

UNIVERSIDAD DE SONORA

UNISON Departamento de Investigación en Física

Estudios de simulación en la búsqueda de nuevos bosones ligeros durante la fase de Run-2 y Alta Luminosidad del experimento CMS del CERN

T E S I S

QUE PARA OBTENER EL GRADO DE: MÁSTER EN CIENCIAS FÍSICAS

PRESENTA: Francisco Martínez Sánchez

> DIRECTOR DE TESIS: Dr. Alfredo Castañeda

HERMOSILLO, SONORA, MÉXICO

Agosto, 2020

Universidad de Sonora

Repositorio Institucional UNISON

Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess

Estudios de simulación en la búsqueda de nuevos bosones ligeros durante la fase de Run-2 y Alta Luminosidad del experimento CMS del CERN

por

Francisco Martínez Sánchez

MBs. Physics

Tesis presentada para obtener el grado de

Máster en Ciencias Físicas

en

UNISON

UNIVERSIDAD DE SONORA

Hermosillo, Sonora, México. Agosto, 2020

Agradecimientos

Agradezco primeramente a mi familia por ayudarme y apoyarme en lo que soy y quiero ser, bendecido soy de tener amistades que siempre estuvieron conmigo y no me dejaron solo en mis peores momentos. Agradezco la paciencia de mis profesores en la unison, en especial al Dr. Castañeda y a la Dra. Susana por la oportunidad que se me fue concedida en este posgrado. Agradezco a la institucion educativa de Mexico en general, a los apoyos dedicados a futuros investigadores soñadores que me permitiron hacer este trabajo y capacitarme en el proceso.

Estudios de simulación en la búsqueda de nuevos bosones ligeros durante la fase de Run-2 y Alta Luminosidad del experimento CMS del CERN

por

Francisco Martínez Sánchez

Resumen

En el presente trabajo se analiza el decaimiento $h \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D \rightarrow 2n_D + 4\mu$ correspondiente al modelo Dark-SUSY o MSSMD el cual predice la existencia del fotón oscuro (γ_D), candidato a explicar la naturaleza de la materia oscura. El análisis se realiza usando muestras de simulación generadas con paquetes especializados (Madgraph5, Pythia8 y Delphes) y considerando variaciones en los parámetros del modelo m_{n_1} , m_{n_D} y m_{γ_D} y tiempo de vida del fotón oscuro $c\tau_{\gamma_D}$, la parte experimental considera la reconstrucción de la señal con la configuración actual del detector CMS (Run-2) y las condiciones futuras en la etapa de alta luminosidad. Se comprobó que la configuración del detector CMS correspondiente a Run-2 permite reconstruir hasta un máximo del ~ 28.7 % de los fotones oscuros γ_D predichos por la teoría, por otro lado en la configuración de Alta Luminosidad se podrá hasta un ~ 42.6 %. Además, con la actualización se disminuye el error en las distribuciones de masa invariante del fotón oscuro de $\sim 12\% - 28\%$. La implementación de dos métodos de identificación de fotones oscuros como resultado de emparejamiento en di-muones, uno basado en redes neuronales permitiendo reconstruir un mínimo de 92 % del total teórico posible y otro en un método iterativo de comparación con minimización de las diferencias de las masas invariantes reconstruidas permitiendo un máximo de $\sim 44\,\%.$

Simulation studies in search of new light bosons during the phase of Run-2 and High Luminosity of the CMS experiment at CERN

by

Francisco Martínez Sánchez

Abstract

This work analyzes the decay $h \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D \rightarrow 2n_D + 4\mu$ corresponding to the model **Dark-SUSY** o **MSSMD** which predicts the existence of the dark photon (γ_D) , candidate to explain the nature of dark matter. The analysis is performed using simulation samples generated with specialized packages (Madgraph5, Pythia8 and Delphes) and considering variations in the parameters of the model m_{n_1} , m_{n_D} and m_{γ_D} and lifetime of the dark photon $c\tau_{\gamma_D}$, the experimental considers the reconstruction of the signal with the current configuration of the detector **CMS** (Run-2) and the future conditions in the high-light stage. It was verified that the detector configuration **CMS** corresponding to Run-2 allows to reconstruct up to a maximum of $\sim 28.7 \%$ of the dark photons γ_D predicted by the theory, on the other hand in the High Luminosity configuration up to $\sim 42.6 \%$ will be allowed. In addition, the update reduces the error in the invariant mass distributions of the dark photon by $\sim 12 \% - 28 \%$. The implementation of two methods of identifying dark photons as a result of pairing in dimuons, one based on neural networks allowing the reconstruction of a minimum of $\sim 240 \%$ of the possible theoretical total and the other in an iterative method of comparison with minimization of differences of the reconstructed invariant masses allowing a maximum of $\sim 44 \%$.

Índice general

Ín	dice o	de Tabla	as	III
Ín	dice o	le Figu	ras	VI
In	trodu	ıcción		1
1	Ant	ecedent	tes teóricos	5
	1.1	Model	lo Estándar	5
		1.1.1	Composición de la materia e interacciones fundamentales	5
		1.1.2	Simetrías y lagrangiano	7
		1.1.3	Insuficiencias del modelo	9
	1.2	Más a	llá del modelo estándar con la materia oscura	10
		1.2.1	Evidencias observacionales	10
		1.2.2	Composición de la materia oscura	13
		1.2.3	Extensión del Modelo Estándar con Supersimetría	15
2	Exp	erimen	to LHC y Detector CMS	23
	2.1	Física	de Altas Energías con LHC	23
	2.2	Exper	imento CMS	27
		2.2.1	Detector de trazas de silicio	28
		2.2.2	Calorímetro electromagnético o ECAL	29
		2.2.3	El calorímetro de hadrones o HCAL	29
		2.2.4	Solenoide supercondutor	29
		2.2.5	Detector de muones	29
		2.2.6	Identificación y Reconstrucción de Muones	34
	2.3	Simula	ación en Altas Energías	39
		2.3.1	Implementando ROOT	40
		2.3.2	Generador Monte Carlos con Madgraph	41

	2.3.3	Hadronización con pythia8	42
	2.3.4	Simulando el detector con Delphes3	44
Her	ramien	tas de generación de datos y redes neuronales	46
3.1	Gener	ación de los datos	47
	3.1.1	Generalidades	47
	3.1.2	Generando señal Dark-SUSY	48
	3.1.3	Configuración e implementación de recursos en ACARUS	51
3.2	Proces	amiento y conversión de los datos	53
3.3	Métod	os de regresión de datos	54
	3.3.1	Modelo	55
3.4	Redes	neuronales	56
	3.4.1	Identificando y reconstruyendo el fotón oscuro	58
	3.4.2	Regresión de datos	60
Aná	lisis y r	esultados	62
4.1	Anális	is de la señal sin detectores	62
	4.1.1	Variación de las propiedades de los muones	64
	4.1.2	Características del fotón oscuro	66
4.2	Anális	is de la señal con detector	66
	4.2.1	Variación de las propiedades de los muones	72
	4.2.2	Reconstruyendo el fotón oscuro	73
onclu	siones		81
eferer	ncias		86
	Her 3.1 3.2 3.3 3.4 Aná 4.1 4.2	2.3.3 2.3.4 Herramien 3.1 Genera 3.1.1 3.1.2 3.1.3 3.2 Proces 3.3 Métod 3.3.1 3.4 Redes 3.4.1 3.4.2 Análisis y r 4.1 Anális 4.1.1 4.1.2 4.2 Anális 4.2.1 4.2.2 onclusiones	2.3.3 Hadronización con pythia8 2.3.4 Simulando el detector con Delphes3 Herramientas de generación de datos y redes neuronales 3.1 Generación de los datos 3.1.1 Generalidades 3.1.2 Generando señal Dark-SUSY 3.1.3 Configuración e implementación de recursos en ACARUS 3.2 Procesamiento y conversión de los datos 3.3 Métodos de regresión de datos 3.3.1 Modelo 3.4.1 Identificando y reconstruyendo el fotón oscuro 3.4.2 Regresión de datos 3.4.1 Identificando y reconstruyendo el fotón oscuro 3.4.2 Regresión de datos 4.1 Análisis y resultados 4.1.1 Variación de las propiedades de los muones 4.1.2 Características del fotón oscuro 4.2.1 Variación de las propiedades de los muones 4.2.2 Reconstruyendo el fotón oscuro 4.2.2 Reconstruyendo el fotón oscuro

