy pequeños precipitados que nos reflejan un cierto grado de orden o separación de fases líquido-líquido.

En la figura 17 se observan los patrones de Difracción de Rayos X para los vidrios 8, 16, 24 y 30. La muestra 8 y 16 presentan varios picos bien pronunciados en el rango de 20 a 40° los cuales podrían estar relacionados con las fases CdTeO₃ y ZnTeO₃ así como grupos CdZn(Fe₂O₄) que son producto de la contaminación posiblemente del molde o del mortero en donde fue triturada la muestra. La muestra 8 tiene un contenido de 40% de CdO y su apariencia es opalescente mientras que la muestra 16 tiene un 30% de CdO y ambas tienen un 50% de TeO₂, y de acuerdo con las fases detectadas es posible ver el reflejo de un alto grado de microcristalizaciones al formar fases con Cadmio y telurio; Zinc y telurio.

Los patrones de difracción para las muestras 24 y 30 contienen picos característicos de grupos ZnO tipo hexagonal y CdTeO₃ en ambas muestras pero la muestra 24 contiene una fase monoclínica correspondiente a Cd₃TeO₆ y es más rica en contenido de CdO (30% en peso) lo que favorece la formación de estas fases. También cabe mencionar que la proporción de TeO₂ es la misma para ambos vidrios ópales.

Fig 17. Difractogramas de Difracción de rayos X de vidrios ópales.

6.2.2 Absorción óptica

La absorción óptica obtenida con el modelo de Kubelka-Munk, en el rango visible presenta las características de un vidrio opal. En la figura se aprecia el espectro de absorción el cual nos indica que a medida que se incrementa la longitud de onda esta cae hasta un punto mínimo de un 10% aproximadamente, lo que permite pensar que este vidrio con un 50% de TeO₂ tiene buenas transmisiones en el visible y en el cercano IR que es característico de la mayor parte de los vidrios conocidos conteniendo TeO₂ (Ver Figura 18).

Fig 18. Espectros de Absorción en el Visible

En el caso de la absorción óptica en la región Ultravioleta, la gráfica nos muestra una intensa absorción de todos los vidrios (Ver Figura 19).

A partir de los 350 nm hacia la izquierda, se advierte una intensa absorción de todas las muestras. Esto es característico de los vidrios a base de teluratos. La muestra 8 con una composición de TeO₂: 50%, CdO: 40%, ZnO: 10%, exhibe una banda de absorción en 380 nm. Ésta absorción es característica del ZnO. La muestra 8 posee la menor proporción de TeO₂. Por lo tanto ocurre que el ZnO ha formado aglomerados en la matriz vítrea, que presentan una absorción significativa. Por otro lado, el tratamiento térmico para esta muestra, es mayor

que en las demás (1200°C). Este tratamiento probablemente ha reordenado la mayor parte de las irregularidades de la matriz, encerrando los cúmulos de ZnO. Al aumentar la presencia del telurio, sin aumentar arriba de 900°C el tratamiento térmico para las muestras 5, 7 y 14, de nuevo el Zinc se deshace de sus enlaces químicos con el Oxígeno, para unirse al Telurio y al Cadmio. La matriz vítrea se torna más transparente (muestras 5, 7 y 14).

Fig 19. Espectros de Absorción en el rango del Ultravioleta

6.2.3 Espectroscopía de Infrarrojo

La figura 20 muestra los espectros de IR para los vidrios 5, 6, 7, 13, 14, 15, 22 y 28; en los vidrios 7 y 15 una intensa banda de absorción puede ser vista en el rango de 750 a 550 cm⁻¹ debido a la presencia de vibraciones Te-O que pertenece a los grupos TeO₃ piramidal. Estas pirámides están conectadas de una manera tal que cada par forma grupos TeO₂. Es aceptado que el ángulo de los enlaces puentes Te-O-Te en fragmentos en el Te₂O₅ difieren en 180°¹⁰³. La composición teórica de TeO₂ presente en estos vidrios es del 60% para ambos. La gráfica que corresponde al espectro de infrarrojo de las muestras 5, 6 y 14 presentan una gran similitud debido a una banda de absorción muy ancha con mínimos en 649, 659 y 680cm⁻¹, que podrían estar relacionados con grupos α TeO₂ y unidades estructurales TeO₃ y TeO₄ respectivamente. Mientras que en la muestra 13 pueden apreciarse una serie de pequeñas bandas de absorción a diferentes longitudes de onda pertenecientes a los grupos TeO₃ característicos en los espectros de difracción de rayos X.

