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Febrero 2018



Agradecimientos

A
gradezco a mis padres y hermanos por apoyarme de manera incondicional a través

del desarrollo de este trabajo. Sin todo su cariño y comprensión no lo habŕıa
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A mis amigos dentro de los cubos. Este aún más reducido grupo de personas que me

han brindado su amistad y cálido cariño.

Maura, gracias por tu apoyo en la redacción y revisión del trabajo. Como nos reimos

con las tonterias como “On the other hand.” ...

Dupret, es la onda poder trabajar en un lugar donde estes cómodo; tal como escuchar
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Introduction

F
rom its inception, General Relativity has been subject of a wide range of experimen-

tal scrutiny. Among the most successful of which are: the deviation of light in the

prolonged solar eclipse of Saros 1919 [DED20], the anomalous precession of Mercury’s

perihelion, the change of frequency of the binary system PSR B1913+16 (proving the

existence of gravitational radiation [TW89]), recent gravitational probes [GP-a, GP-b]

that have proven, to second order, the existence of spacetime as the underlying fabric

of the Universe and the recent direct detection of gravitational waves [AAA+16].

At present, there is much work which bases its results on General Relativity:

• The Cosmological standard model, ΛCDM, and its variations.

· Baryonic acoustic oscillations (BAO).

· Structure formation in the Universe.

· The very existence of a cosmological constant and the associated cosmolog-

ical acceleration.

• Lienearised General relativity and gravitational waves.

all of which are related to solutions to Einsteins equations for the gravitational field.

At the present level of accuracy there is a wealth of observations that are yet to

be completely understood. For example, the fluctuations measured by WMAP of the

order of 10−5 in the anisotropies of the BAO [BH10].

With the new era of gravitational wave detection and gravitational wave Astronomy,

the need for second (or even third!) order results will be of great importance. As is

well known, the field equations are a system of coupled nonlinear partial differential

equations and therefore quantitative results will only be achieved by direct numerical

solutions.
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Introduction 2

The main goal of this work is to take us from a knowledge of the Theory of General

Relativity (GR) to a basic level in Numerical Relativity (NR). This includes the basic

background and knowledge needed to reproduce contemporary literature, in particular

we reproduce [IB09].

This work discusses the problem of obtaining the initial conditions for a “Boosted

Black Hole”. This is, we find the spacetime geometry around a black hole at a given

time, when the black hole moves with linear momentum ~P , in some reference frame.

This may be of use when discussing the interaction of black holes, as in the colission of

two stellar compact objects.

Although the work does not represent original ideas on the theory of numerical

relativity, it compiles some points of view from the referenced authors and contains

many calculations left to the reader. At the same time, there is plenty of room to

extend this work to further calculations.

After this brief introduction, chapter 1 is a general introduction to Numerical Rel-

ativity, in particular 3+1 NR. Chapter 2 explains the use of a particular gauge and

coordinate choice which is used frequently in the literature and chapter 3 represents

the solution to the problem presented in [IB09]. In the last section we finish with some

concluding remarks.
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Chapter 1
3+1 General relativity

In a relatively short time more systems which can be described by means of GR

have been found. This brings about the need for more precise calculations for those

systems. However, to solve Einstein’s equations for a specific system means we must

deal with a set of coupled non-linear Partial Differential Equations (PDE). In order to

obtain those solutions in an easy way, GR has been reformulated to the 3+1 relativity.

1.1 3D-metric

The basic idea of 3+1 relativity is the usage that Einstein’s equations have derivatives

on the metric at most in second order. This, in addition to one of Bianchi’s identities,

leads to a set of equations which is preserved through any temporal change. Since

these equations are valid for any time we could freely designate a time origin. Thus,

for discrete values of time we have as many sets of equations as time values, but just

one set for the origin. Because of these are given at fixed times they are called spatial

constraint equations. Therefore, the equations corresponding to the origin will help us

to obtain the initial value for the metric tensor.

The Bianchi identity that we mentioned above is [MTW73]

∇bG
ab = ∇b

(
Rab − 1

2
Rgab

)
= 8π∇bT

ab = 0 . (1.1)

Where we used the notation and conventions described in the appendix A. If we take

the a = 0 ≡ t component, the left hand side (LHS) involves only one term with an

explicit time-derivative on Einstein’s tensor, hence a third order on the metric, gab:

∂tG
a0 = −

(
∂iG

ai +GbcΓabc +GabΓcbc
)
.

3



1.1. 3D-metric 4

The Right Hand Side (RHS) of this equation does not have an explicit time-derivative,

therefore at up to a second order on the metric, and hence the four quantities Ga0 must

not contain second order time-derivatives on the metric.

From classical problems we know that is enough to give the values for positions and

velocities at certain time. Usually we have to seek for an expression containing second

order time-derivatives on positions, integrate it and use the initial values to solve for

positions and velocities. In general relativity’s formalism this is slightly different. Since

positions do not have an absolute meaning here, we have to look for the zero and first

order of time-derivatives on the metric.

The above means that, as Ga0 do not contain second order time-derivatives on the

metric, we are not able to inquire any information about the dynamics of the spacetime.

Nevertheless, these give us information about what conditions the dynamics must obey.

No matter what it is, Ga0 persist as the system evolves in time. This encourages us to

look for expressions that carry on those constraint equations through the whole time

evolution of the metric.

Then, in 3+1 relativity, it’s permitted to choose an arbitrary origin for time which

leaves an initial spatial 3D-sheet To to be determined. Once To is specified, it could be

evolved in time with the rest of the equations, others than Ga0, to the next 3D-sheet

T and so on. Thus, we obtain a time ordered foliation of spatial sheets T .

We have already outlined a logical procedure to solve Einstein’s equations. Clearly,

it is not enough only to notice that time and space have been separated. In order to

begin the reformulation of general relativity, we assume that the foliations T could be

ordered by a global parameter, namely global time t. Then we pick an unitary time-like

vector, na, being this the gradient of the scalar field t

na ≡ −αgab∇bt ; (α)−2 ≡ −gab∇at∇bt , (1.2)

where α makes na unitary and time-like

nana = α2gab∇at∇bt = −1 . (1.3)
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t is not necessarily the time of a coordinate set, but there is a connection with it which

will be clearer below. Since na is time-like and orthogonal to any spatial sheet, T , a

spatial projector could be associated to it

γba = gba + nan
b . (1.4)

E.g., projecting any vector to these spatial 3D-sheets would be orthogonal to ~n:

γbav
a ≡ ⊥vb =

(
gba + nan

b
)
va = vb + nav

anb

nb⊥vb = vbnb + nav
anbnb = vbnb − nava = 0 .

However, if the vector is time-like its projection is null:

γban
a =

(
gba + nan

b
)
na = nb − nb = 0 . (1.5)

The definition of α in (1.2) makes it a graduation measure of ~n; is worth to remember

that it is a scalar field, changing in general, at every point of the spacetime. So α mea-

sures the separation between foliations along a time-like vector on which the evolution

is being developed. As we note in figure (1.1) for the case of α = constant, foliations

T are carried parallel to themselves in equal intervals of α. However, the lapse, α, is

in general a function with different value at every spatial point of T . In such case,

foliations would be evolving with different shapes. Moreover, if α could change with

time, the 3D-sheets would evolve in even a more complicated way. Then, it is important

to choose a proper lapse function.

Figure 1.1: Foliation of different T ’s along na with the lapse function α = constant.
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We can choose this function arbitrarily, however, it plays an important role for nu-

merical developments. We discuss more about this in chapter 2. For now, let’s put

our attention on the definition (1.4). The symbol γba is a bridge from spacetime in a

4D-manifold M to a reduced spacetime T in a 3D-manifold. Properly speaking, T

exists in M as an embedded sheet from an actual 3D-space, they are continuous and

mapped one-to-one. This implies that T does not intersect itself [Gou07].

The scalar field t, defines level curves (discrete values of it) which are these T . In

such way, this 3D-space is our everyday living 3D-space, while T is part of the solution

to Einstein’s equations. For example, if the Cartesian coordinates set is chosen, then a

point in T will have (t, x, y, z) coordinates.

Nonetheless, γba is much more than a bridge, we have seen how it works as an

orthogonal projector to ~n. However, if we thought it as a rank 2 covariant tensor, e.g.,

by taking down its upper index:

γab = gbcγ
c
a = gab + nanb , (1.6)

it would only measure the spatial part in the spacetime objects. Thus, the application

of γab on a time-like vector leads to zero. Let’s suppose that la is a time-like vector. In

that case it’s proportional to na for any factor w, then

γabl
alb = w2nanb + w2nanan

bnb = 0 .

Otherwise γabl
alb would lead to l2. As a result, γab is proposed as the 3D-metric tensor

or induced metric. It measures the spacetime distance on any T and hence it keeps the

T ’s geometry.

From the previous, we notice that for some space-like vectors ~u and ~v, it follows

that:

g (~u,~v) = γ (~u,~v) . (1.7)
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Therefore, gij and γij keep the same information on the spatial part of the spacetime

objects, i.e.,

gij = γij . (1.8)

However, since the T foliations could change along ~n, we stress that remaining compo-

nents have different relationships among them.

1.2 Extrinsic curvature

In order to describe the spacetime via this 3D-metric, we have to describe T and how

it changes along ~n. To do so, a first approach may be to describe changes in T respect

to time (t field). However, doing this by means of the curvature tensor, as in Einstein’s

equations, has the following issue. The Riemann tensor contains information about

spacetime and not space nor time separated. So, using it to describe changes in T will

not be advantageous, it would be the same thing as trying to solve directly Einstein’s

equations.

A better way, is to describe the foliations using the extrinsic curvature tensor. It

describes the geometry of T as embedded in the outer spacetime. Thus, the extrinsic

curvature tensor already has the information about space and time separated.

In order to write the extrinsic curvature tensor, we have to take the change of ~n

at successive foliations and then project it on T [BS10]. To do so, we need to define

the spatial covariant derivative. Just as those vectors already projected with (1.4), the

covariant derivative has its projected form. E.g. for a 2-rank tensor W c
b ,
(
1
1

)
, it follows

that

DaW
c
b ≡ γrbγ

c
qγ

s
a∇sW

q
r . (1.9)
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And so on for
(
n
m

)
-rank tensors. From (1.9), we can see that the commutativity between

∇a and gbc is inherited to Da and γbc :

Daγbc = γrbγ
q
cγ

s
a∇sγqr

= γrbγ
q
cγ

s
a∇s (gqr + nqnr)

Daγbc = 0 . (1.10)

Where we used (1.5). Notice that (1.9) implies the projection of objects defined by

derivative operators like gradient and Christoffel symbol, Riemann and Ricci tensors,

etc. For example, for a 4D-vector vb, its 3D-covariant derivative would be

Ddv
e = γadγ

e
b∇av

b = γadγ
e
b

(
∂av

b + vcΓbac
)
, (1.11)

with vc lying in T . Thus, rewriting vc = γcqv
q we can interpret the second term of

(1.11) as our projected Christoffel symbols, γcqγ
a
dγ

e
bΓ

b
ac. Indeed, if we use (1.6) and the

3D-partial derivatives as given in the first term of (1.11) we could express them as

Γedq =
1

2
γef (∂dγfq + ∂qγfd − ∂fγdq) . (1.12)

This similarity of the 3D-Christoffel symbols to their respective 4D expressions has a

repercussion on the 3D-Riemman tensor and its contractions. The 3D-Riemann tensor

is given by

Rabc
d = ∂bΓ

d
ac − ∂aΓdbc + ΓeacΓ

d
eb − ΓebcΓ

d
ea . (1.13)

Since it could be confusing, from now on we are going to denote fourth dimension quan-

tities with an upper left index (4), i.e., 4D-Riemann goes like
(4)
Rabc

d.

Once defined the projected derivatives, the projected changes of normal vector are

given by γcaγ
d
b∇cnd. Thus, we can write out the extrinsic curvature tensor:

Kab ≡ −γcaγdb∇cnd . (1.14)
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It is important to notice that, even though ∇cnd is not symmetric, the projection Danb

is. This is because the normal vector is not the gradient of t, but related to it by α,

(1.2). Thus, applying ∇c on nd doesn’t generally commute, except for the cases where:

∇[anb] =
1

2
(∇bα∇at−∇aα∇bt) = 0 , (1.15)

for example, α = const = 1 (geodesic curves), allow us to commute ∇cnd since it lead

us to ∇c∇dt = ∇d∇ct. The latter equality follows from the torsion free in ∇c. However,

once we project ∇cnd its antisymmetric part vanishes as follows:

K[ab] = γcaγ
d
b∇[cnd] =

1

2
γcaγ

d
b (∇cnd −∇dnc)

=
1

2

[
−αγcaγdb∇c∇dt+ αγcaγ

d
b∇d∇ct

]
=

α

2
γcaγ

d
b (∇d∇ct−∇c∇dt) = 0 . (1.16)

And therefore

Kab = K(ab) . (1.17)

In figure (1.2), we can see that for different points of T the normal vector can

have different values. Moreover, these changes in na are proportional to the extrinsic

curvature as given by (1.14). But, in turn, na has information about T as being

orthogonal to t-field’s gradient. So, the latter means that Kab is related to changes of

T in the t-field. In order to obtain that relationship we use Lie’s derivative along na.

1.2.1 Lie derivative

A Lie derivative is another way to calculate changes in tensorial objects. Perhaps, its

main feature is that the changes are given along a vectorial flux.