Índice de tablas

1-1	Probabilidades de descomposición del fotón oscuro γ_D a par de muones	21
2-1	Rango de detección de la pseudorapidez para los componentes del detectorCMS.	33
3-1	Función generadora de muestras MSSMD y argumentos opcionales	50
3-2	Argumentos de la función generación de muestras MSSMD, notación, defi-	
	nición y valores de los mismos	50
3-3	Configuración utilizada para gestionar el uso en paralelo del generador de	
	muestras Dark-SUSY	52
3-4	Algunas propiedades con sus definiciones de las partículas usadas en la in-	
	vestigación.	54
3-5	Capacidad del identificador fotónico con variaciones en los parámetros de	
	entrada	60
4-1	Fracción de eventos dependiente del contenido muónico	64
4-2	Variación de la fracción de muones reconstruidos y frecuencia de eventos con	
	4 muones para combinaciones de los términos del parámetro generación $\vec{\alpha}$ y	
	los detectores k	71
4-3	Estadísticos característicos para combinaciones de los términos del parámetro	
	generación $\vec{\alpha}$ y los detectores k. Los valores de masa se dan en GeV	76
4-4	Resultados de la aplicación de los métodos $\mathbb{N}_{\text{True}}, \mathbb{N}_{\text{RNA}}$ y \mathbb{N}_{ite} para la recons-	
	trucción del fotón oscuro γ_D bajo diferentes condiciones de generación	79

Índice de figuras

1-1	Clasificación de las partículas según el modelo estándar de las partículas ele-	
	mentales.	6
1-2	Simetrías del modelo estándar	8
1-3	Diagrama de cúmulo de galaxias que actúa como lente gravitatoria para una	
	galaxia muy distante	11
1-4	(a) Coalisión de dos cúmulos de galaxias 1E 0657-56 conocida como cúmulo	
	bala, (b) Simulación por computadora de la futura colisión prevista de las dos	
	galaxias más grandes del Grupo Local, Andrómeda (M31) y la Vía Láctea.	12
1-5	Extensión del Modelo Estándar bajo la existencia de la supersimetría (SUSY).	15
1-6	Valores de R (izquierda) y de probabilidad $B_{\gamma_D \to \mu\mu}$ (derecha) con el valores	
	teóricos de masa del fotón oscuro.	20
1-7	(a) Ilustración esquemática de la conexión entre el sector oscuro y el modelo	
	estándar, los cuales están conectados mediante un término de mezcla diná-	
	mica. (b) Diagrama de Feynman Dark-SUSY del proceso vía $h \rightarrow 2n_1 \rightarrow$	
	$2n_D + 2\gamma_D \rightarrow 2n_D + 4\mu$	21
2-1	Diagrama de los experimentos que componen el centro de investigación del	
	CERN	24
2-2	Plan de actualización del experimento LHC	26
2-3	Detector de solenoide de muón compacto. El detector consta de varias capas,	
	cada una responsable de medir diferentes tipos de partículas	27
2-4	(a) Representación tridimensional del detector de trazas; (b) Diagrama del	
	detector de traza.	28
2-5	Sistema de los tubos de deriva o DT	30
2-6	(a) Representación de la cámara de banda catódica; (b) Traza de la señal al	
	registrar muones.	31
2-7	Diagrama de las cámaras resistivas	31
2-8	Una sección transversal R-z de un cuadrante del detector CMS	32

2-9	Diagrama de una cuarta parte del diseño del detector de trazas CMS para	
	LHC en la dirección z del mismo. Los módulos de chips de lectura internos	
	o Inner Tracker 1x2 y 2x2 se muestran en verde y amarillo respectivamente,	
	los módulos externos o Outer Tracker PS y 2S en azul y rojo	34
2-10	Eficiencia de reconstrucción de los muones en condiciones de Run-2 (izquier-	
	da) y HL (derecha).	35
2-11	Resolución en la medición del momento de los muones en condiciones de	
	Run-2 (izquierda) y HL (derecha).	35
2-12	(a) Ilustración esquemática del cono de aislamiento. La dirección del muón	
	en el vértice define el eje del cono; (b) Segmentación en el plano $\eta \times \phi$ en	
	CMS sobre el que se muestran torres de energía definidas para coincidir con la	
	segmentación o resolución del calorímetro, basada en la Fig. 1 de la referencia	
	Pi et al. [2005]	37
2-13	Eficiencia de reconstrucción de los muones en condiciones de Run-2 (izquier-	
	da) y HL (derecha).	39
2-14	Perfil de diseño básico de la geometría del detector genérico asumido en Delp-	
	hes	45
3-1	Secuencia lógica del análisis del proyecto.	46
3-1 3-2	Secuencia lógica del análisis del proyecto	46 48
3-1 3-2 3-3	Secuencia lógica del análisis del proyecto	46 48 51
3-1 3-2 3-3 3-4	Secuencia lógica del análisis del proyecto	46 48 51
3-1 3-2 3-3 3-4	Secuencia lógica del análisis del proyecto	46 48 51 53
3-1 3-2 3-3 3-4 3-5	Secuencia lógica del análisis del proyecto	46 48 51 53 57
3-1 3-2 3-3 3-4 3-5 3-6	Secuencia lógica del análisis del proyecto	46 48 51 53 57
3-1 3-2 3-3 3-4 3-5 3-6	Secuencia lógica del análisis del proyecto	46 48 51 53 57
3-1 3-2 3-3 3-4 3-5 3-6	Secuencia lógica del análisis del proyecto	46 48 51 53 57
3-1 3-2 3-3 3-4 3-5 3-6	Secuencia lógica del análisis del proyecto	46 48 51 53 57 58
3-1 3-2 3-3 3-4 3-5 3-6	Secuencia lógica del análisis del proyecto	46 48 51 53 57 58
3-1 3-2 3-3 3-4 3-5 3-6 3-7	Secuencia lógica del análisis del proyecto	46 48 51 53 57 58 60
 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 	Secuencia lógica del análisis del proyecto	46 48 51 53 57 58 60 61
 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 	Secuencia lógica del análisis del proyecto	46 48 51 53 57 58 60 61
 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 4-1 	Secuencia lógica del análisis del proyecto	46 48 51 53 57 58 60 61
 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 4-1 	Secuencia lógica del análisis del proyecto	46 48 51 53 57 58 60 61
 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 4-1 	Secuencia lógica del análisis del proyecto	46 48 51 53 57 58 60 61 63

4-2	Variación de las distribuciones de los muones de procesos de ruido	65
4-3	Variación de las distribuciones de los muones característicos de la señal MSSMD	65
4-4	Variación de las propiedades del fotón oscuro γ_D con los parámetros de ge-	
	neración m_{γ_D} , m_{n_D} y τc_{γ_D} .	67
4-5	Distribuciones de frecuencias resultado de aplicar "bootstrap" sobre los va-	
	lores $f_{e}^{(\mu,k)}(x)$ ante cambios de los parámetros $\vec{\alpha}$.	68
4-6	Ejemplo de variaciones del parámetro $f_{e}^{(\mu,k)}(\vec{\alpha};x)$	70
4-7	Resultados de la regresión polinomial de los valores de frecuencia $f_{e}^{(\mu,k)}(4; \vec{\alpha})$.	71
4-8	Comparación de los resultados de regresión utilizando RNA y regresión po-	
	linomial para predecir las frecuencias $f_{e}^{(\mu,k)}(4; \vec{\alpha})$.	72
4-9	Variación de las propiedades momento transversal y de la pseudorapidez de	
	los muones en diferentes configuraciones del detector k y ante variaciones	
	del parámetro de generación $\vec{\alpha}$	73
4-10	Ejemplo aplicado sobre un evento para la identificación del etiquetado de los	
	muones reconstruidos por Delphes con la aplicación del método $\mathbb{N}_{True}.$	74
4-11	Diagrama del mecanimo de cálculo de la eficiencia del método \mathbb{N}_{True}	75
4-12	Valores de masa invariante reconstruida de di-muones identificados con el	
	método \mathbb{N}_{True}	76

Introducción

Encontrar los fundamentos del funcionamiento de los objetos materiales que componen la naturaleza ha sido una de las tareas de las que se ha ocupado la humanidad. El primer modelo atómico con bases científicas es el propuesto por Dalton, John [1803], este paso a ser parte de la física tras el descubrimiento de la radioactividad por Becquerel [1896] y del electrón por Thomson [1906].

A inicios del siglo XX el área de Física de Partículas Elementales se forma como campo independiente junto con el establecimiento de la composición del núcleo atómico y con el advenimiento de los aceleradores. Ésta se establece entonces como la ciencia que estudia los componentes elementales de la materia y las interacciones entre ellos. También se la conoce como Física de Altas Energías debido a la escala del sistema físico sobre el que se teoriza modelando el comportamiento de la materia y fundamentando sus resultados mediante el Modelo Estándar de Partículas o **SM** (**S**tandard **M**odel).