Fig 20. Espectros de Infrarrojo de las muestras vítreas

También es posible observar a 650 y 645cm^{-1} vibraciones de unidades estructurales TeO₄. La introducción de un 30-40% en peso de ZnO (muestras 22 y 28) causa cambios en la localización de las frecuencias de absorción en los espectros Infrarrojos. El decrecimiento en la frecuencia de grupos TeO₃ (660 cm⁻¹) hacia 761 cm⁻¹ es probable debido a la distorsión de TeO₃ piramidales y el decrecimiento en su simetría¹⁰⁴.

La figura 21 muestra el espectro obtenido por Espectroscopía de Infrarrojo de los vidrios ópales tales como 8, 16, 17 y 24; las bandas de absorción en el rango de 800-600 cm⁻¹ son característicos de las vibraciones de ensanchamiento Te-O en grupos TeO₄ y TeO₃, los cuales son las unidades básicas estructurales de los teluritos. De acuerdo a Arnaudov et al, las frecuencias de ensanchamiento de los TeO₄ en los α TeO₂ podrían estar asignados como sigue: $v_1(A_1) = v^s$ (TeO₂)_{eq} = 780 cm⁻¹; $v_8(B_1) = v^{as}$ (TeO₂)_{eq} = 714 cm⁻¹; $v^6(B_2) = v^{as}$ (TeO₂)_{ax} = 675 cm⁻¹; y $v^2(A_1) = v^s$ (TeO₂)_{ax} = 635 cm⁻¹.¹⁰⁵.

Fig 21. Espectros de Infrarrojo de las muestras 8, 16, 17 y 24.

La estructura de los grupos vítreos TeO₂ es una red tridimensional aperiódica construida sobre grupos TeO₄ deformados. Estos espectros de infrarrojo difieren de los grupos cristalinos α TeO₂, no solamente en los típicos ensanchamientos de las bandas de absorción para el cristal \rightarrow transición del vidrio, pero también en la redistribución de sus intensidades. La intensidad de la banda a 640cm⁻¹ llega a ser predominante, lo cual es explicado por un decrecimiento en la simetría del poliedro TeO₄ en el proceso de formación de vidrio. Un pico de absorción de baja intensidad es visto en 462 y 460 cm⁻¹ el cual podría estar relacionado con el alto contenido de CdO que esta en las muestras.

ESPECTROSCOPÍA RAMAN

En la Fig. 22 se muestra la absorción Raman para las muestras más significativas.

Fig 22. Picos de Absorción Raman

Todos los picos que se observan pertenecen al TeO₂, ya que para la dispersión Raman, el Te presenta una sección eficaz de dispersión muy grande, en comparación con la de los otros componentes, por lo que los picos correspondientes a los otros materiales no son discernibles. Esto mismo ocurre con la mayoría de los compuestos que contienen Te. El espectro de las muestras a alta temperatura de recocido se observa mejor definido que los demás porque es probable que a altas temperaturas, el material se vuelva cristalino, lo que define mejor los picos Raman. Cuando un material tiende a ser desordenado o amorfo, los picos Raman se hacen más anchos, ya que representan bandas completas de vibraciones de la red para muchas clases de enlaces moleculares.