The Lie derivative compares change in tensors in a limiting point, i.e., reaching it

by a limit process. This comparison is made by being evaluated and dragged along a

vector. Let’s take a geometrical view of this. Figure (1.3) shows a tensor W b
a changing

in a vectorial flux ~J (gray arrows). Point A has associated xc coordinates and B has

xc
′
. When W b

a is evaluated in points {A,B}, its direction is thought to change. If we
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Figure 1.2: Because of bumps like the center one, na changes for different points at T , these changes

are proportional to extrinsic curvature.

were to compare W b
a (A) and W b

a (B) in A, we will end up with the partial derivative.

On the other hand, if we drag W b
a by parallel transport we get the covariant derivative.

Instead, we want to drag the tensor by an infinitesimal change of coordinates, i.e.,

xc
′

= xc + δλJ c for some affine parameter λ. Then, with a change of coordinates, the

dragged tensor is given by

W b′

a′ (B) =
∂xb

′

∂xd
∂xc

∂xa′
W d
c (A) .

The comparison of this and W b
a(B) in A is taken to be the following limit:

L ~JW
b
a ≡ lim

δλ→0

W b
a(B)−W b′

a′ (B)

δλ
.

This is the Lie derivative[BS10, Gou07]:

L ~JW
b
a = J c∂cW

b
a +W b

c ∂aJ
c −W c

a∂cJ
b , (1.18)

notice it has opposite signs to covariant derivative: negative for contraction on con-

travariant indices of the object, and positive for covariant ones. In spite of that, (1.18)

has two remarkable differences from covariant derivative, it does not change the rank

of the object and it does not depend on the connection coefficients.

In addition, since the procedure to construct (1.18) involves a change of coordinates,

it allows to extend the Lie derivative for tensor densities. If Sba is a tensor density with
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Figure 1.3: Change occurred in a tensor W b
a along the vectorial flux ~J .

weight W , then its Lie derivative along ~X is given by [BS10, Alc08]:

L ~XS
b
a = Xc∂cS

b
a + Sbc∂aX

c − Sca∂cXb +WSba∂cX
c . (1.19)

Moreover, given that the connection coefficients are symmetric, the partial derivatives

could be changed by the covariant ones:

L ~JW
b
a = J c∇cW

b
a +W b

c∇aJ
c −W c

a∇cJ
b (1.20)

L ~XS
b
a = Xc∇cS

b
a + Sbc∇aX

c − Sca∇cX
b +WSba∇cX

c . (1.21)

From (1.21), it follows that the covariant derivative on tensor densities goes like:

∇cS
b
a ≡ ∂cS

b
a + ΓbcdS

d
a − ΓdcaS

b
d −WSbaΓ

d
dc . (1.22)

Notice that all derivatives (1.18)-(1.21) are linear operators. So, they posses the asso-

ciative property and obey Leibnitz product rule.

Before we leave the section, we want to bring up one quick application for Lie

Derivative. That is for Killing vectors. They represent spacetime symmetries.

Given a vector ~ξ, we say it is a Killing vector if the metric tensor doesn’t change for

any value of it:

L~ξ gab = 0 . (1.23)
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So, from (1.18) and with ∇cgab = 0 we get the Killing equation:

∇aξb +∇bξa = 0 . (1.24)

It states that every Killing vector has an antisymmetric gradient. We reserve to obtain

a Killing equation for tensor densities until chapter 2, where we actually use it.

1.2.2 Relation between γab and Kab

Once defined the Lie derivative, we are able to look for a relationship between the

extrinsic curvature and the change of T in time. From (1.18) on the 3D-metric (1.6),

we have:

L~nγab = nc∇cγab + γac∇bn
c + γcb∇an

c

= nc∇c (nanb) + (gac + nanc)∇bn
c + (gbc + nbnc)∇an

c

= naab + nbaa +∇bna +∇anb

= 2n(aab) + 2∇(anb)

1

2
L~nγab = n(aab) +∇(anb) . (1.25)

Where we used the 4D-acceleration ab, defined as [BS10]

ab = na∇anb . (1.26)

It is useful to notice that ab is spatial, i.e., it lies in T . This is due to the fact that a

level set’s gradient is orthogonal to itself. Therefore, the gradient of nb along itself is

orthogonal to it, besides, given that nb is orthogonal to T , the result lies in the foliation

T .

On the other hand, the equation (1.25) also corresponds to the extrinsic curvature.

To see it, let’s use the projector γba in (1.14):

Kab = − (δca + nan
c)
(
δdb + nbn

d
)
∇cnd ,
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where we may notice that terms with nd yields to nd∇cnd, which is zero. Thus, con-

tracting the Deltas leads to:

Kab = − (∇anb + nan
c∇cnb) = − (∇anb + naab) .

Finally, from (1.25) and since Kab = K(ab) we get the relationship between Kab and γab:

Kab = −1

2
L~nγab . (1.27)

This equation shows how the extrinsic curvature measures the change in the 3D-metric

along the global time t. This is a pretty geometric picture for Kab, but we could say

more about it. In particular, the trace of the extrinsic curvature has information about

normal observers, i.e., observers along ~n:

gabKab = Ka
a = K

K = −gab (∇anb + naab) = −∇bn
b − nbab = −∇bn

b ,

where we used that ab is spatial. From [MTW73, Chp 10] we know that the four

divergence of normal observers is related to their fractional change of proper volume,

Vppr:

∇bn
b =

1

Vppr

(
d

dτ
Vppr

)
,

then

K = − 1

Vppr

d

dτ
Vppr . (1.28)

As a result, if K has a high value, it would mean that the 3D-volume of normal ob-

servers is shrinking as fast as those T sheets are being carried along ~n. At chapter 3, we

will see that we could impose K to be zero, yielding to get rid of changes in coordinates

at the time evolution of γab.

In some sense, we have fulfilled the basic needs for Cauchy problem. Defining γab

will tell us about the structure of 3D-spacetime and once its related time derivative Kab

is defined too, we will know how T is changing in time.
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1.3 Standard ADM equations

Now we can cast Einstein’s equations to this 3+1 formulation, to do so we must de-

velop relations between the Riemann tensor in M and its analogy at T . A common

prescription to do so, is reflected in what are collectively known as the Arnowitt, Deser

and Misner (ADM) equations. Recalling we follow an established nomenclature in

[BS10, Gou07], these quantities are labeled as (4)Rabcd and Rabcd, respectively. The

latter is defined in a lookalike form to (4)Rabcd:

Rd
cbawd = 2D[aDb]wc . (1.29)

wd is any spatial one-form. Following similar contractions on (4)Rabcd, we have the

3D-Ricci tensor and scalar

Rab = Rc
acb (1.30a)

R = Ra
a . (1.30b)

It is important to notice that these objects are purely spatial and only contain infor-

mation about the curvature in T where they were created.

1.3.1 Gauss, Codazzi and Ricci equations

In order to reformulate the field equations, in this section we follow [BS10, Gou07]. To

get the relationship between 4D and 3D Riemann tensors we will project (4)Rabcd with

~n and γba, at several and different orders to obtain the Gauss, Codazzi and Ricci equa-

tions. Those equations link the square of extrinsic curvature, and its spatial and time

derivatives to the 4D-Riemann tensor. Then, we will use them with the field equations

to develop a new set which takes advantage of the embedded spacetime that we are

trying to use, T .
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Equation (1.29) can be expressed as

2D[aDb]Vc = 2γecD[aDb]V
e = γecR

de
baVd

DaDbV
e −DbDaV

e = Rde
baVd . (1.31)

In order to develop this, we have to see what DbV
e and DaDbV

e are. From (1.9) the

earlier is

DbV
e = γpbγ

e
q∇pV

q = γpb
(
geq + nenq

)
∇pV

q

= γpb∇pV
e + γpbn

enq∇pV
q

and since V qnq = 0, it follows that nq∇pV
q = −V q∇pnq. Then:

DbV
e = γpb∇pV

e − γpbn
eV q∇pnq = γpb∇pV

e − neV cγpbγ
q
c∇pnq

= γpb∇pV
e + neV cKbc .

Thus, the first term of Rde
baVd is:

DaDbV
c = γqaγ

r
bγ

c
s∇qDrV

s = γqaγ
r
bγ

c
s∇q (γpr∇pV

s + nsV eKre)

= γqaγ
r
bγ

c
s∇q [(gpr + npnr)∇pV

s + nsV eKre]

= γqaγ
r
bγ

c
s∇q∇rV

s + γqaγ
r
bγ

c
s∇q (npnr∇pV

s) + γqaγ
r
bγ

c
s∇q (nsV eKre) . (1.32)

In the last term, contributions carrying γcsn
s are zero since they are orthogonal, hence

just one term remains

γqaγ
r
bγ

c
sV

eKre∇qn
s = V eKbeγ

q
aγ

c
s∇qn

s .

From (1.14) Ka
b = gaqKqb = −gaqγrqγsb∇snr = −γarγsb∇snr, therefore

γqaγ
r
bγ

c
sV

eKre∇qn
s = KbeV

eγqaγ
c
sg
sf∇qnf = −Kc

aKbeV
e .

In the second term of (1.32), contractions of γrbnr are zero and we can put the rest in

terms of Kab:

γqaγ
r
bγ

c
s∇q (npnr∇pV

s) = (∇pV
s)npγcsγ

q
aγ

r
b∇qnr = −Kabn

pγcs∇pV
s .



1.3. Standard ADM equations 16

By putting these above expressions back into (1.32) we arrive at

DaDbV
c = γqaγ

r
bγ

c
s∇q∇rV

s −Kabγ
c
sn

p∇pV
s −Kc

aKbeV
e. (1.33)

Now, in (1.31) we got an interchange of a and b indices. From (1.33), we see its first

term involves a and b in a contraction, so the indices who really matter are q and r.

For the other terms the interchange is clear and (1.31) takes the form

Rdc
baVd = 2γqaγ

r
bγ

c
s∇[q∇r]V

s −Kc
[bKa]eV

e .

If we take down its index c; rename dummy indices e→ d, s→ d and d→ e, and if we

also notice that this equation stands for any spatial vector V d, we arrive at the Gauss

equation:

Rabcd +KacKbd −KadKcb = γpaγ
q
bγ

r
cγ

s
d
(4)Rpqrs . (1.34)

It relates the 4D-Riemann tensor to its analogous in T and to a quadratic form of ex-

trinsic curvature. Note that in (1.34) there are only projections with γba and none with ~n.

The Codazzi equation is found by taking the covariant spatial derivative of Kab:

DaKbc = γpqγ
q
bγ

r
c∇pKqr = −γpqγ

q
bγ

r
c (∇p∇qnr +∇p(nqar))

= −γpqγ
q
bγ

r
c∇p∇qnr + acKab .

On the first row, we have again the contraction γqbnq, which makes the first term zero.

Also, in the second row we used (1.26) and (1.14). Now, taking the anti-symmetric part

on a and b indices, the second term vanishes since Kab is symmetric. The remaining

equation is what we were looking for

D[aKb]c = −γpaγ
q
bγ

r
c∇[p∇q]nr = γpaγ

q
bγ

r
cn

s(4)Rpqrs . (1.35)

Equation (1.35) has one projection with ~n and the rest with γba. Note that (1.34) and

(1.35) only contain the spatial projector, extrinsic curvature and its spatial derivatives.

This is a remarkable difference to the last equation, because it involves time derivatives

of Kab.
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To take the next step on the way to reformulate Einstein’s equations, let us develop

the Lie derivative on Kab along ~n. First, expressing it as:

L~nKab = nc∇cKab +Kcb∇an
c +Kac∇bn

c = nc∇cKab +Kcb∇an
c +Kca∇bn

c

= nc∇cKab + 2Kc(b∇a)n
c .

but with Kcb = − (∇cnb + ncab) and its following variation

∇cnb = ∇c

(
gbdgbdnb

)
= gbd∇cn

d ⇒ ∇cn
d = −gbdKcb − gbdncab = −

(
Kd
c + nca

d
)

or

∇an
c = − (Kc

a + naa
c) ,

we have

L~nKab = −nc∇c∇anb − nc∇c (naab) + 2Kc(bK
c
a) − 2Kc(bna)a

c (1.36)

where we could rewrite the first term on the RHS with the aid of the 4D-Riemann

tensor as:

nc∇c∇anb = (4)Rdbacn
dnc + nc∇a∇cnb . (1.37)

Before using this result, notice that its last term is related to ∇aab = ∇a (nc∇cnb).

Taking its expansion and using the above expressions for ∇an
c and ∇cnb, it follows

that

∇aab = (Kc
a + naa

c) (Kcb + ncab) + nc∇a∇cnb

= Kc
aKcb + ncabK

c
a + naa

cKcb + ncabnaa
c + nc∇a∇cnb ,

where the second and fourth terms are zero. Then, the relationship between ∇aab and

nc∇a∇cnb is:

nc∇a∇cnb = ∇aab −Kc
aKcb − naacKcb .

With this equation in (1.37) and then in (1.36), the Lie derivative takes the form

L~nKab = −ndnc(4)Rdbac −∇aab +Kc
aKcb + naa

cKcb − ncab∇cna

− ncna∇cab − 2Kc
(aKb)c − 2Kc(anb)a

c .
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The third and fourth terms of this equation cancel out one part of those symmetric

terms. Also, from [BS10, Gou07], we know that the Lie derivative applied on spatial

tensors leaves them spatial when it’s along ~n. Thus, we could project those free indices

in the above equation with γqaγ
r
b . This will leave it unchanged (γqaγ

r
bL~nKab = L~nKab).