Entre los problemas sin solución a los que se enfrenta el **SM**, el solo poder explicar el 15.45 % de la materia del universo se convierte en el objeto de estudio de muchas investigaciones modernas. En las últimas décadas, se han propuesto nuevas teorías para explicar la materia oscura, muchas partículas han sido propuestas como posibles candidatos, entre ellas las más populares se encuentran: los axiones [Niemeyer, 2019], las partículas masivas con interacción débil **WIMPs** (Weakly Interacting Massive Particles) [Gianfranco Bertone, 2018] o con interacción fuerte **SIMPs** (Strongly Interacting Massive Particles) [Maxim Laletin, 2019] y las partículas supersimétricas o **SUSY** (SUperSYmmetry) [Dris Boubaa, 2020].

Entre las propuestas existentes sobre la composición de la materia oscura, las partículas supersimetrías o **SUSY** que relacionan las propiedades de los bosones y los fermiones se ha convertido en parte fundamental de muchos modelos teóricos que están siendo investigados en la actualidad como el **NMSSM** (Next-to-Minimal Supersymmetric Standard Model) [Tofighi A., 2009; Maniatis, 2009] y los modelos de supersimetría en el sector oscuro **Dark-SUSY** [CMS Collaboration, 2019b]. De esta forma se teoriza un conjunto de criterios de búsqueda destinados a minimizar los eventos de fondo sin dejar de ser independientes de los modelos utilizados suponiendo el origen de la ruptura espontánea **U**(1) descrito en la referencia Arkani-Hamed *et al.* [2009]; CMS Collaboration [2019b], este resultado del acoplamiento débil de unos fotones oscuros γ_D a sus homólogos del **SM** a través de un parámetro de mezcla cinética ϵ .

En los modelos **NMSSM**, dos de los tres bosones de Higgs neutros pares h_1 o h_2 pueden descomponerse en uno de los dos bosones de Higgs neutros impares $n_{1,2}$ a través de $h_{1,2} \rightarrow 2n_1$. Al unificarse con la teoría del sector oscuro, se teoriza que el neutralino más ligero n_1 que se encuentra en el espectro visible de **SUSY** ya no es estable y puede descomponerse a través de procesos como $n_1 \rightarrow n_D + \gamma_D$, donde n_D es un fermión oscuro (neutralino oscuro) que escapa a la detección con los instrumentos existentes actuales, está búsqueda superpuesta de teorías es conocida como **Dark-SUSY** o **NMSSMD**. Entonces, bajo la suposición de que γ_D solo puede descomponerse en partículas **SM**, alternativamente, muchas líneas de investigación realizan exploraciones para los posibles decaimientos $h \rightarrow 2n_1$. En estas exploraciones predichas por **NMSSM**, se incluye 4μ [CMS Collaboration, 2016, 2013] como un posible estado final, contribuyendo este análisis a un cuerpo más grande existente dedicado a la búsqueda de nuevos bosones.

Dado que el experimento **LHC** tiene entre sus objetivos una amplia gama de búsquedas de Higgs [Curtin *et al.*, 2017], entre ellas, aquellas resultado de extensiones del Modelo Estándar Supersimétrico Mínimo **MSSM** y otros modelos **SUSY**, de aquí que sea adecuada para la exploración de los modelos compatibles o derivados como es el **Dark-SUSY**. Pero, para probar está teoría, es necesaria una medición cuidadosa de las colisiones en un subconjunto particular de la población de datos. Es necesario que los equipos de análisis puedan calcular con precisión cuántos eventos se esperarían de los procesos del **SM** en ese subconjunto y, de manera similar, cuántos eventos cabría esperar de la teoría particular de la nueva física en la que uno está interesado.

La existencia de **SUSY** se mostrará a través de la presencia de energía faltante y a través de algunas firmas de partículas que se producen con más frecuencia que la tasa normal del *"background"*. Ya que lo mas probable es que las partículas de **SUSY** sean en general partículas pesadas que se descompongan en otras partículas más estables y familiares en múltiples etapas, formando largas *"decay chains*", se espera que los productos finales sean leptones como electrones y muones, y que al recolectar y sumar los momentos y energías de todas las partículas emergentes de una colisión se pueda reconstruir la misma resultando en la identificacion de las partículas faltantes identificables en estos escenarios debido a que falta impulso o energía. Actualmente se estan análizando los datos del experimento **CMS** para encontrar posibles escenarios predichos por **SUSY**, ejemplos de estas búsquedas son [CMS Collaboration, 2020, 2021].

Los experimentos **ATLAS** y **CMS** después del extenso programa de búsqueda realizan una comparación de los estados finales considerados haciendo uso de los datos recopilados en Run-1, esto se hizo en el 2018 donde se hace público el resumen de los límites de masa por el experimento **ATLAS** y **CMS** de las búsquedas de **SUSY**, resultando en que ninguno de los experimentos pudo confirmar los hallazgos del otro [Mitsou, 2019], resultando en la reprogramación del mismo para Run-2. De esta manera se pretende extender el espacio de fase de sensibilidad de una gran cantidad de modelos **SUSY**, así como a buscar regiones descubiertas y más difíciles en el espacio de parámetros y a probar una gran cantidad de nuevos escenarios físicos.

La exploración de como la teoría **Dark-SUSY** pueda materializarse en un subconjunto de la población de datos obtenidos experimentalmente es parte importante del proceso de investigación, para esto, se hace necesario calcular la estimación del efecto de la nueva teoría y realizar el análisis estadístico para decidir si es viable frente a los datos observados. De aquí que la simulación de los distintos procesos físicos que se puedan generar en el **LHC** y la respuesta del detector es parte necesaria para poder optimizar y estimar el desempeño de los diferentes análisis. Además, de esta manera, se permite que las estrategias utilizadas en la identificación de partículas, puedan ser desarrolladas con anterioridad a la toma de datos y las eficiencias de los algoritmos pueden ser puestos a prueba. La preparación de las búsquedas de está nueva física, necesita una simulación detallada del detector para estimar su potencial de descubrimiento y para desarrollar métodos óptimos para medir las propiedades de las partículas.

De aquí que, una vez que los datos de colisiones reales están disponibles, los simulados resultan necesarios para poder encontrar desviaciones del **SM**. La estructura de los eventos de colisiones de altas energías son realmente complejos y no predecibles de primeros principios. Los generadores de eventos como el Madgraph, permiten separar el problema en varios pasos más simples, algunos de los cuales pueden ser descriptos por primeros principios, y otros necesitan ser basados en modelos apropiados con parámetros ajustados a los datos como es el caso del método de **MC** (**M**onte **C**arlos). Un aspecto central de los generadores es que proveen una descripción del estado final para poder construir cualquier observable y compararlos con los datos de colisiones reales.

En los estudios de nueva física en el experimento **LHC**, en particular los que predicen la producción de nuevas partículas, son bastantes relevantes dado que se aproxima la etapa de actualización correspondiente al de Alta Luminosidad, donde se espera lograr una acumulación de datos con una frecuencia 10 veces mayor en la que se estaba operando. Lo anterior indica que la probabilidad de detección de nuevas señales será mucho mayor ya que se logrará alcanzar un rango de energía mayor y una cantidad de datos igualmente superior. Usualmente la probabilidad de producción de estas partículas exóticas es baja por lo que se requiere de una cantidad grande de datos para poder observar dicha producción. El período de Alta Luminosidad está programado para empezar a partir del año 2024 o 2025, sin embargo desde este la actualidad se está trabajando en la actualización del detector, en métodos de análisis y en estrategias que ayuden a optimizar la búsqueda de nueva física. Además, dado que los modelos teóricos que predicen la formación de partículas de materia oscura no han sido explorados ampliamente, en gran medida por falta de datos experimentales que permitan alcanzar el espacio fase que dichos modelos predicen para esas partículas. Por todo ello el funcionamiento del Gran Acelerador de Hadrones y sus proyecciones en cuanto a recolección de datos en los próximos años constituye una oportunidad perfecta para explotar con mayor intencionalidad el estudio de dichos modelos en aras de descubrir una nueva señal de fácil interpretación en el contexto de los modelos propuestos.

El objetivo general de este proyecto es:

Estudiar las propiedades del fotón oscuro correspondiente al decaimiento $\gamma_D \rightarrow 2\mu$ del modelo **Dark-SUSY** por medio de simulación de **MC**, recreando la respuesta de los detectores del experimento **CMS**.

Para lograrlo, se lleva a cabo los objetivos particulares:

- Caracterizar el modelo Dark-SUSY por medio de su implementación en paquetes de simulación de altas energías Madgraph5, pythia8 y Delphes3.
- Análisis de las propiedades de las partículas del decaimiento correspondiente al modelo, bajo diferentes condiciones de simulación.
- Desarrollar rutinas de extracción y análisis de la información de simulación, en los lenguajes de programación python y C++.
- Comparación de los resultados obtenidos usando la configuración del detector CMS en Run-2 y Alta Luminosidad.