En la Figura 22 se muestran las posiciones de los picos más intensos de absorción en 450, 661, 673, 722, 725 y 750 cm⁻¹. En el caso de los vidrios con alto contenido de Telurio, se han reportado en la literatura tres bandas características de absorción Raman, situadas en 450, 650 y 750 cm⁻¹. Estos valores están relacionados con las distintas posiciones que los átomos de telurio pueden adoptar en cada poliedro de las celdas unitarias de una red polimórfica. En el caso de los vidrios con Telurio, es probable que varias configuraciones polimórficas coexistan. Pero al menos dos clases de ellas pueden ser importantes. La primera, cuando la red está constituida por fragmentos estructurales que poseen la misma distancia interatómica, con el mismo tipo de enlace químico. Por ejemplo. El SiO₂ puede existir en la red en forma de tetrahedros SiO₄. Estos polimorfismos cambian las propiedades vibracionales de la red, aunque sus propiedades dieléctricas y la absorción óptica en el rango visible no cambian significativamente. La segunda clase importante de polimorfismo corresponde al caso donde un mismo material existe en varias configuraciones posibles, con separación atómica y estructura electrónica diferente. En este caso, las propiedades dieléctricas (y la absorción óptica en el rango visible) difieren notablemente. Por ejemplo, las dos formas alotrópicas del carbón, diamante y grafito, son dos formas muy diferentes del mismo material.

A temperatura ambiente, el TeO₂ existe en dos polimorfos: Paratelurito α -TeO₂ y Telurito β -TeO₂. En ambas estructuras, los átomos de telurio tienen 4 átomos de oxígeno vecinos. La forma geométrica es de una pirámide distorsionada, pues dos de las distancias a los átomos de oxígeno, son de menor longitud (Ver Figura 23). La estructura cristalina está formada por estas unidades TeO₄, empaquetadas de tal manera que cada átomo de oxígeno está coordinado con dos átomos de Te, formando un puente asimétrico¹⁰⁶ Las frecuencias "normales" de oscilación están localizadas en los valores 433, 667 y 738 cm^{-1 107}.

Fig 23. Esquema de los enlaces O-Te-O. Cada átomo de Te comparte sus dos átomos de oxígeno con los Te vecinos. La estructura se denomina Bipirámide distorsionada TeO₄.

En esta figura se indican las distancias interatómicas *a* y *b*. En el arreglo de la red, a > b. La flecha indica la dirección de las oscilaciones normales. Las bandas de absorción en 450 y 650 cm⁻¹ se han asignado a las vibraciones simétricas y antisimétricas de los enlaces Te-O-Te, mientras que la banda en 750 cm⁻¹ se atribuye a las vibraciones de los enlaces de Telurio con oxígenos "no-puente", como en las pirámides TeO₃, o bien TeO₃₊₁.¹⁰⁸.

El arreglo de las bipirámides TeO₃₊₁ formadas por dobles amarres Te=O se muestra en la Figura 24:

Fig 24. Los átomos de Te (en negro) forman puentes con 4 átomos de oxígeno, compartiendo los vértices de una cuadrado imaginario, en esta representación bidimensional de la molécula α-TeO₂.

Como se muestra en la Fig. 22, las tres bandas mencionadas aparecen, Sin embargo, existen algunas diferencias. El material con mayor temperatura de recocido (muestra 8) presenta una mejor definición de los picos en las bandas de 650 y 750 cm⁻¹. En la Figura 22, tales posiciones se han desplazado a 661 y 722 cm⁻¹. Las muestras con menor temperatura de recocido presentan bandas más anchas, cuya envolvente contiene las distintas clases de oscilaciones ya mencionadas. Los desplazamientos de estos picos, hacia la izquierda o la derecha, se deben a la presencia de los otros óxidos (Zn y Cd), mientras que la intensidad de la absorción (eje vertical) está relacionada con la mayor cantidad de telurio contenida en la mezcla inicial.

En suma podemos afirmar que la absorción Raman muestra los picos característicos del Telurio en sus dos formas geométricas: α -telurito y β -telurito mientras que las altas temperaturas de recocido tienden a arreglar las inhomogeneidades de la matriz vítrea, ya que se definen mejor los picos independientes de la absorción Raman.

VII. CONCLUSIONES

VII. CONCLUSIONES

Se determinó la zona de formación de vidrio en el sistema ZnO-CdO-TeO₂ en un rango de temperaturas de 900 a 1200°C. Las composiciones más ricas en TeO₂ son las que formaron vidrios transparentes.