Then, rewriting the Daab+aaab terms in the last equation with the following expression,

Daab = Da (Db lnα) = Da

(
1

α
Dbα

)
+

1

α
DaDbα

=
1

α
DaDbα− α−2 (Daα) (Dbα) =

1

α
DaDbα− aaab

1

α
DaDbα = Daab + aaab , (1.38)

thus, we arrive at an expression for the change of extrinsic curvature along ~n, which is

known as the Ricci equation:

L~nKab = −ndncγqaγrb (4)Rdrqc −
1

α
DaDbα−Kc

bKac . (1.39)

Note that (1.39) contains two spatial and two time projections, it also contains the

lapse function, α, meaning that this equation will be involved in the evolution of T .

1.3.2 Constraint equations

Now we already have Gauss, Codazzi and Ricci equations, let’s get the constraint

equation, which we sighted at section 1.1. In order to do so, let’s define the energy and

momentum densities as:

ρ ≡ nanbT
ab (1.40a)

Sa ≡ −γbancTbc . (1.40b)

Because of the projection with the normal vector, these objects are seen from normal

observers. On the other hand, we can use (1.40a) and (1.40b) with Einstein’s equations

Gab = 8πT ab , (1.41)



1.3. Standard ADM equations 19

to see the matter aspects in (1.34) and (1.35). From (1.41) we have the following

equation for (1.40a)

8πρ = Gabn
anb = (4)Rabn

anb − 1

2
nanbgab

(4)R

16πρ = 2(4)Rabn
anb − nanb (γab − nanb) (4)R

= 2(4)Rabn
anb + (4)R . (1.42)

And this equation is the double contraction of Gauss equation, from (1.34) we have

that

γpaγ
q
bγ

r
cγ

s
d
(4)Rpqrs = gaa′γ

a′pgbb′γ
b′qγrcγ

s
d
(4)Rpqrs .

Then, contracting a′ with c and b′ with d leads to

gacgbdγ
prγqs(4)Rpqrs .

And using (1.6) with the symmetries of the 4D-Riemann tensor [BS10, Sec 2.5] it

becomes

nrnpnq(4)Rpqrs = 0 . (1.43)

Where the expansion of γprγqs(4)Rpqrs exactly leads to the RHS of (1.42). On the other

hand, this equation is:

γprγqs(4)Rpqrs = gacgbd (Rabcd +KacKbd −KadKcb) = R +K −KcbKcb ,

then, together with (1.42) it gives the Hamiltonian constraint equation:

R +K2 −KabKab = 16πρ . (1.44)

It’s worth to notice that, equation (1.44) keeps one of the essences of GR, we mean,

the presence of matter disturbs the surrounding spacetime by means of curvature, and

in vice-versa. In fact, (1.44) is very relevant in the chapter 3 of this work.

Similar to the previous procedure, using (1.40b) along with (1.41) leads to another

constraint equation, 8πSa = −γbancGbc, where

−γbancGbc = −γbanc
[
(4)Rbc −

1

2
gbc

(4)R

]
= −γbanc(4)Rbc +

1

2
gbcγ

b
an

c(4)R

= −γbanc(4)Rbc , (1.45)
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Where, the RHS of (1.45) can be expressed in terms of Codazzi’s equation. In order

to do so, we take a contraction on indices a and c of (1.35). We can make this by

multiplying (1.35) by gaa
′
gqa′ = δaq . Then, performing the contraction of a′ and c

indices leads to:

gaa′γ
a′pγqbγ

r
cn

s(4)Rpqrs −→ gacγ
cpγrcγ

q
bn

s(4)Rpqrs = γrpγqbn
s(4)Rpqrs ,

hence,

gacD[aKb]c = γrpγqbn
s(4)Rpqrs = nsγqb

(4)Rqs + nsγqbn
pnr(4)Rpqrs

gacD[aKb]c = γqbn
s(4)Rqs .

We have used (1.6) and (1.43) in order to get the last row. Finally, introducing this

expression in (1.45) we get the momentum constraint equation

gacD[aKb]c = DaK
a
b −DbK = 8πSb . (1.46)

The relation between flux of matter and changes in the curvature. However, remember

that now, we are in 3D and the changes are in the extrinsic curvature as seen from

normal observers. Plus, those changes in Kab are given momentarily in the global time

t, where T resides.

Now, let’s get the equation that tells how the changes of γab and Kab are threading

in time.

1.3.3 Evolution equations

The arbitrary choice we made in section 1.1 of t, as the global parameter for ordering

the T spaces, carries some consequences. The most relevant, is that our most close

common observers, normal observers ~n, are not the right choices to develop the con-

straint equations. This is because they are not dual to ∇at. As we made ~n to be unitary

and hence, left out this duality, i.e., the RHS of

na∇at = α−1 , (1.47)
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is in general different from one. However, is fixed by introducing a new vector dual to

t:

~t = α~n+ ~β , (1.48)

where ~β is purely spatial. From (1.2) the time vector ~t is dual to the global time,

ta∇at = 1. If we use (1.48) to evolve T , we are left with another choice to make on

~β. The meaning of ~β is clearer when we take α = 1, then the difference between ~t and

~n is purely spatial, because of that ~β is called the shift vector, and it plays the active

role of translating or rotating the spatial coordinates from one spatial sheet to the next

while they are being evolved along ~t.

The change of the 3D-metric along ~t could be calculated from its relation with

extrinsic curvature (1.27)

αKab = −1

2
αL~nγab ,

then, the Lie derivative of γ along ~t is:

L~tγab = αL~nγab + L~βγab = −2αKab + L~βγab , (1.49)

where the derivative operator along ~t is separated in two terms, we see below, that when

we take a Lie derivative on a spatial object and it is along a time-like vector it could be

separated like we did in (1.49). We already had this kind of relationship between the

3D-metric and extrinsic curvature, but now in (1.49) the lapse function is explicit. Also

we have found that γab changes along ~β. In the next chapter we discuss some popular

selections for those quantities, for now let’s move on to the last of the ADM equations.

The changes of Kab in time are calculated with the Lie derivative along the time

vector:

L~tKab = tc∇cKab + 2Kc(a∇b)t
c

= αnc∇cKab + βc∇cKab + 2Kc(a∇b) (αnc + βc) , (1.50)
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and keeping in mind that

L~nKab = nc∇cKab + 2Kc(a∇b)n
c ,

(similar for the shift vector), we can expand (1.50) as two Lie derivatives, one along α~n

and the other in ~β

L~tKab = αnc∇cKab + 2
[
ncKc(a∇b)α + αKc(a∇b)n

c
]

+ βc∇cKab + 2Kc(a∇b)β
c .

The first term in squared parenthesis is zero since nc and Kca are orthogonal to each

other, then

L~tKab = α
[
nc∇cKab + 2Kc(a∇b)n

c
]

+ βc∇cKab + 2Kc(a∇b)β
c

= αL~nKab + L~βKab . (1.51)

As we see, any factor multiplied by the normal vector is taken outside of the derivative

when it acts on any spatial object. Also any vector being added to ~n yields to another

derivative term. We made use of these features in (1.49).

We can’t go further on the second term of (1.51) until we choose ~β. However, we

already have information about the other term, therefore, using (1.39) we rewrite (1.51).

First of all, introducing the 3D-metric, 1.6, the RHS of (1.51) can be divided as

follows:

ndncγqaγ
r
b
(4)Rdrcq =

(
γdc − gdc

)
γqaγ

r
b
(4)Rdrcq = γdcγqaγ

r
b
(4)Rdrcq − γqaγrb (4)Rrq

= Rab +KKab −Kc
bKca − 8πγqaγ

r
b

(
Tqr −

1

2
gqrT

)
,

where we used a contraction of the Gauss equation (1.34) in the fisrt term and (4)Rab =

8π
(
Tab − 1

2
gabT

)
in the second. In addition, defining the spatial stress tensor as:

Sab ≡ γcaγ
d
bTcd (1.52)

and its trace

S ≡ Saa , (1.53)
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we can rewrite the last term in Ricci equation as:

8πγab

(
Tab −

1

2
gabT

)
= 8πSab − 4πγqaγ

r
bgqrg

dcTdc

= 8πSab − 4πγab
(
γdc − ndnc

)
Tdc = 8πSab + 4πργab − 4πγabγ

dcTdc

= 8πSab + 4πγab (ρ− S) ,

where we used Sba = gbfγqaγ
r
fTqr = γqaγ

rbTqr. So, the Ricci equation can be expressed as

L~nKab = Rab +KKab −Kc
bKca − 8π

[
Sab +

1

2
γab (ρ− S)

]
− 1

α
DaDbα−Kc

bKca

αL~nKab = α (Rab +KKab − 2Kc
bKca) + 8πα

[
1

2
γab (ρ− S)− Sab

]
−DaDbα .

This equation implies that, temporal changes in Kab follow the next expression:

L~tKab = α (Rab +KKab − 2Kc
bKca) + 8πα

[
1

2
γab (ρ− S)− Sab

]
−DaDbα + L~βKab ,

(1.54)

as we see, this is an evolution equation for the extrinsic curvature.

The complete set of ADM equations provides a whole reformulation of Einstein’s

equations. The momentum and hamiltonian constraint equations give the needed con-

ditions to define each spatial geometry, while the evolution equations thread them in

time.

In order to make the ADM equations simpler we use a coordinate basis system,{
~e(0), ~e(1), ~e(2), ~e(3)

}
. Due to evolution equations, a natural choice is to define one of our

basis along the time vector

~e(0) = ~t ≡ (1, 0, 0, 0) (1.55)

and the rest on the foliations, i.e., they are spatial vectors

~e(1) · ~n = ~e(2) · ~n = ~e(3) · ~n = 0 . (1.56)

From its definition, the Lie derivative along ~t is reduced to partials ∂t. Moreover, since

~e(i) can not be zeros, from (1.56) the i-components of na must be zeroes

ni = 0 , (1.57)
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which means that for any spatial vector, its 0-index component (contravariant) is zero.

For example, the shift vector

βa =
(
0, βi

)
. (1.58)

This is a remarkable thing, now we know that all the spatial objects have their whole

information in spatial indices. This is clear in contravariant indices for the above

equation, but it is also true for the covariant ones [BS10]. In addition to (1.58), if we

use the definitions for ~t and γab, as given in (1.48) and (1.6), respectively. We get the

following results:

na =
(
α−1,−α−1βi

)
(1.59a)

na =
(
α−1, 0, 0, 0

)
(1.59b)

γij = gij (1.59c)

gab =

 −α2 + βkβk βi

βj γij

 . (1.59d)

They all are useful equations but we will focus on (1.59c) for now. This equation

relates the covariant components of each metric, but since for spatial objects we could

disregard the zero index, it also stands that it is possible to use γij for lowering the

spatial indices in any tensor object. This is important because we can rewrite the set

of ADM equations in an easier way.

The constraint equations contain the extrinsic curvature, dropping its 0-indices,

they are rewritten as

R +K2 +KijK
ij = 16πρ (1.60a)

DjK
j
i −DiK = 8πSi . (1.60b)

A very similar thing can be done with the evolution equations: terms involving the Lie

derivative along ~β can be expressed in a more convenient form. First, let’s see what

L~βγij is:

L~βγij = βk∇kγij + 2γk(i∇j)β
k ,
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from (1.59c) we have ∇j = gkj∇k = γkj∇k, then the first term vanishes and the second

one is:

2γl(i∇j)β
l = γli∇jβ

l + γlj∇iβ
l = γliγ

k
j∇kβ

l + γljγ
k
i∇kβ

l

= gmiγ
m
l γ

k
j∇kβ

l + gmjγ
m
l γ

k
i∇kβ

l

= gmiDjβ
m + gmjDiβ

m = Djβi +Diβj ,

where we used Dagbc = 0. It follows from the projected covariant derivative, Da, (1.9).

Therefore,

L~βγij = 2D(iβj) .

In a similar way the Lie derivative along ~β in the evolution equation for Kij can be

expressed as:

L~βKij = βkDkKij + 2Kk(iDj)β
k,

hence, the ADM evolution equations get the following form:

∂tγij = −2αKij +Diβj +Djβi (1.61a)

∂tKij = −DiDjα + α
(
Rij − 2KilK

l
j +KKij

)
− 8πα

[
Sij −

1

2
γij (S − ρ)

]
+ βkDkKij +KkjDiβ

k +KikDjβ
k . (1.61b)

In comparison to (1.49) and (1.54) these equations look more solvable since now we

have an idea how to operate on ~β. Notice that lapse function and shift vector are only

in the evolution equations, this makes sense since those gauges will lead us to evolve the

obtained solutions from (1.60a) and (1.60b). While α and ~β can be included implicitly

in the ADM equations, it has been proved [SY78] that an explicit way helps in the

evolving process making it more stable. In addition, a well made choice for ~β, allows to

control numerical developments for intrinsic rotating spacetimes, like the Kerr solution

to Einstein’s equations or a binary neutron stars system.