Capítulo 1 – Antecedentes teóricos

En este capítulo se introduce a la Física de Altas Energías presentando brevemente algunas características de la materia, las interacciones fundamentales, y como estás son tratadas por el modelo estándar. Se define la materia oscura y se incorporan ejemplos que fundamentan su existencia y posible composición. Se tratan algunos ejemplos de extensiones del modelo estándar con supersimetría, propuestas, para tratar las dificultades del mismo, entre ellos se hace principal énfasis en los fundamentos del modelo **Dark-SUSY**.

1.1 Modelo Estándar

El **SM** es el formalismo teórico-experimental que, hasta el día de hoy, describe con mayor precisión las partículas elementales y sus interacciones. Los mayores desarrollos que dieron forma al **SM** se obtuvieron en la segunda mitad del siglo XX con el desarrollo de la Teoría Cuántica de Campos: formulación conjunta de la mecánica cuántica y la mecánica relativista, que es capaz de describir la aniquilación, creación, decaimientos e interacciones de las partículas fundamentales. Los modelos teóricos y observaciones experimentales construyeron una clasificación de las partículas en base a sus propiedades fundamentales como lo son la masa, la carga eléctrica, la carga de color y el espín. Dicha clasificación se muestra en la Fig. 1-1.

1.1.1 Composición de la materia e interacciones fundamentales

Las partículas elementales están divididas en dos categorías según el valor de su espín en fermiones (espín semi-entero, para elementales 1/2) y bosones (espín entero, para elementales 1 menos el higgs con 0), estos obedecen también a la estadística de Fermi-Dirac y la estadística de Bose-Einstein, respectivamente, solo cumpliendo el principio de exclusión de Pauli los primeros.

El **SM** describe la composición de la materia bariónica usando 6 quarks, 6 leptones (fermiones) y partículas mediadoras de las interacciones fundamentales conocidas (bosones), que son los fotones γ (interacción electromagnética), los gluones g (interacción fuerte) y las partículas W^{\pm} y Z (fuerza débil). El bosón de Higgs H tiene un papel fundamental en el mecanismo de Higgs el cual dota de la propiedad de masa a las partículas elementales. Actualmente la interacción gravitacional no está descrita por algún bosón del SM.

Los quarks son fermiones que poseen carga eléctrica fraccionada (-1/3 o +2/3) y carga de color (**R**, **G** o **B**). Existen seis tipos como se pueden observar en la Fig. 3-8: up u(arriba), down d(abajo), charm c(encanto), strange s(extrañeza), top t(superior) y bottom b(inferior). El campo de estudio dedicado a las interacciones entre quarks y gluones se llama Cromodinámica Cuántica (**QCD**). Sin embargo, los quarks solo se encuentran en estados ligados llamados hadrones, ya sean bariones formados por tres quarks de diferente color (**qqq**), o mesones formado por un par quark-antiquark¹ (**qq**̃). Dado que los quarks son fermiones, dos quarks del mismo tipo no pueden tener los mismos números cuánticos en el mismo hadrón. Algunos ejemplos de bariones son:

- El neutrón (n) : es incluida en la definición de nucleones (N) ya que conforman el núcleo de los átomos, es una partícula subatómica sin carga neta, de la QCD se define que es partícula compuesta por la unión estable de quarks udd.
- El protón (p⁺): es incluida en la definición de nucleones ya que conforman el núcleo de los átomos, es una partícula subatómica con una carga eléctrica elemental positiva,

¹Las antipartículas poseen la misma masa y espín, pero carga eléctrica contraria.

de la QCD se define que es partícula compuesta por la unión estable uud.

Todos los hadrones tienen una respectiva antipartícula conformada por los antiquarks correspondientes.

Los leptones forman parte de la familia de los fermiones por lo cual poseen espín semientero, además no poseen carga de color y por lo tanto tampoco experimentan la interacción nuclear fuerte. Se han identificado tres "sabores" de partículas, correspondientes al electrón e y el neutrino ν_e , al muón μ y el tauón τ con sus respectivos neutrinos ν_{μ} y ν_{τ} (ver Fig. 1-1).

- El electrón : es una partícula elemental perteneciente a la primera generación de los leptones, representada por el símbolo e⁻ posee una carga eléctrica elemental negativa. Su antipartícula es denominada positrón idéntica excepto por la carga de signo opuesto.
- El muón : es una partícula elemental masiva perteneciente a la segunda generación de leptones, representada por el símbolo μ⁻ su masa es 100 veces mayor que la del electrón. Su correspondiente antipartícula es el antimuón (μ⁺).
- El tau : llamada a veces tauón, es una partícula elemental masiva que pertenece a la tercera generación de leptones, representada por el símbolo τ⁻, su masa es cerca de 3500 veces mayor que la del electrón. Su correspondiente antipartícula es el antitau o antitauón (τ⁺).
- Los neutrinos : son partículas subatómicas sin carga y de espín 1/2, que estas partículas tienen masa muy pequeña, su interacción con las demás partículas es mínima, por lo que pasan a través de la materia ordinaria sin apenas perturbarla. Existen tres tipos de neutrinos asociados a cada una de las familias leptónicas (o sabores): neutrino electrónico (v_e), neutrino muónico (v_µ) y neutrino tauónico (v_τ) más sus respectivas antipartículas.

Cada partícula anteriormente descrita con su correspondiente antipartícula corresponde con la composición de la materia bariónica.

1.1.2 Simetrías y lagrangiano

Las teorías extensamente aceptadas del modelo estándar son referidas como teorías de campo de gauge y son la expresión de la existencia de alguna simetría interna haciendo que el lagrangiano \mathcal{L}_{gauge} sea invariante bajo la acción de un grupo de Lie, estás son referidas

¹Son funciones diferenciables o analíticas que sirve para describir la simetría de estructuras analíticas, se clasifican por sus propiedades algebraicas, su conexidad y su compacidad.

Figura 1-2: Simetrías del modelo estándar.

como grupo de transformaciones de gauge. De esta forma, al aplicar una transformación de gauge no se modifica ninguna propiedad física observable.

Los campos gauge aparecen en \mathcal{L}_{gauge} que rige la dinámica de los campos cuánticos. Éstos son: fermiónicos ψ , que representan a las partículas bariónicas; bosónicos electrodébiles W_1 , W_2 , W_3 y B; gluónicos g; y el campo de Higgs φ (ver Fig. 1-2). Estos son definidos por operadores que no conmutan entre si y actúan sobre el estado cuántico del sistema. Además las partículas responsables de interacciones deben ser de masa cero ya que representan a simetrías de norma exactas y explícitas.

La lagrangiana del campo de gauge opera sobre el grupo dado por una simetría de norma $U(1) \otimes SU(2) \otimes SU(3)$, donde U(1) actúa sobre B (interacción electromagnética) y φ , SU(2) actúa sobre W y φ (interacciones débiles), y SU(3) actúa sobre g (interacciones fuertes entre los quarks en el espacio de color), por lo que de forma general todas las simetrías actúan sobre el campo fermiónico ψ , [Buchmüller y Lüdeling, 2006]. La ruptura espontánea de esta simetría es uno de los ingredientes fundamentales de excitaciones de Goldstone que están asociadas a los términos de masa de los bosones de gauge, este es referido como mecanismo de Higgs.

El SM consiste entonces en un contenido de materia, los quarks y los leptones en tres familias, con una dinámica dictada por la simetría de norma $U(1) \otimes SU(2) \otimes SU(3)$ y con un elemento adicional, el Higgs, responsable de la rotura (parcial) espontánea de $U(1) \otimes SU(2)$, fundamentada bajo la evidencia empírica de los resultados experimentales. El lagrangiano del modelo estándar que describe estas interacciones es:

$$\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{Fermion} + \mathcal{L}_{Higgs} + \mathcal{L}_{Yukawa} + \mathcal{L}_{GF} + \mathcal{L}_{Ghost}$$
(1-1)

donde, según la referencia Romao y Silva [2012]:

- *L*_{gauge} : resultado de la teoría de campo de calibración, esta resume la interacción entre fermiones como resultado de la introducción de transformaciones pertenecientes al grupo de simetría interna. El lagrangiano de gauge describe la dinámica de los campos fermiónicos poseyendo alguna simetría interna "local" dada por un grupo de Lie, llamado grupo de transformaciones de gauge, transformando algún grado de libertad que no modifica ninguna propiedad física observable.
- *L*_{Fermion}: incluye los términos cinéticos para los fermiones, caracteriza la interacción con el gauge de campo debido a sus derivadas covariantes:
- *L*_{Higgs}: describe el mecanismo de Higgs mediante el proceso que da masa a las partículas elementales, utiliza una teoría de gauge para dotar con masa a los bosones de gauge a través de la absorción de los bosones de Nambu–Goldstone derivados de la ruptura espontánea de simetría.
- *L*_{Yukawa}: describe el mecanismo de interacción entre un campo escalar y un campo de Dirac mediante una constante de acoplamiento. Su desarrollo se encuentra [Santamaria, 1993].
- *L*_{GF}: este se presenta como una elección matemática según la teoría de los "gauges"
 que incluye las consideraciones resultantes del procedimiento matemático utilizado
 para hacer frente a grados de libertad redundantes en las variables de campo.
- *L*_{Ghost}: es una condición de fijación del medidor lineal haciendo uso de un campo adicional que se introduce en las teorías cuánticas de campos, de esta manera mantiene la consistencia de la formulación de integral del lagrangiano.