Los difractográmas de rayos X mostraron gráficas para muestras amorfas así como también se detectaron fases ricas en ZnO, ZnTeO₃, CdTeO₃, Cd₃TeO₆ en diversos materiales vítreos.

La absorción óptica obtenida con el modelo Kubelka-Munk muestra que los espectros de absorción sobre todo en el rango del visible se reduce casi a cero, mientras que por otro lado en la región del UV se presenta una intensa absorción de todos los vidrios.

La espectroscopía de Infrarrojo detecta vibraciones Te-O que pertenece a los grupos TeO₃ piramidales, también es posible observar grupos α TeO₂ en 649, 659 y 680 cm⁻¹ así como unidades estructurales TeO₃ y TeO₄. Se ha detectado a 462 y 460 cm⁻¹ la presencia de grupos CdO cuya banda es de baja intensidad.

En suma podemos afirmar que la absorción Raman muestra los picos característicos del Telurio en sus dos formas geométricas: α -telurito y β -telurito mientras que las altas temperaturas de recocido tienden a arreglar las inhomogeneidades de la matriz vítrea.

VIII. BIBLIOGRAFÍA

VIII. REFERENCIAS

- 1. FERNÁNDEZ NAVARRO J. M.^a, DURÁN CARRERA, A.: Tratamiento de la superficie del vidrio. *Bol. Soc. Esp. Cerám. Vid.* 4 (1985) 5, 299-314.
- 2. FERNÁNDEZ NAVARRO J. M.^a: Tendencias Actuales de la investigación en el campo del vidrio. *Bol. Soc. Esp. Cerám. Vid.* 25 (1986) 6, 385-394.
- 3. OVTSHARENKO, N. and YAKHKIND, A. : New high index-optical glasses on the basis of tellurium dioxide. OMP (USSR) 3 (1983) p. 47-51.
- 4. DIMITRIEV, Y., BANKOV, A., IVANOVA, I., DIMITROV, V., PETRAKIEV, A. And TOMOVA, M. : Synthesis of optical tellurite glasses. Stroit. Mat. And Silik. Prom. (Bulg.) 21 (1980) p. 22-25.
- L. M. Melnick, H. W.Safford, K. H. Sun and A. Silverman, "Neutron absirbing glass CdO-SiO₂-B₂O₃". Journal Am. Ceram. Soc. 34(3): 82-86 (1951).
- 6. A. A. Appen and R. I. Bresker Zh Tekh. Fiz. 22, 946 (1952).
- A. A. Appen, E. I. Kozlovskaya and Gan Fu-Si, J. Appl. Chem. USSR (engl. Transl.) 34, 942 (1961).
- 8. A. S. Totesh, L. F. Grigor'eva, M. V. Strel'dina and G. P. Roskova "Tr VI Koordinatsion. Sovesh. Po Shlifovke i Palirovke Stekla". P. 102 Saratov (1961).
- 9. N. I. Tret'yakova "Investigation of viscosity of the glass system Na₂-RO-SiO₂ over a narrow temperature interval". Atoref. Candidate's dissertation, Leningrad (1969).
- R. Bh. Janakirama "Dielectric properties of glass in the system Bi₂O₃-CdO-SiO₂, Bi₂O₃-CdO-B₂O₃, Bi₂O₃-CdO-GeO₂ and their relation to the structure of glass", J. Am. Ceram. Soc. 45(11): 555-563 (1962).
- P. W. Mc Millan and B. P. Hodgson "Neutron absorbinn glass ceramic", Glass tech 5, 142-149 (1964).
- 12. T. Izumitami and Y. A. Asahara "A study on the fase separation in glass in the system CdO-B₂O₃", J. Ceram. Soc. jpn. 76, 106-116 (1968).
- 13. V. Caslavska, D. Strickler, D. Gibbson and R. Roy "Two liquid phase structure of photoconducting oxide glass". Journal Materials Science. 3(4): 440-445 (1968).
- 14. N. I. Kridl and I. R. Hensler "Special glass for nuclear engineering applications", Modern Materials, Vol. 1 p. 223. Ed Hausner H. H. (Academic, New York) (1958).
- 15. F. K. Aleinkov In Stekloobraznaye Sostoyaniye. 157. Erevan (1970).
- 16. M. G. Kuznetsova Proizvod. Tekh. Stoit. Steklan N°2, 74 (1972).
- 17. M. G. Kuznetzova "Insvetigations of the physico-chemical properties of the glass system RO-MnO-SiO₂ and RO-MnO-B₂O₃". Candidate's dissertion, Leningrad (1972).
- G. S. Meiling "Photocromism in cadmuim borosilicate glasses, physics Chemical Glass. 14(6): 118-121 (1973).
- Tsutomu Minami, Mitsutoshi Hibino, Masami Tanaka "Photoconductivity of oxichalcogenide glasses in the system As₂Se₃-CdO". J. Non-Cryst Solids 15 [1] 141-148 (1974).
- 20. Y. P. Tarlakov, A. A. Pronkin, P. I. Kekeliya, R. D. Verulashvili and V. E. Kogan Izv. Akad. Nauk. Gruz SSR, ser Khim 6. 166 (1980).
- 21. Yamamoto Kazunao; Kumata ken; Namikawa Hiroshi Yogyo Kyakai shi, 90 [10] 576-585 (japanese) (1982).