Chapter 2
CTT formalism and

Gauge conditions

The ADM equations have some similarities to Maxwell’s equations in electromag-

netic theory. In a flat spacetime, the electromagnetic field equations are:

DiE
i = 4πρ (2.1a)

DiB
i = 0 (2.1b)

∂tAi = −Ei −Diφ (2.1c)

∂tEi = DiD
jAj −DjDjAi − 4πj , (2.1d)

where Aa = (φ,Ai) is the vector potential and is related to the magnetic field by

Bi = εijkD
jAk with εijk being the Levi-Civitta symbol. Now, by identifying, Ai with

γij and Ei with Kij we notice the similarity. The RHS of the evolution equations for

{Ai, γij} have a field variable and a spatial derivative of a gauge variable while those for

{Ei, Kij} involve matter source terms and second spatial derivatives of field variables.

On the constrictions side we have constraints in divergences of the electric field and

extrinsic curvature.

This motivates us to seek for a solution in a similar way as that the employed in

electromagnetic theory. The coupled system (2.1a)-(2.1d) is usually molded to find the

electromagnetic wave equations. In order to solve the resulting equations it is common

to decompose the field variables in their transverse and longitudinal parts to make use

of symmetries[Gre98, Chp 15].

In spite of the similarities between (2.1a)-(2.1d) and (1.60a)-(1.61b), the most re-

markable difference is that the latter system is not linear in field variables, {γij, Kij}.

With the aim of rewriting the ADM equations in a more suggestive structure, we may

26
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classify the constraint equations as a system of coupled elliptical equations. However,

(1.61a) and (1.61b) will not have definitive forms until we choose the information about

gauges α and ~β. In spite of this, efforts of York and others [MTW73, Sec.21.11] to in-

troduce some decomposition for field variables have been giving fantastic results, many

of them are contemporary works on the subject.

2.1 CTT decomposition

There are two ways to proceed in such decomposition. One is using some conformal

mapping of the field variables. The other one using the objects by themselves. These

are called Conformal Transverse Trace-less (CTT) and Physical Transverse Trace-less

(PTT) decomposition, respectively. We use the first one, not only because our main goal

requires it, but also allows us to improve the numerical process [Alc08, Cho07, Lag04].

In CTT formalism, the 3D-metric γij has the following conformal mapping [BS10]:

γij ≡ ψ4γ̄ij (2.2a)

γ̄ij ≡ γ−
1
3γij , (2.2b)

where ψ is the conformal factor. The second definition is chosen in such way that the

γ̄ij’s determinant is 1. From both definitions we note that conformal factor is related

to the γij’s determinant by:

γ = ψ12 . (2.3)

Indeed, if we consider the mapping (2.2b) as a linear transformation, the factor γ
W
2

leads us to think of γ̄ij as a tensor density with weight W , [Alc08, P.85]. Therefore,

the conformal 3D-metric is a tensor density with weight of −2
3
. From now on, we refer

to γ̄ij as the conformal metric, since we are not going to use some ḡij or any fourth

dimension conformal object.
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Conformal mapping has been used in other physical theories; for example it is used

to drop off any global parameter which is expected to be a degree of freedom. Generally,

it eases the problem, e.g., stereographic projection is a conformal mapping which helps

to handle regions at infinity [BY80]. Keeping in mind that conformal mapping would

simplify our equation system, we could imagine that everyone might want to push their

own theories to this ground. Sadly, not every theory is viable for a conformal approach.

The main requirement is that the equations should be conformally invariant [Wal84].

In spite of this, the ADM equations are conformally invariant and the above examples

are what we gain in CTT [MTW73, Alc08, BS10].

On the other hand, the fact that ∇agbc = 0 means that the covariant derivative

∇a is attached to the spacetime metric, however, if we had another metric, say the

conformal one, it would not commute with ∇a. However, there should be another

covariant derivative which is attached to γ̄bc, say a conformal covariant derivative, ∇̄a.

The relationship between these two operators is given by [Wal84]:

∇̄awb = ∇awb − wcCc
ab (2.4a)

∇̄aw
b = ∇aw

b − wcCb
ac , (2.4b)

where {wc, wc} are any one-form and vector given. Once we attach one covariant

derivative, namely D̄j, to γ̄ij, those coefficients Cc
ab in (2.4a-2.4b) take the form [Wal84]

C i
jk =

1

2
γ̄il (Dj γ̄kl +Dkγ̄jl −Dlγ̄jk) . (2.5)

In equation (1.10) Da is attached to γbc, therefore we can express Diγ̄jk as:

Diγ̄jk = ψ4Di

(
ψ−4γ̄jk

)
+ 4γ̄jkDi lnψ .

Using this in (2.5), we arrive to the relationship between D̄j and Dj:

C i
jk = 2

[
2δi(kDj) lnψ − γ̄ilγ̄jkDl lnψ

]
. (2.6)



2.1. CTT decomposition 29

In a similar way, once the attachment of D̄iγ̄jk = 0 is made, the above coefficients could

be expressed in terms of D̄j and γij. These are:

C i
jk = 2

[
2δi(kD̄j) lnψ − γilγjkD̄l lnψ

]
. (2.7)

Since C i
jk are defined in terms of γ̄jk they inherit its symmetry. Notice that replacing

Dj and γ̄ij in (2.5) by ∂j and γij we recover the Christoffel symbols. Just as C i
jk relates

D̄j to Dj, those symbols relate partial to covariants derivatives.

In order to obtain a set of equations in CTT we begin by splitting up the extrinsic

curvature in its trace and trace-less parts

Kij = Aij +
1

3
Kγij . (2.8)

The conformal expressions for Aij, which is the trace-less part, and K are chosen to be

Aij = ψ−10Āij (2.9a)

K = K̄ . (2.9b)

Thus implying that

Aij = ψ−2Āij (2.10)

and

DjA
ij = ψ−10D̄jA

ij . (2.11)

From (2.8) we got that

KijK
ij =

(
ψ−2Āij +

1

3
γ̄ijψ

4K

)(
ψ−10Āij +

1

3
ψ−4γ̄ijK

)
= ψ−12ĀijĀ

ij +
δii
9
K2 +

1

3
ψ−6Āij γ̄ijK +

1

3
ψ−6Āij γ̄

ijK

= ψ−12ĀijĀ
ij +

1

3
K2

since δii = 3 and Āij γ̄
ij = Āij γ̄ij = Āii = 0.
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Then, to transform the ADM equations we need the conformal Ricci tensor, R̄ij,

and its contraction given by [BS10]:

Rij = R̄ij − 2
(
D̄iD̄j lnψ + γ̄ij γ̄

lmD̄lD̄m lnψ
)

+ 4
((
D̄i lnψ

) (
D̄j lnψ

)
− γ̄ij γ̄lm

(
D̄i lnψ

) (
D̄j lnψ

))
(2.12a)

R = ψ−4R̄− 8ψ−5D̄2ψ , (2.12b)

with short hand for the operator D̄2 = γ̄ijD̄iD̄j. Inserting the equation (2.12b) and the

above expression for KijK
ij into (1.60a) will lead us to the conformal equation for the

hamiltonian constraint

ψR̄ + 8D̄2ψ + ψ−7ĀijĀ
ij − 2

3
K2 = 16πρψ5 . (2.13)

However, to transform the momentum constraint we need to express the covariant

derivative Dj in terms of D̄j. First, using (2.8) into (1.60b) we have

8πSi =Dj

(
ψ−10Āij − 2

3
ψ−4γ̄ijK

)
=Dj

(
ψ−10Āij

)
+Dj

(
−2

3
ψ−4γ̄ijK

)
. (2.14)

The first term, from (2.4b), becomes

Dj

(
ψ−10Āij

)
= D̄j

(
ψ−10Āij

)
+ ψ−10ĀljCi

lj + ψ−10ĀilCj
jl , (2.15)

where it follows that

D̄j

(
ψ−10Āij

)
= ψ−10D̄jĀ

ij − 10ψ−10ĀijD̄j lnψ . (2.16a)

For the last terms of (2.15) we use (2.7) and γijγ
kl = (ψ4γ̄ij)

(
ψ−4γ̄kl

)
= γ̄ij γ̄

kl; hence

ĀljCi
lj = 2Ālj

(
2δi(lD̄j) lnψ − γ̄lj γ̄ikD̄k lnψ

)
= 2

(
ĀijD̄j lnψ + ĀilD̄l lnψ

)
= 4ĀilD̄l lnψ (2.16b)

ĀilCj
lj = 2Āil

(
2δj(jD̄l) lnψ − γ̄lj γ̄jkD̄k lnψ

)
= 2

[
Āil
(
3γ̄ilD̄l lnψ + γ̄ijD̄j lnψ

)
+ ĀikD̄k lnψ

]
= 6ĀilD̄l lnψ . (2.16c)
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The second term of (2.14) is developed in a similar way to the first term

Dj

(
−2

3
ψ−4Kγ̄ij

)
= −2

3

[
D̄j

(
ψ−4Kγ̄ij

)
+ ψ−4Kγ̄ljCi

jl + ψ−4Kγ̄ijCj
jl

]
where

D̄j

(
ψ−4Kγ̄ij

)
= γ̄ijψ−4D̄jK − 4Kψ−4γ̄ijD̄j lnψ (2.17a)

ψ−4Kγ̄ljCi
jl = 2Kψ−4γ̄lj

(
2δi(jD̄l) lnψ − γ̄lj γ̄ikD̄k lnψ

)
= 2Kψ−4

(
2γ̄ilD̄l lnψ − 3γ̄ikD̄k lnψ

)
= 2Kψ−4γ̄ilD̄l lnψ (2.17b)

ψ−4Kγ̄ilCj
jl = 2Kψ−4γ̄il

(
2δj(jD̄l) lnψ − γ̄lj γ̄jkD̄k lnψ

)
= 2Kψ−4

(
4γ̄ilD̄l lnψ − γ̄ikD̄k lnψ

)
= 6Kψ−4γ̄ilD̄l lnψ . (2.17c)

Finally, with (2.16a-2.16c) in the first term of (2.14) and (2.17a-2.17c) in the second

one, the conformal momentum constraint equation is found to be:

D̄jĀ
ij − 2

3
ψ6γ̄ijD̄jK = 8πψ10Si . (2.18)

This equation expresses the complementary information for the choice ofK. Since (2.18)

and (2.13) are coupled, we have to solve them simultaneously in order to determine all

the referent objects lying in T .

The formulation CTT is based on rewriting Āij into its transverse and longitudinal

parts. The transverse part is divergence-less and the longitudinal part is considered as

gradient of some vector potential W i. Thus, (2.18) takes the following form

(
∆̄LW

)i − 2

3
ψ6γ̄ijD̄jK = 8πψ10Si , (2.19)

where the operator ∆̄L is given by:

(
∆̄LW

)i ≡ D̄j

(
L̄W

)ij ≡ D̄j

(
D̄iW j + D̄jW i − 2

3
γ̄ijD̄kW

k

)
. (2.20)
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Note that this definition of L̄ keeps the trace-less property of Āij. A typical solution

for W i was given by Bowen and York in 1980. For the case of a boosted black hole in

vacuum with an spacetime of K = 0, it follows from (2.19) that

(
∆̄LW

)i
= 0 . (2.21)

And its solution is [BS10, P.73]:

W i = − 1

4r

(
7P i + liljP

j
)
, (2.22)

where P i is the black hole’s linear momentum and lj a normal vector pointing out

from the singularity, i.e., lj = xj/r with xj and r the cartesian coordinates and radial

isotropic coordinate, respectively. The solution (2.22) is used in chapter 3.1 in order to

obtain Āij.

Once we have written the CTT system, it would be worth counting degrees of

freedom (DOF). Just from the Ricci tensor in Einstein’s equations we have twelve

DOF. Then in ADM formulation those degrees are separated in two groups, six in γij

and six in Kij. On the other hand, in CTT formulation there are other variables where

DOF reside. Given (2.2a), the conformal factor has at most one degree and therefore

γ̄ij has five DOF. For the extrinsic curvature, from (2.8) and the conformal relations

(2.9a) and (2.9b), we have that

Kij = ψ−2
[
Ā

(TT )
ij + Ā

(LT )
ij

]
+

1

3
ψ−4Kγ̄ij . (2.23)

In (2.23), the six missing DOF must be allocated in K, Ā
(TT )
ij and Ā

(LT )
ij . Since K is

just a scalar, it can only account for one DOF. Also, we think of Ā
(LT )
ij as coming from

a vector W i, hence it should have at most three DOF and therefore, Ā
(TT )
ij contains the

remaining two.

In order to determine those twelve DOF we have four equations, the hamiltonian

and momentum constraint. In addition, we have freedom to choose a reference frame.

There, we have three spatial and one temporal DOF. Thus, at the end we are stuck

with four remaining DOF, two in Ā
(TT )
ij and two in γ̄ij. However, those degrees do
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not enter in the CTT equations and hence are freely specifiable for this formalism.

Nontheless, this freedom entails to different spacetime’s evolutions and should be made

conscientiously.

2.2 What about the gauge conditions?

Choosing appropriate gauge conditions is still one of the most intricate parts of numer-

ical relativity. It is definitely the main difficulty in simulations for large timescales.

There exist several gauge conditions, with many comparisons made, but no ultimate

decision on which is the best. What we want from those conditions is that they allow

us to handle singularities (both physical and coordinate) and leave us with a stable

system of equations. For example, in evolving the surrounding black hole spacetime

we should keep out the overflows that appear close to singularities; or in gravitational

collapse where initially there is no singularity but the system must end up with one.

The choice of lapse regulates how fast the system goes from one time slice to the next.

Generally it depends on the spacetime coordinates. On the other hand, choosing the

shift vector translates into how spatial points change respect to a normal time observer.