El modelo estándar está respaldado por una serie de observaciones experimentales, la más reciente fue la observación de una nueva partícula cuyas propiedades son consistentes con el bosón de Higgs, sin embargo, aún existen fenómenos en la naturaleza que no pueden ser explicados dentro del formalismo del modelo estándar.

1.1.3 Insuficiencias del modelo

Incluso cuando el **SM** ha tenido gran éxito en explicar disímiles resultados experimentales, tiene ciertas cuestiones importantes sin resolver, más detalles en la referencia Buchmüller y Lüdeling [2006]. Entre los problemas encontrados en la teoría estándar está la falta de explicación de los orígenes cuánticos de la gravedad haciendo que la teoría sea por el momento incompatible con la relatividad general. El **SM** solo puede explicar el 15.45 % de la material del universo y no considera posible la existencia de masa por parte de los neutrinos (cuestión refutada por los estudios de sus oscilaciones). No explica la presencia excesiva de materia que de antimateria, el modelo predice la creación y aniquilación en cantidades estadísticamente semejantes. Tiene problemas de jerarquía al introducir partículas con masas a través del proceso de "ruptura espontánea de simetría electrodébil" (provocado por el campo de Higgs sobre la simetría de norma $U(1) \otimes SU(2)$), forzando algunas correcciones cuánticas muy grandes debido a la presencia de partículas virtuales y mucho más grandes que la masa de Higgs real.

1.2 Más allá del modelo estándar con la materia oscura

Ni la materia oscura ni la energía oscura sienten las fuerzas eléctricas y magnéticas y por tanto no interactúan con la luz, no la emiten ni la absorben. Son inmunes a las ondas electromagnéticas en todas las frecuencias, desde el radio, pasando por la luz visible hasta los rayos gamma, de forma rigurosa el calificativo oscuras no aplica, son transparentes, su existencia es supuesta por la interacción gravitatoria entre esta materia y las galaxias formadas por materia bariónica.

1.2.1 Evidencias observacionales

En la primera mitad del siglo pasado Paul Zwicky había estado observado agrupaciones de galaxias ligadas por atracción gravitatoria, siendo el primero en utilizar el Teorema de virial. Del estudio de las velocidades radiales de ocho galaxias en el cúmulo Coma, Zwicky encontró una dispersión de velocidad inesperadamente grande $\sigma_{cz} = (1019 \pm 360)$ km s⁻¹ (recalculado en la actualidad por valor moderno $\sigma_{cz} = 1082$ km s⁻¹ obtenido por Colless y Dunn [1996]). Zwicky concluyó de estas observaciones que la densidad media del grupo Coma tendría que ser ~ 400 (valor moderno recalculado de ~ 50) veces mayor que la derivada de la materia luminosa (se sobreestimó la relación masa-luz del grupo Coma por asumir un parámetro de Hubble de $H_o = 558$ km s⁻¹ Mpc⁻¹ cuando su valor moderno de $H_o = 67.15$ km s⁻¹ Mpc⁻¹), como conclusión de sus observaciones el mismo postula: "Si se confirma esta sobredensidad, llegaríamos a la sorprendente conclusión de que la materia oscura está presente en Coma con una densidad mucho mayor que la materia luminosa ... De estas consideraciones se deduce que la gran dispersión de velocidad en Coma representa un problema no resuelto"

presente en la referencia Bergh [1999]

y con ello nace la primera mención de materia oscura en el ámbito científico moderno. En la actualidad se continuan los intentos por comprender el problema galáctico de la masa visible faltante, ejemplos se pueden encontrar proyectos de simulaciones [Deur, 2020; Wu y Kroupa, 2015] o mediante la comparacion empírica con los datos experimentales Mielke *et al.* [2006], con altos niveles de predicción.

Otra evidencia viene de las lentes gravitacionales (Fig. 1-3). La gravedad afecta a todo el espectro de ondas electromagnéticas, incluyendo radio, infrarrojos, luz visible y ultravioleta, siendo el grado de desviación mayor mientras mayor sea la masa que actúa como lente gravitacional, siento esta predicción unos de los mayores resultados de Einstein, en estos cálculos se pudo evidenciar el efecto para cálcular el valor de masas de grandes cúmulos midiendo las desviaciones de la luz.

Figura 1-3: Diagrama de cúmulo de galaxias que actúa como lente gravitatoria para una galaxia muy distante.

Dadas sus características los lentes gravitacionales son un importante herramienta para detectar la materia oscura, resultado de la comparación de lo resultados experimentales con los resultados de la relatividad general que predice la dinámica dependiente de la masa visible.

Resultado de las observaciones realizadas por el Chandra de rayos X de la NASA y el Telescopio Espacial Hubble al estudiar el grupo MACSJ0025.4-1222, se realizó el seguimiento

Figura 1-4: (a) Coalisión de dos cúmulos de galaxias 1E 0657-56 conocida como cúmulo bala , (b) Simulación por computadora de la futura colisión prevista de las dos galaxias más grandes del Grupo Local, Andrómeda (M31) y la Vía Láctea.

de la colisión de dos cúmulos de galaxias (ver Fig. 1-4a), en este se detecta como la temperatura de la materia bariónica aumenta y esta se emiten rayos X. Siendo las áreas azules de la Fig. 1-4 un mapa reconstruido de la materia oscura hecha mediante el uso de lentes gravitacionales, la materia bariónica se muestra en rosa mostrándose separada de la mayoría de la materia que comprende los grupos que se muestran en azul [Marsh, 2019].

En las investigaciones del proceso evolutivo del universo se hace necesario tener en cuenta la presencia de la materia oscura que frena la aceleración de la expansión y la energía oscura que lo acelera. Se hace necesario para los modelos cosmológicos del Big Bang considerar la presencia de los elementos oscuros para que exista correspondencia con las medidas de los parámetros asociados con la métrica **FLRW** (Friedmann-Lemaître-Robertson-Walker) de la relatividad general.

Estos resultados cosmológicos han motivado a los físicos teóricos de altas energías a postular nuevos modelos en los cuales la composición de la materia oscura se pueda entender por medio de nuevas partículas elementales no descritas en el modelo estándar y que sin embargo podrían estar siendo producidas en los aceleradores de partículas modernos como el Gran Colisionador de Hadrones en Ginebra, Suiza. Los modelos propuestos se encuentran en la categoría que se conoce como extensiones al modelo estándar y por lo general involucran la existencia de nuevas partículas cuyas fuerzas e interacciones están descritas por alguna variación de la teoría cuántica de campo, lo que sugiere que sus mecanismos de producción y propiedades pueden ser estudiados por el formalismo de la física de partículas y la parte experimental por medio de los detectores de partículas con métodos de recolección de datos, selección de eventos y técnicas estadísticas para el análisis y extracción de posibles señales.

1.2.2 Composición de la materia oscura

En los primeros años de estudio del problema de la materia oscura en el Universo, se propuso que esta podría ser materia bariónica y otras partículas ligadas a ellos en forma de objetos compactos masivos pero con una emisión electromagnética muy débil. Entre estos candidatos a materia oscura bariónica se encuentran los gases no luminosos, los objetos compactos y masivos de los halos galácticos (MACHOs) y las enanas marrones, sin embargo, múltiples líneas de evidencia contradicen este hecho, ya que contribuyen muy poco a la densidad crítica del Universo.

Entonces ante la propuesta de que la materia oscura puede estar compuesta por materia no bariónica, esta se puede clasificar en caliente, tibia o fría. Esta clasificación está relacionada con la dispersión de velocidades de la partícula en el momento en que se desacopló del plasma primigenio:

- Materia oscura caliente: aquellas que se mueven ultrarrelativistamente. Estas hacen referencia a una determinada partícula χ de masa m_χ con una velocidad relativista al momento de desacoplarse del plasma primigenio, por lo tanto, su temperatura cumple con la condición T_χ ≫ m_χ.
- Materia oscura fría : aquella que no se mueven relativistamente al momento de desacoplarse (v_χ ~ 0), por lo cual T_χ ≪ m_χ.
- Materia oscura templada o tibia : aquella que se mueven relativistamente.