- 22. J. Ma. Rincón Tesis doctoral "Estudio de Nuevos Vidrios y Materiales y Materiales Vitrocristalinos del Sistema LiO₂-CdO-SiO₂ con Posibles Utilidades en la Industria Nuclear". Universidad Complutense. Madrid, España. 160 pp (1982).
- 23. M. Matecki, Michel Poulain and Marcel Poulain "Cadmium Halide glasses". Journal Non-cryst. Solid. 56, 81-86 (1983).
- 24. N. V. Porotnikov, A. K. Vazhnov, K. I. Petrov. Zh Nerog. Khim., 30[3] 780-2 (RUSS) (1985).
- 25. N. T. Buludov, Z. Karaev; Sh., G. K. Abdullaev Zh. Nerog. Khim, 30[6] 1523-6 (RUSS) (1985).
- 26. Norihito Fukatsu, Akihiki Saito, Noboru Shimizu, and Teruo Ohashi "Phase equilibria in the system Cd-S-O and the stability region of a nnew phase 2Cds.2CdO.CdSO₄" J. Electrochem. Soc. 135[4] 997-1003 (1988).
- E. Rivera, L. E. Celaya, J. Ma. Rincón and Ma. J. Orts "The Glass-Formation area in a ternary Na₂O-CdO-SiO₂ section of the quaternary Na₂O-CdO-Al₂O₃-SiO₂ system" J. Non-cryst. Solids 104, 219-223 (1988).
- 28. J. Ma. Fernández Navarro "El vidrio" pp. 667. CSIC, Instituto de Cerámica y Vidrio, Madrid, España (1985).
- 29. A. Russ; Sprechssal 15, 907 (1928).
- 30. A. A. Appen, K. A. Shishoc and S. S. Kayalova Zh. Fiz. Khim. 26, 1131 (1952).
- L. C. Hoffman, T. A. Kupinski, R. L. Thakur and W. A. Weyl J. Soc. Glass Technol. 36, 196 (1952).
- 32. O. V. Mazurin and R. V. Brailovskaya Fiz Tverd Tela (Leningrad) 2, 1477 (1960).
- 33. V. I. Malkin and B. M. Mogutnov Dolk. Akad. Nauk SSSR. 141, 1127 (1961).
- F. K. Aleinkov, V. A. Slizhis, P. B. Paulavichus and P. V. Dunzis Opt-Mekh prom. N°9 38 (1962).
- 35. F. K. Aleinkov, P. B. Paulavichus and V. A. Slizhis Liet. TSR Mokslu Akad. Darbo, Ser. B2, 69 (1962).
- 36. F. K. Aleinkov, V. A. Slizhis, P. B. Paulavichus and P. V. Dundzis Stekloobraznoe Sostoyaniye; 3(2), 30 (1963).
- 37. I. C. Hurt and C. J. Phillips; "Structure Rile of Zinc Oxide in Glasses in the system Na₂O-ZnO-SiO₂" J. Am. Ceram. Soc. 53, 269 (1970).
- 38. E. N. Bunting, Bur Standards J. Research, 4, 134 (1930), R. P. 136; see also Bunting, J. Am. Ceram. Soc., 13(1) 8 (1930).
- Y. Syono, S. Akimoto and Y. Matsui "P-T Diagram for Zn₂SiO₄" J. Solid State Chem. 3(3): 369 (1971).
- 40. F. L. Katnack and F. A. Hummel Electrochem. Soc., 105 (3) 132 (1958).
- 41. F. H. Dulin and D. E. Rase, "Phase equilibria in the system ZnO-TiO₂" J. Am Ceram. Soc., 43 (3) 130 (1960).
- 42. A. J. Pollard; "Note on the system niobium oxide-zinc oxide" J. Am. Ceram. Soc., 44(12) 630 (1961).
- 43. T. M. Marakova, O. V. Mazurin and V. S. Malchanos; Izv. Vuzoz, Khim Tekhnol 3, 1072 (1960).
- 44. V. V. Vargin, S. G. Dzhavuktsyan, V. E. Mishel and B. Z. Pevzner. J. Appl. Chem. USSR (Engl. Transl.) 45, 1228 (1972).
- 45. E. H. Hamilton, R. M. Waxler and J. M. Nivert; J. Res. Watl. Bur. Stand (U.S.) 62, 59 (1959).