Geodesic slicing

One natural way to proceed is to follow a normal observer and let ourselves “go with

the flow”. In such case, we would expect the shift in space coordinates to be zero

and there be unit lapse. This is known as geodesic slicing. These choices single out

gravitational effects over other interactions. They follow star collapses correctly and

even the Friedmann equations. However, geodesical simulations end or crash quickly

[GMG06, BS10].
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Figure 2.1 is a diagram representing the evolution of a Schwarzschild spacetime

in Kruzkal Szekeres coordinates, taken from [SY78]. The top panel shows the case

for geodesic slicing while the bottom panel is for maximal slicing. In both cases, the

region to the right from the dashed line is the outside of the BH. This spacetime, where

rsch ≥ 2M , is called region I. The sawtooth line represents the physical singularity,

rsch = 0. Region II, where 0 < rsch ≤ 2M , lies inside the event horizon. In addition,

this region represents the evolved spacetime. For geodesic slicing, the shaded region

does not cover the entire external BH spacetime at the time that a geodesic touches the

singularity. It does it with proper time corresponding to free falling time τsch = πM .

Thus, the simulation ends because of numerical overflow near the singularity before it

completes the entire exterior. This means that short-time simulations, where the main

interaction is gravitational, would be well resolved in this gauge.

Maximal slicing

This gague condition applies directly in the trace of the extrinsic curvature and leads

to a behavior for lapse. The idea is to simplify equation (1.61b) using K = 0 for all

time slices, hence ∂tK = 0. In order to take advantage of the gauge, first we rewrite

(1.61b) using Kij = γjqK
q
i , therefore ∂tKij = ∂tγjqK

q
i + γjq∂tK

q
i . Then, with (1.61a) it

follows that:

γiq∂tK
q
j = −Kq

j

(
−2αKiq + 2D(iβq)

)
−DiDjα + α

(
Rij − 2KilK

l
j +KKij

)
−8πα

[
Sij −

1

2
γij (S − ρ)

]
+ βkDkKij + 2Kk(jDi)β

k .

Now, factorizing γiq from the RHS and changing q → j we get:

∂tK = 2αKiqKiq − 2KiqD(iβq) −DjDjα + α
(
R− 2KjlK

jl +K2
)

−8πα

[
S − γijγij

1

2
(S − ρ)

]
+ βkDkK +KkjD

jβk +Kj
kDjβ

k ,

where the first term cancels out with the fifth, and the second the last two. In addition,

since the trace of γij is three, we have that for this gauge:

D2α = α [R− 4π(3ρ− S)] . (2.24)
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Figure 2.1: Geodesical Vs maximal slicing. Schwarzschild solution in Kruskal Szekeres

coordinates (u, v), part of regions I and II. Top panel with geodesic slicing and bottom panel

with maximal slicing. In both panels the dashed line is the coordinate singularity rsch = 2M

while the sawtooth line is the physical singularity rsch = 0. The shaded regions represent an

evolved spacetime for a numerical evolution of initial time slice v = tsch = 0. Taken, with

permission, from [SY78].

This equation doesn’t give a condition for βk and could be solved independently. Folia-

tions under condition (2.24) have the next geometrical meaning: given that K is related

to the divergence of normal observers, as seen in (1.28), K = 0 implies a non changing

separation between observers, and leads to the preservation of proper 3D-volume. Be-

cause na is irrotational, the above guarantees that normal observers move in irrotational

and incompressible fluid elements, i.e., in a perfect fluid. This incompressible property
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is given by the acceleration of the normal observers, D2α, which prevents the focusing

that leads to a crash in the numerical evolution.

In the bottom part of figure 2.1, we see the simulation for a evolved Schwarzschild

spacetime with a maximal gauge condition. Recalling the relationship between Schwarzschild

time and Kruskal Szekeres coordinates [BS10, P.12]

tsch = 4M Arctanh
v

u
(for region II) ,

we notice that the evolved spacetime covers the entire external region of the BH as

time tsch →∞. In addition, for these coordinates there is no singularity in rsch = 2M ,

so we can actually see the evolved spacetime going inner to event horizon. An im-

portnat gauge’s property is also shown in the figure, the shaded regions asymptotically

approaches the physical singularity. It becomes stationary at rsch = 3M
2

, then the evo-

lution becomes time independent [BS10, Sec.4.2]. This singularity avoidance makes

maximal slicing a good condition for long term simulations.

For the Schwarzschild solution τ is related to tsch by α, and we also know that

tsch → ∞ as we approach to r = 0. However, the proper time remains finite. There-

fore, alpha must go to zero in order to maintain a finite value of τ . This is one fre-

quently noted feature in numerical simulations [HECB03, BS10] and is called “collapse

of lapse”. This behavior is usually used in solving (2.24) as condition for evolving γij

and Kij [GGB02].

With the aim to get analytical results, in [BY80] they used a conformal mapping

of the form ψ = a
r
ψ̄ to show that when the conformal metric is flat the volume is an

extremal for r = a. Therefore, the trace of the extrinsic curvature for a 2D-surface

f(a, θ, φ), regarded as a surface embedded in the conformally flat 3D-space, vanishes.

Indeed, they show that maximal gauge is responsible for a minimal spatial volume,

hence leading to a maximal 4D-volume and to its name.
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Harmonic slicing

Harmonic slicing is the gauge condition that allowed to carry over Einstein’s equations

in the 3+1 formalism to simulations in fluid dynamics [BMSS95]. In spite of the fact

that the field variables become unstable near of singularities for this gauge. This gauge

is used because it’s easy to implement. Also, in avoiding singularities, harmonic slicing

is placed between geodesic and maximal slicing [SN95, GMG06]. Recently, a variation

of harmonic slicing gave numerical simulations as stable as those using maximal slicing

[IB09]. This is the main reason why it was a popular choice for work on the merger of

binary neutron system [IB09, BHS99].

The harmonic slicing gauge is obtained by assuming conditions over the contraction

of the 4D-connection symbols, Γa = gbcΓabc, and shift vector

Γ0 = − 1
√
g
∂b
(√

gg0b
)

= 0 (2.25a)

βi = 0 , (2.25b)

using (2.25b) in the metric (1.59d) we get that
√
g = α

√
γ, so (2.25a) gives

Γ0 =
1

α
√
γ
∂t
[
α−1
√
γ
]

= −α−2∂tα +
α−1
√
γ
∂t
√
γ = 0 .

By taking the trace of (1.61a) and using that 1
2
γij∂tγij = γ−

1
2∂tγ

1
2 , [Cha13, P.86], we

have the slicing condition over the lapse

∂tα = −α2K . (2.26)

The origin of this gauge’s name is due to the fact that it’s a variation of the harmonic

coordinate gauge condition, in which all the components of Γa are zero. Hence, the

coordinates follow the 4D-Laplace equation with harmonic solution [BS10, P.112].

A different approach followed by [BMSS95] leads to a more general harmonic slicing;

this work is focused in getting the most general condition for α such that the evolution

equations end up in a strongly hyperbolic form. The condition’s expression for lapse,
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using βi = 0, should obey

∂tα = −α2f(α)K , (2.27)

where f(α) should belong to (1, 2). Moreover, different values of f(α) give earlier gauge

conditions, e.g., f = 1 and f = 0 lead to harmonic and geodesic slicing, respectively.

For maximal slicing, given the collapse of the lapse, we expect that f →∞.

Minimal distortion

Although, the slicing gauge has proven to be a good choice for some numerical evo-

lution, we have not said anything about the condition for the shift vector βi yet.

Indeed, there are not many choices because βi = 0 leads to good simulations. As

more simulations were explored and systems were diversified, more evident was the

need for another shift condition; specially in geometries around rotating massive bodies

[BS10, Alc08, GMG06].

A popular framework is to minimize those changes due to unphysical degrees of

freedom in γ̄ij. Moreover, this condition applies over ∂tγ̄ij rather than γ̄ij. Using a

separation of longitudinal and transverse parts of ∂tγ̄ij, like that in section 2.1, the

longitudinal one corresponds to a symmetric trace-less gradient for some one-form Xk

u
(TL)
ij ≡ ∂tγ̄

(TL)
ij = DiXj +DjXi −

2

3
γijD

kXk . (2.28)

Finally, using (2.2b) in (2.28), leads to

u
(TL)
ij = γ1/3

(
γ̄kjDiX

k + γ̄ikDjX
k − 2

3
γ̄ijDkX

k

)
= γ1/3L ~X γ̄ij , (2.29)

i.e., u
(TL)
ij is related to changes of γ̄ij along ~X. In such form, from (1.23) we identify

that case u
(TL)
ij = 0 implies no change for γ̄ij along ~X, i.e., ~X is a conformal Killing

vector and (2.29) leads to the conformal Killing equation for γ̄ij. Besides, it means that

γ̄ij has Dim(X) − symmetries. If ~X is related to our coordinates set, the evolution
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of γ̄ij should be free of changes coming from coordinates, which in principle are free

choices.

There are several more gauges to explore and we stress that choosing one depends

on which is favorable for the simulation. None of them have physical information but

picking up the one which fit will makes the work easier. However, since in this work we

don’t evolve γij or Kij, we leave this discussion here and continue on our main goal of

setting up their initial conditions.

2.3 Methodology

We already have discussed the basic ideas of how Einstein’s equations emigrate to a new

form in 3+1 NR. Now, in order to work in the subject we need information about the

physical system we want to simulate. Therefore, from this section on we work with the

following system: a boosted black hole (BBH) in equilibrium, represented as a trumpet

geometry rather than a wormhole (discussed below).

Using equilibrium solutions implies that the changes related to global time are zero,

and from (1.28) we know that the spacetime follows a maximal slicing condition

K = 0 . (2.30)

Moreover, this system is used in [IB09], where in addition they propose to employ

conformal flatness, i.e.

γ̄ij = ηij . (2.31)

This is a popular decision and we take it since that leads to Bowen York solutions. The

equations are handled in CTT formalism and solved using the punctures approach, as

discussed below. This setup is a toy model example for working in 3+1 NR and for

that reason it’s useful to us. We will justify the CTT and the punctures choices that

we just made based on a few earlier published papers.
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2.3.1 Why punctures ?

Singularities are one of the most important issues to attend in the process of solving

numerical equations. Because of their physical and numerical importance in relativity,

and that they are so common, we better use a method which handle them properly.

The first idea to handle singularities was the use of different coordinate systems such

that the equations became easier to integrate; under that scheme, conditions were made

on the lapse function and shift vector. As a result, the singularities were postponed to

enter in the calculation until late times in the evolution. For example, maximal slicing

conditions generate a singularity when the time coordinate goes to infinity, so it is a

proper gauge to explore gravitational collapse. For short time simulations like head-on

collisions, coordinate avoidance like geodesic slicing has proven to be sufficient, however

for long-time mergers they are not. This is why other methods have been introduced,

namely excision and punctures [?, Alcubierre,Shapiro] The former has been used since

the 80’s and it’s based on the cosmic censorship. This assures that every physical sin-

gularity should be covered by an event horizon. Hence, any information coming from

nearby the singularity could be irrelevant for the outside region. Therefore, it’s enough

to use only the outside region for the evolution excising the inner region. This sounds

easy to work out, yet in practice some troubles pop up. For example, identifying where

the event horizons reside is an important one, for this we need to know the whole infor-

mation about the spacetime, which in principle is unknown [BS10]. Afterward, we have

to decide if we interpolate the closest data to the event horizon or use an appropriate

method for the region of interest.

On the other hand, the punctures method was originally stated as an alternative to

excision by D. Brill and R. Lindquist (1963). Having in mind those problems on the

BH inner boundary for lapse and shift conditions (see next section), the motivation for

the punctures method is not to use the region involving the BH horizon. Instead, use
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two a part solution. One part being an analytic but irregular already known solution,

this is the background geometry of the singularity. The other part is a correction term,

usually named u, which has to be numerically solved.

Following the above idea, u should be regular in the whole spacetime, however, it

is most useful near the puncture. Then, the entire solution is a superposition of a

puncture around the singularity, given by the analytic part ψ0, and u containing the

behavior far from the singularity. As we see in chapter 3, this leads to rewriting the ψ

equation in terms of u. Thus, the problem of finding initial conditions is translated to

find the regular function u.

Now, let’s turn to explain why we use trumpet geometry instead of Schwarzschild

solution and what’s the difference between these two.

2.3.2 Trumpet geometry and CTT approach

As we discuss in (2.2), making use of maximal slicing gauge entails solving (2.24) for

α in order to evolve the system. However, without clear boundary conditions it can

be solved up to a parametric family of functions for α. In particular, for a spherical

symmetric case when α is assumed to be time independent, it turns out that [BS10,

P.106]:

α(rsch;C) = ±

√
1− 2M

rsch
+
C2

r4sch
. (2.32)

Since this equation is valid for spherical and time independent spacetimes, we can

compare it with the α for the Schwarzschild solution in order to identify C. Thus,

the line element for the Schwarzschild solution in Schwarzschild coordinates is [HEL06,

P.201]:

ds2 = −
(

1− 2M

rsch

)
dt2 +

(
1− 2M

rsch

)−1
dr2sch + r2schdθ

2 + r2sch sin2 θdφ2 .