Algunos de los candidatos a materia oscura más populares en el área de la física de partículas son:

• Axiones: Esta partícula es el bosón pseudo-Goldstone que resulta del rompimiento espontáneo de la simetría Peccei-Quinn, [Niemeyer, 2019]. Esta simetría se postula en 1977 en las extensiones del modelo estándar para resolver el problema de la violación carga-paridad CP² de la interacción fuerte en QCD. Las observaciones cosmológicas y las mediciones en los aceleradores de partículas acotan la masa del axión a valores de ≤ 10⁻² eV por lo que cae en la categoría de materia oscura fría. Una de las características de los axiones es que dado que tiene interacciones extremadamente débiles con otras partículas, éstas podrían no estar en equilibrio térmico en el Universo temprano.

²Se basa en la composición de la simetría \mathbf{C} y la simetría \mathbf{P} , la primera afirma que las leyes de la Física son invariantes ante cambios de partículas de carga positiva a negativa y la segunda postula que la invarianza bajo inversiones especulares.

WIMPs(Weakly Interacting Massive Particles) : son partículas que se desacoplan siendo no relativistas cuando el Universo tenía una temperatura de ≃ 1 GeV, por lo que caen en la clasificación de materia oscura fría, [Gianfranco Bertone, 2018]. Las masas de los WIMPs abarcan un intervalo de 10 GeV – 1 TeV. Como su nombre lo indica, es un partícula que interactúa débilmente y gravitacionalmente con el resto de las especies del modelo estándar.

Entre los candidatos se encuentran:

- LSP(Lightest Supersymmetric Particle): es el nombre genérico dado a la más ligera de las partículas hipotéticas adicionales que se encuentran en los modelos supersimétricos. En modelos con conservación de paridad R , el LSP es estable; en otras palabras, el LSP no puede descomponerse en ninguna partícula del SM ya que poseen paridad R opuesta. Algunos ejemplos más conocidos son el sneutrino ligero, el neutralino ligero y el gravitonio.
- LKP (Lightest Kaluza-Klein Particle) : son las partículas hipotéticas que cumplen con la teoría de Kaluza-Klein (teoría KK) unificadora de la gravitación y electromagnetismo construida alrededor de la idea de una quinta dimensión más allá de los cuatro habituales del espacio y el tiempo, siendo considerada precursor de la teoría de cuerdas. Algunos de sus candidatos ligeros son el fotón KK y el neutrino KK, con masas en la escala TeV (para mas información, ver referencia Servant y Tait [2003]).
- SIMPs (Strongly Interacting Massive Particles) : se supone que los piones oscuros interactúan mucho más fuertemente entre sí, se sugiere que en el universo primitivo los piones oscuros habrían chocado entre sí, reduciendo la cantidad de materia oscura, pero a medida que el universo se expande, las partículas colisionarían cada vez con menos frecuencia, hasta ahora, cuando se extienden de manera tan delgada que casi nunca se encuentran. En la nueva hipótesis, los piones de materia oscura están formados por quark de materia oscura que se mantienen unidos por gluones de materia oscura. (Los quarks ordinarios están unidos por gluones normales), en esta propuesta el gluón oscuro tendría masa, [Maxim Laletin, 2019].
- SUSY(SUperSYmmetry): postula la existencia de partículas supersimétricas compañeras al SM, pero con espín diferente, [Dris Boubaa, 2020]. Esta se presenta como una simetría de tipo espacio-temporal. Una extensión supersimétrica del SM resuelve los principales problemas de jerarquía dentro de la teoría.

Las partículas supersimetrías son los candidatos más populares para la física de partículas no descubiertas. Esta supersimetría hipotética relaciona las propiedades de los bosones y los fermiones, y a pero a pesar de estar por ser verificada experimentalmente, es parte fundamental de muchos modelos teóricos.

De forma general el SM se construye a partir de simetrías fundamentales que dan lugar a leyes de conservación. En el caso de SUSY, esta incluye todas las simetrías que ya contiene el SM y añade otra más que involucra al espín. Esta teoría postula que a cada partícula del SM le corresponde un compañero supersimétrico que tiene el espín contrario, de modo que, por cada fermión, SUSY añade un bosón y por cada bosón se añade un fermión. Por tanto, el número de partículas predichas es el doble que en el SM, como se visualiza en la Figura 1-5.

Debido a que dichas compañeras supersimétricas aún no han podido ser creadas en el laboratorio, sus masas deben ser mucho mayores que las de las partículas originales. La especificación de dicho mecanismo da lugar al Modelo Mínimo Estándar Supersimétrico **MSSM** (Minimal Supersymmetric Standard Model), que intenta explicar el problema de la materia oscura del universo, [Tofighi A., 2009; Maniatis, 2009].

1.2.3 Extensión del Modelo Estándar con Supersimetría

El primer modelo supersimétrico compatible con el modelo estándar de la física de partículas es el **MSSM**, que fue enunciado en el año 1981 por Howard Georgi y Savas Dimopoulos. El modelo postula la existencia de partículas supersimétricas en la región entre $10^2 - 10^3 GeV$, prediciendo su aparición en los experimentos de colisiones de partículas aceleradas.

Figura 1-5: Extensión del Modelo Estándar bajo la existencia de la supersimetría (SUSY).

El **MSSM** no es la única opción posible para la supersimetría más allá del **SM**, pero sí es la más popular dada su simplicidad, introduce el higgsino, thewino, el zino, junto con todos los squarks y sleptons (ver Fig. 1-5). La única forma inequívoca de reclamar el descubrimiento de la supersimetría es producir superpartículas en el laboratorio. Debido a que se espera que las superpartículas sean de 100 a 1000 veces más pesadas que el protón, se requiere una gran cantidad de energía para generarlas en los aceleradores de partículas. Sin embargo, ninguna de las compañeras supersimétricas de las partículas del **SM** han sido observadas hasta el momento.

Lagrangiano del modelo MSSM.

El **MSSM** impone la paridad R para explicar la estabilidad del protón agregando una ruptura de supersimetría al introducir operadores explícitos en el Lagrangiano que se le comunica mediante una dinámica desconocida, significando la presencia de 120 parámetros nuevos en el **MSSM**. Aunque no se conoce el mecanismo de ruptura de **SUSY**, este debe ser implementado de forma de que pueda proveer la solución al problema de jerarquía incluso en presencia del rompimiento de ésta. Para ello, las relaciones entre los acoplamientos adimensionales de la teoría antes del rompimiento deben mantenerse. El lagrangiano efectivo del **MSSM** tiene la forma:

$$\mathcal{L}_{MSSM} = \mathcal{L}_{SUSY} + \mathcal{L}_{soft}$$
(1-2)

donde \mathcal{L}_{SUSY} contiene todas las interacciones de gauge de Yukawa preservando la supersimétrica, más información en la referencia Kuroda [2005]. El potencial **MSSM** viene dado por la expresión:

$$W_{\text{MSSM}} = Q_L Y_U H_2 U_R + Q_L Y_D H_1 D_R + L_L Y_E H_1 E_R + \mu H_2 H_1$$
(1-3)

donde Q_L , $H_{1,2}$, D_R , L_L , E_R son los supercampos correspondientes a supermultipletes quirales ³, μ es la constante de acoplamiento de Higgs y $Y_{U,R,E}$ son los acoples de Yukawa, un desarrollo mas detallado se encuentran en las referencias Kuroda [2005]; Perez [2020]. El lagrangiano que rompe **SUSY**, \mathcal{L}_{soft} , no está completamente determinado y su forma explícita así como el conjunto de parámetros involucrados dependen del mecanismo particular de ruptura de **SUSY** implementado, siempre manteniéndose invariante frente $SU(3)_C \otimes SU(2)_L \otimes$ $U(1)_Y$. Los términos soft proveen exitosamente de las masas de las partículas supersimétri-

³Los estados de partícula de una teoría supersimétrica son representados en el álgebra de SUSY como supermultipletes que contiene ambos estados, fermión y bosón, emparejandose en forma de supercompañeros, estos emparejamientos pueden ser quirales, haciendo referencia al tipo de simetría.

cas, a fin de que sean más pesadas que sus correspondientes compañeras del **SM**, y la ruptura espontánea de la simetría electrodébil requerida a bajas energías es necesaria para explicar la masa de las partículas.

En un tratamiento fenomenológico completo todos los parámetros del **MSSM** deberían dejarse libres y determinarse a partir de los datos observados, y luego de que los parámetros hayan sido medidos, de ahí se podría intentar extraer información de la física subyacente que está asociada con escalas de energía mayores a la de los experimentos. Sin embargo, realizar predicciones y análisis fenomenológicos con esta cantidad de parámetros no es posible, por lo cual es necesario realizar suposiciones para reducir los grados de libertad. Es debido a este motivo que no existe una definición precisa del **MSSM**.

Hay además problemas con la propia teoría **MSSM**, la mayoría de ellos resultado de la interpretación de los parámetros que lo componen. Por ejemplo, el parámetro de masa del Higgsino μ (último término en el superpotencial de la ec. 1-3) debe tener muchos órdenes de magnitud menores a la escala de Planck, esta cuestión es llamada problema μ . Mas aún, los términos de ruptura de la supersimetría también deben ser del mismo orden de magnitud que la escala electrodébil. Los términos adicionales en el lagrangiano del **MSSM** deben ser invariantes de **CP**, sin embargo hasta el momento ninguna violación de **CP** fuera del **SM** ha sido predicha, por lo que sus fases de violación **CP** deben ser pequeñas.