- 46. A. A. Appen, K. A. Shishov and S. S. Kayalova Silikattechnik 4, 104 (1953).
- 47. A. S. Totesh, L. F. Grigor'eva, M. V. Strel'dina and G. P. Roskova; Sklar Keram. 15, 370 (1965).
- 48. V. K. Leko "In Stekloobraznaye Sostoyaniye". P. 46. Erevan (1970).
- 49. M. M. Ammar, S. A. Gharib, M. M. Halawa, H. A. El-Batal and K. El-Brady, "Thermal Conductivity os some silicate glasses in relation to composition and structure" J. Noncryst. Solid 53, 165 (1982).
- 50. M. M. Ammar, S. A. Gharib, M. M. Halawa, H. A. El-Batal and El-Brady, "Thermal conductivity of silicate and borate glasses" J. Am. Ceram. Soc. 66, C76 (1983).
- 51. L. N. Sheludyakov, E. T. Sarancha and A. A. Vakhitov Tr. Inst. Khim. Nauk, Akad. Nauk. Koz. SSR 15, 158 (1967).
- 52. B. G. Varshal, Inorg. Mater. (Engl. Transl.) 8, 812 (1972).
- 53. K. Matusita and D. J. Mackenzie "Lox expansion copper aluminosilicate glasses" J. Non-Cryst. Solids 30, 285 (1979).
- 54. Masaru Shimbo "Thermal Stability and acid resistivity of glasses based on ZnO-Al₂O₃-SiO₂" J. Am. Ceram. Soc., 70(5) C-101-C-102 (1987).
- 55. W. Sack, H. Scheidler and J. Petzoldt; Glashtech. Ver. 41-138 (1968).
- 56. A. Abou-El-Azm and H. A. El-Batal; Phys. Chem. Glasses. 10, 159 (1969).
- 57. H. A. El-Batal, N. A. Ghoneim, M. M. Ammar and M. M. Halawa Cent. Glass Ceram. Res. Inst. Bull. 27, 72 (1980).
- 58. H. A. El-Batal, N. A. Ghoneim, M. M. Ammar and M. M. Halawa Sprechsaal 115-223. (1982).
- 59. G. W. Cleek and C. L. Babcock "Properties of glasses in some ternary system containig BaO y SiO₂". NBS monorg. (U.S.) N° 135 (1973).
- 60. S. Sumita, H. Takano, K. Marinaga and T. Yanagase, Nippon Kinzoku Gakkaishi. 46, 280. (1982).
- N. G. Suijkovskaya, G. V. Miedviedieva, L. N. Lisienok, A. I. Kusnietsov "Investigación sobre el proceso de síntesis del vidrio aislante en el ssitema B₂O₃-ZnO-BaO-SiO₂" Steklo, [N°2] p.p. 74-78 (Russ) (1978).
- 62. Keiji Kobayashi "Points and OH Absorption Remove for ZnO-B₂O₃-PbO-SiO₂ Passivation glasses". J. Electrochem. Soc. 131 (9): 2190-9. (1984).
- 63. Y. Misawa "Effects of additives on ZnO-B₂O₃-SiO₂ passivation glasses". J. Electrochem. Soc. 131 (11) : 2618-21. (1984).
- 64. S. Murakimi S. Et al. "Investigation of leakage currents in a zinc borosilicate glass passivated P-n junction using a gate controlled diode". J. Electroche. Soc. 132(9) 2198-2201. (1985).
- 65. J. M. Clinton and W. W. Coffeen "Low Melting glasses in the system B₂O₃-ZnO-CaO-P₂O₅" Am. Ceram. Soc. Bull. 63(11) 1401-04. (1984).
- 66. S. G. Dzhavuktsya Zh. Prikl. Khim. (Leningrad), 58[12] 2644-9 (Russ). (1985).
- 67. Nie Chunsheng and Lin Aixin "Colour of the fotosensitive coloured glass of the Na₂O-ZnO-Al₂O₃-SiO₂ system containing F, Br. And Ag" J. Non-Cryst. Solids; 80[1-3] 487-94. (1986).
- 68. Wang Chanwen, Xu Wentian "Study of cristallisation of the Li₂O-ZnO-Al₂O₃-SiO₂ system glasses" J. Non-Cryst. Solids 80[1-3] 237-42. (1979).
- 69. C. A. Hogart and M. A. Ghauri, "Properties Optics and Electric of glasses in system CdO-ZnO-P₂O₅". J. Mat. Sci. 14. 1641. (1979).