From (1.59d) we get:

α(rsch) = ±
√

1− 2M

rsch
, (2.33)
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where C = 0 leads to the lapse function for the Schwarzschild solution. From this,

we have a better picture of the infinite possibilities we have in choosing a coordinate

system; i.e., all of the choices accomplishing (2.32) lead to a maximal slicing spacetime,

besides, every choice implies a different geometry with different coordinates.

There is one particular value for C such that the system ends stationary, C = 3
√
3M2

4
.

Unlike Schwarzschild coordinates, this value for C makes the lapse collapse at the min-

imal radius r′sch = 3M
2

. Only those two C’s values lead to a time independent solution

[BS10], but they represent different geometries. The first one is two-flat ends spacetime

connected by a throat. The second one is just a flat end connected to the throat of

minimal radius.

Now, in order to see why we choose the CTT approach, we need to present another

one that we didn’t mention until now, the Conformal Thin Sandwich decomposition

(CTS). We just worked out the CTT formalism since that’s the one we use here, however

it’s important to notice why we stay in CTT and not CTS for this work.

The main difference in the CTS is that it works with time derivatives of γ̄ij and

K, rather than their values in T0, hence its name. Then, in CTS the definition for the

trace-less time derivative of γij is the feature equation:

uij = γ1/3∂t
(
γ−1/3γij

)
. (2.34)

For a given uij we can use (1.61a) and solve (2.34) for Āij, that is:

Āij =
1

2ᾱ

((
L̄β
)ij − ūij) , (2.35)

where

α = ψ6ᾱ , (Lβ)ij = ψ−4
(
L̄β
)ij

and uij = ψ−4ūij . (2.36)

Then, with (2.35) into hamiltonian and momentum constraints we end up with a new

system of equations including α and ~β, namely the CTS equations. So, in CTS the

initial values for α and ~β are found solving the equations rather than choosing them.
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For that reason, we expect that using CTS would be better in obtaining initial values

than CTT. But it turns out to be complicated when we use the punctures method.

As we saw in section 2.2, α has a collapsing behavior near of the event horizon.

Therefore, from (2.35) this takes Āij to unstable values. In [HECB03] they worked on

what was the issue for this problem and their result is not a good answer for CTS +

Punctures. They find that α should vary for different regions and once it has passed the

BH throat its sign must change, refer to (2.32). This change of sign implies a zero value

for α, hence for ᾱ, which is terrible for the CTS equations. This problem is solved in

[BM94], its solution involves imposing values on ~β for the inner boundary which makes

Āij regular. However, this is the intention of the punctures method: it is proposed to

avoid finding the event horizons.



Chapter 3
A CTT’s application

In this chapter we discuss the issues of solving the constraint equations (2.13) and

(2.18) for a boosted black hole. In particular we want to obtain a conformal factor

developed in [IB09]. In this article they use the punctures method to recover some

results which already have been calculated under the excision method. Nonetheless,

using the punctures method is easier since there is no need to specify the inner boundary

conditions.

3.1 Solving the hamiltonian constraint

Given that we have a constant K and that a black hole exterior is regarded as empty,

the momentum constraint (2.18) decouples from the hamiltonian (2.13). This is

D̄iĀ
ij = 0 . (3.1)

Therefore, we can solve it for Āij. Indeed, this is (2.21), and the general solution was

given by Bowen and York in [BY80]. From (2.22) it follows that:

Āij =
3

2r2
[
P ilj + P jli −

(
γ̄ij − lilj

)
lkP

k
]
, (3.2)

where P i is the black hole’s linear momentum and lj is a normal vector pointing out

from the singularity, i.e., lj = xj/r with xj and r the cartesian coordinates and radial

isotropic coordinate, respectively. As we noticed in (2.3.1) the conformal factor and Āij

are written as

ψ = ψ0 + u (3.3a)

Āij = Ā0
ij

+ Āp
ij
, (3.3b)

44
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with u being the regular part of ψ. ψ0 is the irregular part and contains the information

about the trumpet geometry. On the other hand, Ā0
ij

and Āp
ij

are associated to the

background extrinsic curvature (Schwarzchild trumpet) and to one generated by the

boosted black hole.

The background conformal factor is given by the trumpet geometry, it has the lapse

function like (2.32) and is time independent, [IB09, HHM09, BS10]. However, to use

the conformal approach we have to rewrite the 3D-metric as having a global factor,

(2.2a). In [BN07] they found that ψ0, as written in isotropic coordinates, is related to

the areal radius rsch by

ψ0
4 =

(rsch
r

)2
, (3.4a)

where r and rsch are related as

r =

[
2rsch +M +

√
4r2sch + 4Mrsch + 3M2

4

]
×

[
(4 + 3

√
2)(2rsch − 3M)

8rsch + 6M + 3
√

8r2sch + 8Mrsch + 6M2

]√2
2

. (3.4b)

Given the structure of this equation, they argue that an inverse for rsch = rsch(r) is

not analytically possible. However, several researches have verified that (3.4b) has the

desired corresponding limits [BN07, IB09]:

ψ0 →


√

3M

2r
as r → 0 (Trumpet)

1 +
M

2r
as r → ∞ (Swcharzschild) .

(3.5a)

(3.5b)

From these limits and (3.4a), we see that the singularity r = 0 in (3.5a) corresponds

to rsch = r′sch in Schwarzschild coordinates, so it’s a mere coordinate singularity. More-

over, in order to describe an asymptotic flat spacetime, we recall from (2.2a) that we

should have ψ0 → 1 as r → ∞. In that limit rsch must behave like r and hence it

follows that rsch →∞ as r →∞.
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We take the background’s extrinsic trace-less curvature like the one proposed in

[HHM09, IB09] for the trumpet geometry

Āij0 =
C

r3
(
γ̄ij − 3lilj

)
; C =

√
27M2

4
. (3.6)

From here we can notice that Āij0 has null trace. Moreover, writing it explicitly we

check that it obeys (3.1):

1

C
D̄iĀ

ij
0 =

1

C
∂iĀ

ij
0 = ∂i

(
−ηklxkxl

)− 3
2

[
ηij − 3xixj

(
−ηklxkxl

)−1]
+∂i

[
ηij − 3xixj

(
−ηklxkxl

)−1] (−ηklxkxl)− 3
2 ,

where

∂i
(
−ηklxkxl

)− 3
2 = −3

2

(
−ηklxkxl

)− 5
2 (2xi) = −3xi

r5

and

∂i

[
ηij − 3xixj

(
−ηklxkxl

)−1]
= −3∂i

[
xixj

(
−ηklxkxl

)−1]
= 3

[
4

r2
+

1

r4
xixj

(
xkδ

k
i + xlδ

l
i

)]
= 3

(
4

r2
− 2

r2

)
xj =

6xj

r2
.

By pulling all together we arrive at (3.1):

1

C
D̄iĀ

ij
0 = −3xi

r5

(
ηij − 3

xixj

r2

)
− 6xj

r5
= −3xj

r5
+

9xj

r5
− 6xj

r5
= 0 .

From this result we see that adding as many terms of Āij as we need doesn’t change

the constraint equations. For this reason we conclude that this procedure leads to an

acceptable solution.

Now, expressing (2.13) in terms of (3.3), and using the background solution,

D̄2ψ0 +
1

8
ψ0
−7Ā2

0 = 0 , (3.7)

we have

D̄2u− 1

8
ψ0
−7Ā2

0 +
1

8
(ψ0 + u)−7

(
Ā2

0 + 2Ā2
0p + Ā2

p

)
= 0 , (3.8)

where

Ā2
0 ≡ Āij0 Ā0 ij , Ā2

p ≡ Āijp Āpij and Ā2
0p ≡ Āij0 Āpij . (3.9)
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In order to calculate these objects we should use γ̄ij to take down the indices of (3.2)

and contract them on themselves. That is a big task and one often makes mistakes

along the calculation. Fortunately, there are a few packages for symbolic calculation

software to do so. Here we use xAct package ([Me]) on Mathematica c© V. 9 to workout

the terms (3.9).

At Appendix B.1 we shed light on the procedure to obtain the values for Ā0, Ā
2
p

and Ā2
0p. Their values are:

Ā2
0 =

81

8

M4

r6
(3.10a)

Ā2
0p = −27

√
3

4

M2P cos θ

r5
(3.10b)

Ā2
p =

9

2

P 2

r4
(
1 + 2 cos2 θ

)
, (3.10c)

where

P =
(
γ̄ijP

iP j
) 1

2 and cos θ =
γ̄ijP

ilj

|γ̄ijP ilj|
. (3.11)

Notice that (3.8) in terms of (3.10a)-(3.10c) seems to be the kind of electrostatic

problem where an electrical dipole interacts with an electric field. In there, we usually

orient the electric field along z axis and recover an expression independent of the dipole’s

direction. However, the non-linearity of {u, ψ0} in (3.8), and the complexity to find

rsch(r) from (3.4b) left us with no choice but a numerical approximation for u. In that

case, it might be useful to analyze (3.8) first.

Since our relevant region for u is the punctures’ nearby, let’s take the regions where

r → 0.

Given that u is regular, we are able to expect that ψ0 >> u for this regime. Thus,

from (3.8) and at first order in u, we have the conformal factor’s behavior around the

puncture:

D̄2u ≈ −1

8
ψ0
−7
(

1− 7u

ψ0

)(
81

8

M4

r6
− 27

√
3

4

M2P cos θ

r5

)
+

1

8
ψ0
−781

8

M4

r6

≈ 1√
2

(
M

r

) 3
2 P cos θ

M3
+

7

4

u

r2
. (3.12)
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Here we have used the limit (3.5) and neglected the contributions from Ā2
p since the

others’ denominator have more impact. Actually, we see from (3.12) that the u’s re-

quirement to be regular is

upunc = 0 ; r = 0 . (3.13)

To find the solution of (3.12) we used the Finite Sturm-Liuville Transform (FSLT)

introduced in [ERI54]. The procedure is at Appendix C, and the u solution is:

u (~r) = − 1

3
√

2

P cos θ

M
3
2

r
1
2 +

∞∑
m=0

Cmr
− 1

2

(
1−2
√

2+m(m+1)
)
Pm (cos θ) , (3.14)

where only the boundary condition (3.13) was used. In order to determine the Cm

coefficient we should give a behavior of u or its derivative respect to r around the

puncture, usually a Robin condition is applied for that. We don’t do the latter by now

since the (3.12) is thought for origin close regions. Thus, we expect that u barely touch

the middle zone in r. Instead, we point out that the most notorious contribution in the

solution (3.14) is given by its first term, this is called the “limit solution”

uL (~r) = − 1

3
√

2

P cos θ

M
3
2

r
1
2 . (3.15)

Using this equation with the limit (3.5a) into (3.3a) would give us how the conformal

factor behaves close to the puncture. Thus, a behavior for the 3D-metric and the

extrinsic curvature near the black hole can be found, see figure 3.1. However, it is just

a part of what we want. A next step to improve the solution is proposed in [IB09]. In

there, they bring out the following iterative equation for u

D̄2uN+1 = −1

8

(
ψ0 + uN

)−7
Ā2 +

1

8
ψ−70 Ā2

0 +
7

8
ψ−80 Ā2

0

(
uN+1 − uN

)
. (3.16)

In this equation we should solve uN+1 for an uN given. Thus, after inserting uN+1 back

into the equation, now as uN , we should solve again the differential equation for a new

uN+1. It has to be clear that the obtained solution is an array and its entries are the

evaluation of uN+1 at discrete coordinate values {r, θ}. Thus, in the convergence limit

where uN+1 ≈ uN , the equation (3.16) reduces to (3.8) and its solution to the one we

want.
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3.2 Results

The equation (3.16) is a second order linear PDE and there are several methods to find

a numerical solution. The region of interest is bounded by r = 0 and r → ∞. In the

former, we already have the boundary condition (3.13). And in order to obtain ψ → 1

as r → ∞, the natural condition for the latter would be u → 0. However, to compare

our solution to the one in [IB09], we use the following Robin boundary condition

∂r(ru) = 0 for any 0 < r <∞ . (3.17)

Our numerical approximation is found using a second order centered Finite Differ-

ences Method (FDM). The procedure to solve (3.16) is at Appendix B.2. The solution

uN+1 differs from uN at most in 1× 10−6 for N = 7. In order to compare the solution

with (3.15) in figure (3.1) we show u along z axis.

uL

- 0.2 - 0.1 0.0 0.1 0.2
- 0.015

- 0.010

- 0.005

0.000

0.005

0.010

0.015

u

z/M

(a)

- 4 - 2 0 2 4
- 0.02

- 0.01

0.00

0.01

0.02

0.03

0.04

u

z/M

(b)

Figure 3.1: u solution along z axis. The x and y axes have been suppressed in order to show the

behavior in θ. Both cases have ∆z = M/16 with a maximal error about of 10−6. In 3.1a we compare

the limit solution uL (continuous line) with the numerical result (dashed line). For 3.1b we show the

entire region numerical solution as a continuous line, |z| ≤ 4.

From figures 3.1 and 3.2 we may notice a couple of things. First, the solution is

symmetric in x-axis, and since the equation (3.8) has axial symmetry in z, the same is

expected for y-axis. Second, the used condition, (3.17), doesn’t allow to reach a zero
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x

z

(a)

u

x

z

(b)

Figure 3.2: Contour and 3D plot of u solution with y axis suppressed. Notice the symmetry along x

axis.

value for u. As we see in the figure 3.1b, the u outer values tend to stabilize rather than

go to zero, therefore this condition deserves attention in further works. The results

shown in figure 3.1a are in agreement with [IB09].