Más allá del modelo MSSM.

El NMSSM (Next-to-Minimal Supersymmetric Standard Model) es una extensión supersimétrica del Modelo Estándar [Maniatis, 2009], este agrega un término adicional en el superpotencial de la ec. 1-3 para violar la simetría Peccei–Quinn por medio de un término cúbico de auto-acoplamiento, $\mu H_2 H_1 \rightarrow \lambda S H_2 H_1 + \frac{1}{3}\kappa S^3$ [CMS Collaboration, 2019a], de esta forma se genera dinámicamente el parámetro μ resolviendo el problema derivado del mismo. En MSSM, el sector de Higgs está altamente restringido, al extenderlo, se amplia esta restricción y se reducen las limitantes experimentales predichas en la teoría.

Con está extensión se incluye un supercampo adicional como vimos anteriormente y se prevé la existencia de siete bosones de Higgs, tres bosones neutros $h_{1,2,3}$ con simetría CP-par, dos bosones neutros $n_{1,2}$ con CP-impar, y un par de Higgs cargados H^{\pm} . En los modelos **NMSSM**, dos de los tres bosones de Higgs neutros pares h_1 o h_2 pueden descomponerse en uno de los dos bosones de Higgs neutros impares de **CP** a través de $h_{1,2} \rightarrow 2n_1$, este debe satisfacer la condición $2m_{n_1} < m_{h_{1,2}}$.

Debido a que no se ha observado ninguna de las partículas supersimétricas predichas, si

es que existe **SUSY**, ésta debe estar rota. Para mantener la solución al problema de jerarquía, incluso en presencia del rompimiento simetría, este debe ser suave incluyendo términos soft al lagrangiano. Para el caso de **NMSSM** el rompimiento de **SUSY** es introducido explícitamente.

El rompimiento espontáneo de **SUSY** ocurre en un "sector oscuro"⁴ con partículas que no tienen acoplamientos directos con el "sector visible"⁵ del **NMSSM**, sin embargo, estos dos sectores comparten algunas interacciones que son las responsables de mediar el rompimiento de la supersimetría desde el sector oscuro al visible.

En modelo SUSY oscuro o Dark-SUSY supone como origen de la ruptura espontánea U(1) (una simetría global de Peccei–Quinn) el acoplamiento débil de unos fotones oscuros γ_D a sus homólogos del SM a través de un parámetro de mezcla cinética ϵ descrito introducido en el lagrangiano:

$$\mathcal{L}_{\mathbf{KM}} \sim \frac{\epsilon}{2} F^{\gamma}_{\mu\nu} F^{\mu\nu} \tag{1-4}$$

donde $F_{\mu\nu}^{\gamma} = \partial_{\mu}A_{\nu}^{D} - \partial_{\nu}A_{\mu}^{D}$ y A^{D} es el campo de calibración oscuro. Si el A_{D} es masivo, entonces las partículas **SM** adquieren una carga adicional bajo la interacción con el sector oscuro. Además, en los escenarios típicos de **Dark-SUSY**, el mezcla cinética del parámetro ϵ está dentro del intervalo $10^{-8} - 10^{-2}$ [CMS Collaboration, 2019a]. En este caso se teoriza que el neutralino n_{1} en el sector visible de **SUSY** ya no es estable y puede descomponerse a través de procesos como $n_{1} \longrightarrow n_{D} + \gamma_{D}$, donde n_{D} es un fermión oscuro (neutralino oscuro) que escapa a la detección con los instrumentos existentes actuales.

Con el desarrollo del modelo **NMSSM** y los modelos de supersimetría en el sector oscuro **Dark-SUSY**, es posible teorizar un conjunto de criterios de búsqueda destinados a minimizar los eventos de fondo sin dejar de ser independientes de los modelos utilizados. Suponiendo que γ_D solo puede descomponerse en partículas **SM**, muchas líneas de investigación realizan exploraciones para los posibles decaimientos $h \rightarrow 2n_1$, donde se incluye 4μ [CMS Collaboration, 2016, 2013], 4τ , 4ℓ [CMS Collaboration, 2018; LHCb collaboration, 2016], $4\ell/4\pi$ [CMS Collaboration, 2018], $4\ell/8\ell$ [ATLAS Collaboration, 2016a], 4b [ATLAS Collaboration, 2018b, 2016b], 4γ [ATLAS Collaboration, 2014], $2b/2\tau$ [ATLAS Collaboration, 2018a], $2\mu 2\tau$ [Collaboration, 2015] y 6q [CMS Collaboration, 2016] como posibles estados finales, siendo estos análisis contribuciones a un cuerpo existente de trabajo experimental en la búsqueda de nuevos bosones.

⁴Proceso no observable con partículas de materia oscura

⁵Procesos observables con partículas de materia bariónica

Decaimiento del fotón oscuro

Una de las características más importantes de una partícula es su tiempo de vida, esta depende, de los modos o canales de decaimiento disponibles, que al mismo tiempo están sujetos a las leyes de conservación para los números cuánticos apropiados, la fuerza de acoplamiento del proceso de decaimiento y las restricciones cinemáticas. De forma individual, es impráctico predecir la vida útil de una partícula, pero se puede especificar una distribución estadística para una muestra grande de partículas. De esta manera, es común tratar esta propiedad en términos de la tasa o ancho del decaimiento Γ , definida como la probabilidad por unidad de tiempo de que una partícula decaiga.

La probabilidad de que una sola entidad inestable deje de existir, despues de existir por cierto intervalo, es proporcional a ese mismo intervalo y su constante de proporcionalidad, se define como tasa de descomposición. Para un conjunto de $N \rightarrow \infty$ partículas elementales idénticas, la variación del número de partículas después de un tiempo t está dada por:

$$dN = -\Gamma N dt \qquad \rightarrow \qquad N(t) = N(0)e^{-\Gamma t}$$
 (1-5)

El tiempo después del cual se espera que el conjunto se reduzca a 1/e de su tamaño es definido como tiempo de vida:

$$\tau = \frac{1}{\Gamma} \tag{1-6}$$

Si hay múltiples modos de disminución disponibles $\Gamma_{\text{Total}} \equiv \Gamma$, entonces se puede asociar una tasa de disminución para cada modo, y la tasa total, será la suma de las tasas de los modos individuales:

$$\Gamma_{\text{Total}} = \sum_{i=1}^{n} \Gamma_i \tag{1-7}$$

En tales casos, a menudo nos interesan las características de algunas fracciones de ramificación, y con ellas, las probabilidades de descomposición por modos individuales:

$$B_i = \frac{\Gamma_i}{\Gamma_{\text{Total}}} \tag{1-8}$$

El ancho parcial para la descomposición del fotón oscuro en leptones **SM** se tiene una expresión obtenida de su desarrollo en la referencia [Batell *et al.*, 2009], dada por:

$$\Gamma_{\gamma_D \to \bar{\ell}\ell} = \frac{1}{3} \alpha \epsilon^2 m_{\gamma_D} \sqrt{1 - \frac{4m_\ell^2}{m_{\gamma_D}^2} \left(1 + \frac{2m_\ell^2}{m_{\gamma_D}^2}\right)}$$
(1-9)

Figura 1-6: Valores de R (izquierda) y de probabilidad $B_{\gamma_D \to \mu\mu}$ (derecha) con el valores teóricos de masa del fotón oscuro.

donde m_{ℓ} es la masa del leptón y los diferentes modos de descomposición comienzan desde $m_{\gamma_D} > 2m_{\ell}$. Además, el fotón oscuro se descompondrá en hadrones del **SM** para masas $m_{\gamma_D} > 2m_{\pi}$, con ancho parcial dado por:

$$\Gamma_{\gamma_{\mathbf{D}} \to \text{ hadrones}} = \frac{1}{3} \alpha \epsilon^2 m_{\gamma_D} \sqrt{1 - \frac{4m_{\mu^2}}{m_{\gamma_D}^2}} \left(1 + \frac{2m_{\mu}^2}{m_{\gamma_D}^2}\right) R(s = m_{\gamma_D}^2)$$
(1-10)

donde $R = \sigma_{e^+e^- \to hadrons}/\sigma_{e^+e^- \to \mu^+\mu^-}$ ⁶, donde σ es la sección eficaz, los valores son calculados en la referencia Batell *et al.* [2009]. Según las ecs. (1-9) y (1-10), los anchos de decaimientos son dependientes de ϵ y m_{γ_D} , estos pueden factorizarse como $(\Gamma_{\gamma_D \to \mu^+\mu^-}/\epsilon^2)^{-1} = f(m_{\gamma_D})$, donde $f(m_{\gamma_D})$ es solo dependiente de la masa del fotón oscuro. Los anchos de decaimientos para los diferentes modos de decaimiento del fotón oscuro y su ancho total (todos divididos por ϵ^2 para demostrar solo la dependencia de los anchos con m_{γ_D}) se muestran en la Tabla 1-1. La relación de ramificación para la descomposición del fotón oscuro a un par de muones $B_{\gamma_D \to \mu\mu} = \Gamma_{\gamma_D \to \mu^+\mu^-}/\Gamma_{\gamma_D}$ no depende de ϵ , y se muestra como función de m_{γ_D} .