- 70. M. A. Ghauri, F. M. Nazar and W. H. Bokhari "Band Gap in Cadmium Zinc Phosphate Glass". J. Non-Cryst. Solids 46, 197-202. (1981).
- 71. N. B. Knyazyan Fiz, Khim. Stekla. 11[1] 64-7 (Russ). (1985).
- H. Kawazoe, R. Susuki, S. Inoue and M. Yamane "Mechanism of photochromism in oxide glasses containing a large amount of CdO or ZnO" J. Non-Cryst Solids 111 16-28. (1989).
- 73. J. J. Berzelius, Ann. Phys. Chem. 32, 577 ff. (1834).
- 74. V. Lehner and E. Wolewensky, J. Am. Chem. Soc. 35, 718-773, (1913).
- 75. J. E. Stanworth, J. Soc. Glass Technol. 36, 217-241 T. (1952).
- 76. G. Weiseenberg and N. Meinert, German Petent 942, 945 (filed november 1950). (1956).
- 77. M. Dimitrova-Pankova, Y. Dimitriev, M. Arnaudov & V. Dimitrov "Infrared spectral investigation of the influence of modifying oxides on the structure of tellurite glasses". Phys. Chem. Glasses, 30 [6] pag. 260-263 (1989).
- 78. M. Imaoka "Advances in glass technology part I" Plenum Press, New York. Pp. 149-164. (1962).
- 79. E. P. Denton, H. Rawson and J. E. Stanworth ; Nature 173, 1030-1032. (1954).
- 80. J. E. Stanworth, J. Soc. Glass Technol., 38, 425-435 T.
- 81. V. V. Volkova, A. V. Dotsienko, V. K. Sarajov, N. V. Ovsharienko T. IE. Chiebotarieva, A. K. Aijkind "Vidrios fotocrómicos de Galio. Plata con base en telurio" Fiz. Khim Stekla. 11[1] 99-104. (1985).
- N. V. Ovcharenko, S. A. Chebotarev, V. V. Volkova, A. K. Iajkind "Propiedades físicoquímicas y estructurales de los sistemas de vidrio TeO₂-V₂O₅-Bi₂O₃ Fiz, Khim. Stekla. 11[5] 607-9. (1985).
- 83. N. V. Ovcharenko Soviet. J. Opt. Technol. (USA-URSS) 40, 1, 67-68 (i). (1973).
- 84. Y. Dimitriev, E. Kashchieva, Y. Ivanova and S. Jambazov "Glass Formation and immiscibility in the TeO₂-B₂O₃- Fe₂O₃ system" J. Mater. Sci., 21[9] 3033-7. (1986).
- 85. Wang de-li, Boli Yu Tangci, 15[5] 8-411. (1987).
- 86. H. Bürger, W. Bogel and V. Kozhukharov "IR transmission ans properties of glasses in the TeO₂-[(R_nO_m, R_nX_m, R_n(SO₄)_m, R_n(PO₃)_m and B₂O₃)] system" Infrared Phys. Vol. 25, N°1/2, pp. 395-409 (1985).
- 87. V. Cheremisinov and V. Zlomanov, Optika Spectrosk. 12, 208 (1962).
- 88. B. Tatarintzev and A. Yakhkind, Optiko-Mekh. Prom. 10, 72 (1972).
- 89. V. Zlomanov, O. Tananaeva and A. Novoselova, Zh. Neorg. Khim. 5, 1632 (1960).
- 90. A. K. Yakhkind, "Tellurite Glasses" J. Am. Ceram. Soc. 49, 670-675 (1966).
- 91. H. Bürger, K. Fink, W. Vogel, V. Kozhukharov and M. Marinov, Glastech. Ver. (1984/85).
- 92. TAMMAN, G. Der Glaszustand. Edit. L. Voss, Leipzig 1933.
- 93. MOREY, G. W. The properties of glass. *Edit. Reinhold Publishing Corporation*, New York 1945.
- 94. ASTM C 162-80 Defenition of terms relating to glass and glass procudts.
- 95. KITAIGORODSKII, I. I. Technologie des Glasses. *Edit. VEB Verlag Technik*, Berlin 1957.
- 96. JOSE MA. FERNANDEZ NAVARRO. EL VIDRIO. Edit csic, Cap. 6, España 1991.
- 97. DIETZEL, A. (citado por JEBSEN-MARWEDEL en Neuzeitliche Aufgaben der Glaschemie) Glastechn. Ver. 22 (1948-9) ½, 35-36.