The limit solution (3.15) into (3.3) gives us a limit conformal factor which has the

form

ψL = ψ0

(
1− rliP jδij

3
√

3M2

)
. (3.18)

From this equation we see that z/M = 3
√

3(M/P ) leads to a collapse of the conformal

factor. In there, the 3D-metric would be zero and the extrinsic curvature goes to

infinity. Even though this is a serious thing, we notice that for P = 0.2M (figure 3.1a)

the z/M value is roughly 26. However, the region solution is |r/M | ≤ 4 and then this

implication is uncertain. On the other hand, for P = 2M we get z/M ≈ 2.6, which is

within the region solution. Although, keeping in mind that this result is expected for

radiuses close to zero, from the figure 3.3 we delimit the validity of uL by comparing it

with u. This gives us the actual effective radius’ values |z/M | ≤ 0.3. Moreover, from

figure 3.3b we notice that no P values lead to the above results. This change in the
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Figure 3.3: Conformal factor for different linear momenta. The black continuous line is the case for

the Schwarzschild solution, P = 0. 3.3a shows the limit conformal factor using uL, while 3.3b uses the

numerical solution u. The inset graphics help notice the region where those conformal factors agree.

Dashed curves furthest to the left correspond to solutions for P = 2M and as the go to the right they

take lower P values approaching zero in 3.3a and M in 3.3b.

behavior should be a consequence of those not involved terms in uL, (3.14). However,

the asymmetry of the solution in z-axis still remains, this may implies that objects in

direction of the linear momentum ~P are less affected by the BBH than those in back.

Another important feature that we observe in the numerical solution is that it

behaves like (3.5a), which is the idea of punctures method (see figure 3.3b). On the

other hand, the limit (3.5b) is not recovered because we used (3.5a) in (3.8) to solve it

for u. In order to obtain a general solution which includes both limits (3.5), we have

to invert (3.4b) for rsch and use it into ψ0. To do so, in [BN07] it’s proposed to use an

approximation rather than an analytical inversion:

r = rsch

(
1− M

rsch
− M2

2r2sch

)
. (3.19)

This equation can be solved for rsch(r) whit the following results:

rsch =
1

2

(
M + r ±

√
3M2 + 2Mr + r2

)
, (3.20)
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the sign minus leads to negative rsch values for any M , thus we should take the other

one. Using this radius in (3.4a) we can solve (3.16) for a more general solution, namely

us. The result for different momentum values are shown in figure 3.4. We notice that

us behaves like both limits (3.5). For z values close to zero the behavior of u and us

seems to be the same, see figure 3.4a. However, as we pointed out us doesn’t go to

zero for last radius’ values and hence the conformal factor in figure 3.4b doesn’t get the

expected value for the limit (3.5b), which for the case is ψ0(4M) ≈ 1.125.

P =2M

P =M
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Figure 3.4: Numerical solution using the rsch approximation (3.20). 3.4a is the us’s behavior while

3.4b corresponds to the conformal factor. In the latter, the dashed lines correspond to solutions with

P = {M, 2M}.



Conclusions and further

work

A
long this work we have passed trhough the ADM and CTT approaches, both of

them embedded into the 3+1 numerical relativity.

In the first part of the work we see that Einstein’s equations can be separated in

two sets. However, only one of them depends on time. These sets of equations take a

particular form once we define the 3D-metric and the extrinsic curvature tensors, which

are the field variables and we have to find them in the ADM approach. Therefore, they

have physical meaning: the 3D-metric describes the geometry for any fixed value of the

time. On the other hand, the extrinsic curvature describes the temporal changes on the

3D-metric. Thus, if the 3D-metric does not have time dependence, i.e., it’s stationary,

the extrinsic curvature tensor is null.

In the second part we noticed that by using a conformal mapping in the field vari-

ables, the constraint equations can be taken in such structure that it allows to exploit

the conformal mapping. Not all of the spacetimes have this property but the one we

employed here does. This is related to the Schwarzschild spacetime in isotropic coor-

dinates. An important simplification can be made by taking the background metric

as flat. Thus, the differential operators take an easier form and lead to simplify the

constraint equations.

Once the conformal factor is found, it is used to transform the conformal field

variables to the original ones. Afterward, the field variables can be used together with

the evolution equations to evolve the physical system.

Given the linearity on the operators in CTT approach, the solutions can be thought

as a superposition of solutions. The punctures method uses this feature to propose a
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background conformal factor plus another solution which has to entail to the rest of

the physical information.

Finally, in the third part we see that even when the constraint equations simplify

with a flat conformal metric, for a boosted black hole in a trumpet geometry, the

hamiltonian constraint has to be numerically solved. Given the BH linear momentum,

the resulting equation has an axial symmetry along the momentum’s direction.

The procedure of solving this equation is independent of which coordinates we use.

Yet, the Bowen-York solution is given in cartesian coordinates and the differential oper-

ators simplify since the covariant derivatives reduce to partials. However, the solution’s

region implies a high numerical cost, not only by the complicated dependence of the

radius in the background conformal factor, but because of the mesh of the grid has to

be very fine in order to properly cover the region.

We found the geometry for some time slice, however, we cannot say anything about

the evolution of the physical system. This is because the spacetime is the whole set

of time slices threaded by the gauge conditions, and not just one. Therefore, the

physical implications are uncertain at the bottom line. However, our solutions for the

hamiltonian constraint, under punctures method, are in agreement with [IB09]. Even

when this was the main objective, in our journey we noticed that this work may be the

beginning for others.

The natural next step is evolving the system in time. Therefore, in order to get

a good evolution a more precise inversion for the rsch(r) should be developed. The

usage of the rsch(r) series in the background conformal factor increase the range of the

solution and lead to more acceptable initial conditions. Even though, the number of

needed iterations became the twice. Thus, we expect that using a numerical inversion to

get rsch(r) would take many more iterations in order to solve properly the hamiltonian

constrain.

In [BS10] is suggested that for a weak gravitational field the conformal factor is
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easily related to newtonian potential. Therefore, a consequent analysis in simulations

for particles orbiting around the BBH can be made.

We worked with the maximal slicing and zero shift vector conditions. Most of the

publications about this subject use them because those conditions were the first ones

to lead to the trumpet geometry. However, in recent papers they also use a modified

harmonic slicing. This gamma of choices comes from the freedom to choose a reference

frame and how it’s changing along the time. From the perspective of GR, that is a

small drawback since the usage of tensors in GR releases us from the exhaustive task

of finding a good coordinate set. In spite of this, NR has allowed us to broaden our

understanding of more realistic physical systems.
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Appendix A. Conventions and

notation

Throughout this work we are using the following conventions and assumptions:

• Geometric units

c = G = k = 1 . (A.1)

• Metric signature (−1, 1, 1, 1). This leads to negative magnitude for time-like vec-

tors and positive for space-like vectors.

• Sum over repeated indices in ranges a - h and o - z runs from 0 to 3 otherwise

they run from 1 - 3.

• We are following the tensor notation of [BS10]. That is a variation from [Wal84].

The indices in expressions not only stand for operative reasons but they are also

attached to the objects giving them their meaning. For instance:

– Aij is a 3D-rank-2 tensor.

– ∇aTbc is not only the derivative operator ∇ acting on Tbc, but also a 4D-

rank-3 tensor.

• Vectors are denoted in two ways: Either with an arrow over or like rank-1 con-

travariant tensors.

For simplicity we are taking the metric tensor gab as the solution to Einstein’s equations.

The metric tensor is embedded in a 4D-smooth manifold that we call spacetime. In
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addition, gab implies an isomorphism, i.e., vectors (one-forms) have their dual objects

as one-forms (vectors)

va = gabv
b . (A.2)

This leads to the commonly called indices’ gymnastic. A result of using (A.2) is that

there are only one va and dot product

(~u,~v) = gabu
avb = uava = uav

a . (A.3)

In addition, we suppose that the solutions to Einstein’s equations are torsion free.

Therefore, the Christoffel symbols are symmetric [HEL06]:

Γabc = Γacb . (A.4)

This, however, is argued to be unnecessary in order to develop 3+1 numerical relativity

equations [Alc08, p.70].



Appendix B. Using Mathematica

for calculations

B.1 Obtaining the terms Ā2
0, Ā

2
p and Ā2

0p

Here we are visiting a simple way of using xAct package in Mathematica to calculate

the components of tensors and manipulate them to obtain terms (3.10). Since this is

not an user’s guide we recommend visiting [Me] (also is useful the discussion group

[xAc]) for deeper information. We stress that this package is useful for Mathematica’s

versions 8.0 and above.

In xAct package most of Mathematica’s objects are handled with rules instead of

definitions. Tensors are used like scalar functions with integer arguments. Functions

with negative (positive) symbols in their arguments mean they have covariant (con-

travariant) indices, e.g.

A[-a,b] → Aa
b ,

and indeed, the latter is the way Mathematica displays those objects.

To start we have to load the package xAct and its library xCoba which help us to use

the objects’ components. This is made with the command <<xAct‘xCoba‘. This package

uses automatically the DollarIndices notation. It specifies indices by giving them

an particular number. However useful it is for Mathematica’s inner calculations, it also
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is jarring. We could turn off this with $PrePrint=ScreenDollarIndices.

Now, the first is to define the manifold’s spacetime. It’s defined as follows

DefManifold[M,4,IndexRange[a,q]] ,

where, M is its name; 4 its dimension and IndexRange implies that a to q indices are

fixed to this metric. The later is useful for defining other objects like metrics or tensors.

Lets define a metric g and chart associated to M by the indices

DefMetric[-1, metric[-a, -b], CD, PrintAs -> "g"];

DefChart[B, M, {0, 1, 2, 3}, {t[], r[], \[Theta][], \[Phi][]}];

here we defined g with signature −1 and a covariant derivative CD attached to it. On

the other hand, we have defined the chart B representing the spherical coordinates. To

fill in metrics’ components it is useful defining first a matrix which actually has the

metric’s components we want to fill. For example, in flat metric the components are

MatrixForm[

Minkowskisph = {{-1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, r[]^2, 0},

{0, 0,0, r[]^2 Sin[\[Theta][]]^2}}]


−1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 .

And we pass those components to g employing chart B using the command MetricInBasis

as follows

MetricInBasis[metric,-B, Minkowskisph]; MetricCompute{[metric, B, All, CVSimplify -> Simplify]};

Once defined g[-a,-b], lets continue with the induced metric, γij. Since the goal

is to use the conformal metric γ̄ab, and it also is orthogonal to gab, we are dropping the

over bar notation. This is not a problem because, as we see below, we are filling in γab
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with γab’s components and the used operators do not involve conformal relations.

To define γab we need to specify an orthogonal time-like vector, namely u. This is

made with the option InducedFrom in DefMetric command

DefTensor[u[a], M]; u /: u[a_] u[-a_] := -1;

DefMetric[-1, metric\[Gamma]sph[-a, -b], cd, SymbolOfCovD -> {"\[Del]", "|"},

PrintAs -> "\[Gamma]", InducedFrom -> {metric, u}]

Similar to g[a,b], γij has to be filled from an already defined matrix with γij’s

components

MatrixForm[

Minkowskisph\[Gamma] = {{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, r[]^2, 0},

{0, 0, 0, r[]^2 Sin[\[Theta][]]^2}}];

MetricInBasis[metric\[Gamma]sph, -B, Minkowskisph\[Gamma]];

On the other hand, to define the traceless part of the extrinsic curvature tensor,

Āij0 , we neeed the mass parameter, M, and the outgoing vector ~l, c.f. (3.6). Using v[j]

for the later

DefConstantSymbol[Mass, PrintAs -> "M"]; DefTensor[v[a], M, OrthogonalTo -> u[-a]];

v /: v[a_] v[-a_] := 1; DefTensor[A0[i, j], M];

The association of A0[i,j] to its expression is given by

A0[i, j] = (3*Sqrt[3]*Mass^2)/(4*r[]^3)*(metric\[Gamma]sph[i, j] - 3 v[i] v[j]) ,

but displayed like
3
√

3M2(γij − 3vivj)

4r3
.

The components of v[i] are passed with the function AllComponentValues

AllComponentValues[v[{i, B}], runit]/.runit = {1, 0, 0, 0};

ComponentValue[v[{0, B}]]
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v{0,B} → 1 ,

where the index means that it’s the 0th − component of v[i] in B chart. Finally,

contracting A0[i,j] with its lowered indices version we have the Ā2
0 term. This is made

by means of the commands ToCanonical and ContractMetic

A0[i, j] A0[-i, -j] // ToCanonical // ContractMetric

81M4

8r6
.

In order to calculate the Ā2
p term we define the momentum p[j] and its magnitude

P0 as follows:

DefTensor[P[i], M, OrthogonalTo -> u[-i]];

DefConstantSymbol[Momentum, PrintAs -> "P0"];

thus, defining Āijp as (3.2) and with A1[i,j] for it

DefTensor[A1[i, j], M];

A1[i, j] = 3/(2*r[]^2)*(P[i] v[j] + P[j] v[i] - (metric\[Gamma]sph[i, j]

- v[i] v[j])*v[-k] P[k]);

it is displayed like:
3(viP j + P ivj − P k(γij − vivj)vk)

2r2
.