- 98. ZACHARIASEN, W. H. The atomic arragement in glass. J. Amer. Chem. Soc. 54 (1932) 10, 3841-3851.
- 99. ZACHARIASEN, W. H. Die Struktur der Gläser. Glastechn. Ber. 11 (1933) 4, 120-123.
- 100. LEBEDEV, A. A. On polymorphism and annealing of glass. Trans. Optic. Inst. Petrograd 2 (1921) 10.
- 101. PORAI-KOSHITS, E. A. Submikroskopiche Struktur einiger komplexer Gläser. Glastechn. Ber. 34 (1959) 11, 450-459.
- 102. E. W. NUFFIELD, X-Ray Diffraction methods. Ed. John Wiley & Sons, Inc,. N. Y. London. Sydnet.
- 103. Y. Dimitriev, M. Arnaudov & Dimitrov, Mh.chem, 1976, 107, 1335.
- 104. Arnaudov, M., Dimitrov, V., Dimitriev, Y. & Markova, L. (1982). *Mater. Res. Bull.* 17, 1121.
- 105. D. Ilieva, V. Dimitrov & Y Dimitriev. : Infrared spactral study on tellurite vanadate vitreous systems containig ZnO and CdO. *Phys. Chem. Glasses*, 1997, 38 (2), 79-82.
- 106. A. P. Mirgorodski, T. Merle Mejean, J. C. Champarnaud, P. Thomas and B. Frit, J. Of Phys. And Chem. Of Solids 61 (2000) 501-509.
- 107. S. Q. Man, E. Y. B. Pun and P. S. Chung, Op. Comm. 168 (1999) 369-373.
- 108. T. Sekiya, N. Mochida, A. Ohtsuka, J. Non Cryst. Solids, 168 (1994) 106-114.