In order to get the Ā2
p we need to establish the rule for dot product of {~P , ~P}. With

this we have that the contraction is

RulePM = IndexRule[P[j_] P[-j_], Momentum^2];

A1[i, j] A1[-i, -j] // ToCanonical // ContractMetric/. RulePM

9Piv
iPjvj

4r4
+

9P iviPjv
j

4r4
−9P iviP

kvk
4r4

−9Piv
iP kvk

4r4
+

9P jvjP
kvk

4r4
+

9Pjv
jP kvk

4r4
+

9(P kvk)
2

2r4
+

9P02

2r4
,

however, till this point Mathematica does not know that P ivi = Piv
i. Once we have

defined it, and that P ivi = P0 cos θ, the contraction ends as (3.10c);
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DotProdpv = IndexRule[P[i_] v[-i_], P[-j] v[j]];

%% /. DotProdpv;

RuleAngle = IndexRule[P[i_] v[-i_], P0*Cos[\[Theta][]]];

%% // Simplification/. RuleAngle //Simplify

9
(
P k
)2

(vk)
2 + P02 + P02 cos2(θ)

2r4
.

For the remaining term, as we have defined all its needs, it is obtained as

A0[i, j] A1[-i, -j] // ToCanonical // ContractMetric

−27
√

3M2P0 cos(θ)

4r5
.

B.2 Solving the hamiltonian constraint

In this section we endeavor ourselves to solve (3.16):

D̄2uN+1 = −1

8

(
ψ0 + uN

)−7
Ā2 +

1

8
ψ−70 Ā2

0 +
7

8
ψ−80 Ā2

0

(
uN+1 − uN

)
. (B.1)

For this purpose we use a second order center FDM. To do so, we use a discrete

mapping from the interest region to a grid representing it, see figure B.1. Points of

the solution are evaluated in positive integers indices {i, j} in the grid, ui,j. For the

mapping we use the following rule:

x[i ] = ∆xi+ x0 and y[j ] = ∆yj + y0 , (B.2)

where ∆x = Lx
Mx , ∆y =

Ly
My , x0 = −Lx

2
and y0 = −Ly

2
. The parameters Lx = Ly and

Mx = My are the sphere’s diameter and the number of points along it, respectively. The

above implies that x0 = y0 corresponding to the center point in the grid. In this way

the shaded region in the figure B.1 is where the obtained solution lies. The solution’s

region is actually poor for a small Mx but we hope that it fits better to the interest

region as we increasing the grid points.
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Figure B.1: Mapping to solution’s region.

Using Mathematica for this calculation has the advantage that we could define the

equations and variables for each point as items in lists. In this way we use the function

Solve to obtain the value for each variable. This procedure avoids the reordering of

the points’ equations in a matrix and then invert it to find the values for the unknown

variables. To do so, we have to define each unknown variable. This is made with the

definition of the boundary functions:

f [j ] := Round

[
1

∆x

(
−x0−

√
(Lx/2)2 − y[j]2

)]
(B.3)

g[j ] := Round

[
1

∆x

(
−x0 +

√
(Lx/2)2 − y[j]2

)]
. (B.4)

The functions f and g describe the left and right frontiers, respectively. The Round

function takes the closest integer value for its argument. Unlike to Floor or Ceiling,

this function leads to an symmetric distribution for the points in the grid. Then, we

define the list for unknown variables as follows:

vars = Flatten
[
Table

[
Table

[
uN+1
i,j , {i, f [j] + 1, g[j]− 1}

]
, {j, 1, My− 1}

]]
. (B.5)

For example, with Mx = 8, we have the distribution’s points in the figure B.2a. It

doesn’t seem to fill the whole circumference, however it helps to write the code for

solving the equations.
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{{4,0}}

{{1,1},{2,1},{3,1},{4,1},{5,1},{6,1},{7,1}}

{{1,2},{2,2},{3,2},{4,2},{5,2},{6,2},{7,2}}

{{0,3},{1,3},{2,3},{3,3},{4,3},{5,3},{6,3},{7,3},{8,3}}

{{0,4},{1,4},{2,4},{3,4},{4,4},{5,4},{6,4},{7,4},{8,4}}

{{0,5},{1,5},{2,5},{3,5},{4,5},{5,5},{6,5},{7,5},{8,5}}

{{1,6},{2,6},{3,6},{4,6},{5,6},{6,6},{7,6}}

{{1,7},{2,7},{3,7},{4,7},{5,7},{6,7},{7,7}}

{{4,8}}

(a) Points {i, j} are distributed on the solu-

tion’s region for Mx = 8.

(b) Sections for the solution’s region.

In order to define a list for the equations, lets recall that in section 2.3 we assumed

conformal flatness, then the operator D̄2 is the Laplacian in Cartesian coordinates,

D̄2 → ∇2. Thus, we can cast it into (B.1) by differences between ui,j and its neighbors.

The resulting equation is the one for inner points:

uN+1
i+1,j − 2uN+1

i,j + uN+1
i−1,j

∆x2
+

uN+1
i,j+1 − 2uN+1

i,j + uN+1
i,j−1

∆y2
− 7

8
ψ0−8i,j A0−2i,j u

N+1
i,j

= −1

8

(
ψ0i,j + uNi,j

)−7
A2
i,j +

1

8
ψ0−7i,j

(
1−

7uNi,j
ψ0i,j

)
A02i,j

for f [j] < i < g[j] and 1 ≤ j ≤ My− 1 , (B.6)

where

r[j , k ] :=
√
x[i]2 + y[j]2 + ε2 . (B.7)

ε is a positive infinitesimal value to avoid numerical divergences. Notice that in equation

(B.6), objects like ui,j should be entered in Mathematica as u[i,j]. Defining the

left/right hand side as LHS/RHS the list for the equations follows as:

eqns = Flatten [Table [Table [LHS == RHS, {i, f [j] + 1, g[j]− 1}] , {j, 1, My− 1}]]

(B.8)



Conclusions and further work 66

This command implies that we have already defined the boundary points, e.g., when

i = f [j] + 1 the equation (B.6) uses i = f [j]. In order to define these points we use the

boundary condition (3.17) as follows:

∂r (ru) ≈ r
i+1,j+1

uN+1
i+1,j+1

− r
i−1,j−1

uN+1
i−1,j−1

uN+1
j±1,k±1

≈
(

1− ∆x

r
j±1,k±1

)
uN+1

j±1,k±1
, (B.9)

where ± depends on which section the boundary point is. From (B.9) we see that

boundary points depend on the previous radial points. However, the use of this condi-

tion as clear in cartesian coordinates. To do so, we divide the solution’s region in four

parts as we see in figure B.2b. Then, we assume that the points’ distribution is:

I : Mx
2
≤ i ≤ g[j] and

My
2
≤ j ≤ My II : f [j] ≤ i ≤ Mx

2
and

My
2
≤ j ≤ My

III : f [j] ≤ i ≤ Mx
2

and 0 ≤ j ≤ My
2

IV : Mx
2
≤ i ≤ g[j] and 0 ≤ j ≤ My

2

In addition, we choose the signs for the previous points in (B.9) as:

{i, j} → {i− 1, j − 1} for I

{i, j} → {i+ 1, j − 1} for II

{i, j} → {i+ 1, j + 1} for III

{i, j} → {i− 1, j + 1} for IV .

With this choice, middle grid points don’t take their previous points along the axis,

see figure B.2b, however this kind of errors will be reduced as we increase Mx.

Once we define the boundary points, we use the command

Sol = Solve [eqns, vars] [[1]] . (B.10)

to solve for the variables and if this is the first time it doesn’t enter in a comparison to

a minimal expected error

Do
[
Do
[
uc[i, j] = uN+1[j, k]/. Sol, {i, f [j] + 1, g[j]− 1}

]
, {j, 1, My− 1}

]
.

Finally, if the minimal error is achieved we make an interpolation with the required

precision to represent the solution.
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This appendix is dedicated to solving (3.12) using FSLT. First, since we have assumed

flat conformal space, we recast the equation in the form

∇2u− 7

4r2
u = f(r, θ) , (C.1)

where r is the conformal radius, f(x, y) = 1√
2

(
M
r

) 3
2 P cos θ

M3 and ∇2 is the laplacian op-

erator. We have dropped the bar over in the notation because all the expressions are

conformal, otherwise we are indicating it.

This method is based in using the Sturm Liuville Problem to transform the dif-

ferential equation. From (C.1) we identify the equation for Legendre’s polynomials.

Expanding the Laplacian in spherical coordinates and using the change of variable

x = cos θ we have

∂r
(
r2∂ru

)
+ ∂x

[(
1− x2

)
∂xu
]

= r2f(r, x) +
7

4
u (−1 ≤ x ≤ 1) , (C.2)

where the homogeneous equation corresponds to Legendre’s polinomials Pl(x). Then,

with the transformation

ûl(r) =

∫ 1

−1
Pl(x)u(r, x)dx , (C.3)

the solution to (C.1) is the linear combination of those ul expanded with Pl(x)’s as

basis functions

u(r, x) =
∞∑
l=0

ûl(r)Pl(x)

|Pl(x)|2
. (C.4)
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After multiplying (C.1) by Pl(x) and integrating in x’s interval we have(
r2ū′l(r)

)′
+

∫ 1

−1
∂x
[(

1− x2
)
∂xu(r, x)

]
Pl(x)dx = r2

∫ 1

−1
f(r, x)Pl(x)dx+

7

4
ūl(r) ,

where the prime means derivative respect to r. We can invoke the SLP for the second

term to have(
r2ū′l(r)

)′ − λ2l ûl(x) = r2
β

r
3
2

∫ 1

−1
xPl(x)dx+

7

4
ūl(r) ; β =

P
√

2M
3
2

.

Using the orthogonal properties of Pl(x) we arrive at the transformation of (C.1)(
r2ū′l(r)

)′ − l(l + 1)ûl(x)− βN1r
1
2 δl,1 −

7

4
ūl(r) = 0 , (C.5)

with Nl the normalization constant. In addition to the above equation we have the

transformed boundary condition at r = 0

ūl(0) = 0 . (C.6)

The solutions for (C.5) are in table (C.1). They are determined up to a constant

l ûl(r)

0 c0r
√
2− 1

2

1 −1
3
N1βr

1
2 + c1r

3
2

m ≥ 2 cmr
− 1

2
+
√

2+m(m+1)

Table C.1: Transformed solutions

since we do not have information about u(~r) in r’s middle range. The solution is

obtained by means of (C.4)

u(~r) =
c0
N0

r
√
2− 1

2P0(cos θ) − β

3
r

1
2P1(cos θ) +

c1
N1

r
3
2P1(cos θ)

+
∞∑
m=2

cm
Nm

r−
1
2
+
√

2+m(m+1)Pm(cos θ) .

Absorbing the normalization constant in the coefficient, the solution is expressed

u(~r) = − P

3
√

2M
3
2

r
1
2 cos θ +

∞∑
m=0

Cmr
− 1

2
+
√

2+m(m+1)Pm(cos θ) . (C.7)

This equation could help us to determine u’s main behavior around the puncture.
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data and black-hole simulations. Phys. Rev. D, 80:124007, Dec 2009.

[IB09] Jason D. Immerman and Thomas W. Baumgarte. Trumpet-puncture initial

data for black holes. Phys. Rev. D, 80(6):1–5, 2009.

[Lag04] P. Laguna. Conformal-thin-sandwich initial data for a single boosted or

spinning black hole puncture. Physical Review D, 69(10):104020, May 2004.

[Me] J. Mart́ın and et al. xAct is a suite of free packages for tensor computer al-

gebra in mathematica. http://www.xact.es/index.html. Accessed: 2017-

22-08.

[MTW73] C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. W. H. Freeman,

1973.

https://einstein.stanford.edu/highlights/status1.html
https://einstein.stanford.edu/highlights/status1.html
http://www.xact.es/index.html


Conclusions and further work 72

[SN95] Masaru Shibata and Takashi Nakamura. Evolution of three-dimensional

gravitational waves: Harmonic slicing case. Phys. Rev. D, 52:5428–5444,

Nov 1995.

[SY78] L. Smarr and J. W. York, Jr. Kinematical conditions in the construction of

spacetime. Physical Review D, 17:2529–2551, May 1978.

[TW89] J. H. Taylor and J. M. Weisberg. Further experimental tests of relativistic

gravity using the binary pulsar PSR 1913 + 16. Astrophysical Journal,

345:434–450, October 1989.

[Wal84] R.M. Wald. General Relativity. University of Chicago Press, 1984.

[xAc] Google xAct group is a space for questions, answers and discussions

about xact mathematica’s package. https://groups.google.com/forum/

#!forum/xact. Accessed: 2017-15-09.

https://groups.google.com/forum/#!forum/xact
https://groups.google.com/forum/#!forum/xact

	Figures list
	[5mm][l] Introduction
	[5mm][l]1 3+1 General relativity
	3D-metric
	Extrinsic curvature
	Lie derivative
	Relation between ab and Kab

	Standard ADM equations
	Gauss, Codazzi and Ricci equations
	Constraint equations
	Evolution equations

	[5mm][l]2 CTT formalism and Gauge conditions
	CTT decomposition
	What about the gauge conditions?
	Methodology
	Why punctures ?
	Trumpet geometry and CTT approach

	[5mm][l]3 A CTT's application
	Solving the hamiltonian constraint
	Results

	[5mm][l]  Conclusions and further work
	Appendices

	Appendix A. Conventions and notation
	Appendix B. Using Mathematica for calculations
	Obtaining the terms 02, p2 and 0p2
	Solving the hamiltonian constraint


	Appendix C. u nearby solution