Las expresiones para los anchos parciales permiten el cálculo del tiempo de vida del fotón oscuro:

$$\tau_{\gamma_D} = \frac{1}{\Gamma_{\gamma_D}} = \frac{1}{\Gamma_{\gamma_D \to e^+e^-} + \Gamma_{\gamma_D \to \mu^+\mu^-} + \Gamma_{\gamma_D \to \text{hadrones}}}$$
(1-11)

El tiempo de vida está directamente relacionada con el parámetro ϵ y la masa del fotón oscuro

⁶Valores en enlace https://pdg.lbl.gov/2020/hadronic-xsections/rpp2020-hadronicrpp_page1001.dat

m_{γ_D}	0.5 GeV	1 GeV	2 GeV	3 GeV	4 GeV
$B_{\gamma_D \to \mu\mu}$	$ 0.4021 \pm 0.0023$	0.301 ± 0.012	0.239 ± 0.004	0.2375 ± 0.0028	0.1938 ± 0.0053
$\mid m_{\gamma_D} \; (\text{GeV})$) 5 GeV	6 GeV	7 GeV	8 GeV	8.5 GeV

Tabla 1-1: Probabilidades de descomposición del fotón oscuro γ_D a par de muones.

Figura 1-7: (a) Ilustración esquemática de la conexión entre el sector oscuro y el modelo estándar, los cuales están conectados mediante un término de mezcla dinámica. (b) Diagrama de Feynman **Dark-SUSY** del proceso vía $h \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D \rightarrow 2n_D + 4\mu$.

se obtiene:

$$\tau_{\gamma_D}(\epsilon, m_{\gamma_D}) = \frac{f(m_{\gamma_D})}{\epsilon^2} \tag{1-12}$$

Es conveniente representar el tiempo de vida τ_{γ_D} en unidades de distancia $c\tau_{\gamma_D}$, donde c es la velocidad de la luz. Las restricciones sobre ϵ y la masa del fotón oscuro podrían obtenerse a partir de las restricciones sobre el tiempo de vida del fotón oscuro porque están directamente relacionadas entre sí como se ve en las expresiones anteriores. Específicamente para esta investigación, se tratan con di-muones reconstruidos a partir de pares de muones con carga opuesta que comparten un vértice común y deben tener una masa invariante $m^{(\mu\mu)}$ inferior a 9 GeV, esta restricción garantiza que no haya contribución al fondo del bosón Z ni del sistema mesón Y CMS Collaboration [2019b].

La descomposición del bosón neutralino visible n_1 a un par de muones con carga opuesta es equivalente a $\mathcal{B}(n_1 \to 2\mu)$, con la inclusión de los modelos oscuros de **SUSY** que teorizan la ruptura de una nueva simetría $U(1)_D$ dando lugar el fotón oscuro masivo γ_D , el cual es dependiente de su masa m_{γ_D} y el parámetro de mezcla cinética. Este proceso se muestra como una posible exploración de gran interés científico. El tiempo de vida corto de la partícula γ_D no se limita a valores pequeños ya que se espera que se mantenga estable por cierto período. Por lo que es importante acomodar la posibilidad de fotones oscuros de larga duración en las búsquedas requeridas. El diagrama de Feynman **Dark-SUSY** del proceso vía $h \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D \rightarrow 2n_D + 4\mu$ se muestra en la Fig. 1-7b. Este modelo de referencia es solo un escenario posible, y se elige como una representación única de un rango muy amplio de espacio de parámetros disponibles .

Este modelo simple del sector oscuro se puede ampliar de varias maneras; versiones más complejas involucran otros bosones oscuros de Higgs, W y Z y también hay muchos otros procesos permitidos, como por ejemplo $pp \rightarrow h \rightarrow Z_D Z/Z_D Z_D/Z_a \rightarrow 4\mu$ [Curtin *et al.*, 2017].

Capítulo 2 – Experimento LHC y Detector CMS

En este capítulo se realiza una descripción del experimento **CMS**, se definen conceptos básicos correspondientes a la Física de Altas Energías experimental. Se introducen las herramientas personalizadas para el trabajo de simulación, análisis y caracterización en el área de partículas, entre estas se encuentras **ROOT**, Delphes , Pythia8 o Madgraph . Además, se introducen elementos comparativos para la caracterización del experimento en las configuración actual Run-2 y en la prevista en el futuro correspondiente a Alta Luminosidad.

2.1 Física de Altas Energías con LHC

La Organización Europea para la Investigación Nuclear o **CERN**(Conseil Européen pour la **R**echerche **N**ucléaire)es el laboratorio de física de partículas más grande del mundo. Este laboratorio proporciona los aceleradores de partículas y otra infraestructura necesaria para la investigación de física de alta energía; como resultado, se han construido numerosos experimentos en el **CERN**. En la Fig. 2-1 se muestra un diagrama de las instalaciones y los proyectos en los que está dividido.

El **CERN** es fundamentalmente un conjunto interconectado de aceleradores de partículas cuyo primer elemento, el Sincro-Ciclotrón de protones o **SC** (Synchro-Cyclotron) se empiezó a construir a mediados de 1955, sustituido por el Gran Coalisión de Hadrones o **LHC**(Large Hadron Collider) puesto en funcionamiento el 2008. En la actualidad, gran parte de la actividad experimental que se realiza en el **CERN** está concentrada en la construcción de los experimentos para el **LHC**:

 ATLAS (A Toroidal LHC ApparatuS) : Investiga una amplia gama de física, desde la búsqueda del bosón de Higgs hasta dimensiones adicionales y partículas que podrían formar materia oscura. Aunque tiene los mismos objetivos científicos que el experimento CMS, utiliza diferentes soluciones técnicas y un diseño de sistema magnético diferente. Página del proyecto : https://atlas.cern

- CMS(Compact Muon Solenoid) : Tiene un amplio programa de física que va desde el estudio del Modelo estándar (incluido el bosón de Higgs) hasta la búsqueda de dimensiones y partículas adicionales que podrían formar materia oscura. Está construido alrededor de un gran imán de solenoide. Página del proyecto : https://cms.cern/detector
- LHCb (Large Hadron Collider beauty) : experimento especializado en física del quark b, algunos de cuyos objetivos son la medida de parámetros de violación de simetría CP en las desintegraciones de hadrones que contengan dicho quark o la medida de precisión de las fracciones de desintegración ("branching ratios") de algunos procesos extremadamente infrecuentes. Página del proyecto: http://lhcb-public.web.cern.ch/lhcb-public
- ALICE (A Large Ion Collider Experiment) : es un detector de iones pesados, estudiar la física de la materia que interactúa fuertemente a densidades de energía extremas, donde se forma una fase de la materia llamada plasma quark-gluón. Página del proyecto: http://aliceinfo.cern.ch/Public/Welcome.html

Figura 2-1: Diagrama de los experimentos que componen el centro de investigación del CERN.¹

Uno de los experimentos considerado por sus resultados de los mas importantes es el **CMS**, el cual es uno de los detectores multi-usos del **CERN** como se puedo constatar anteriormente, dicho detector tiene la capacidad de cubrir un amplio rango de procesos físicos, siendo este junto con el experimento **ATLAS** los que reportaron la observación de la partícula de Higgs en el 2012. El mismo es uno de los recursos principales para las investigaciones relacionadas con la exploración de la materia oscura.

¹Página de origen: https://theconversation.com/goodbye-for-a-while-to-the-large-hadron-collider-12238
Actualización para alta luminosidad (HL-LHC)

El experimento **LHC** está continuamente en proceso de actualización aumentando continuamente el valor de su luminosidad \mathcal{L} y la eficiencia de sus detectores, de esta forma proporciona mediciones más precisas de nuevas partículas y permite observar raros procesos teorizados y de esta intentar aumentar nuestros conocimientos de la materia oscura. El aumento de la luminosidad (siguiendo el procedimiento de la referencia Alonso [2016]) se debe a que el número de eventos de un dado proceso producidos en un colisionador está dado por:

$$N = \mathcal{L}\sigma \tag{2-1}$$

donde σ es la sección eficaz del proceso físico y \mathcal{L} es la luminosidad integrada del acelerador. La luminosidad instantánea es uno de los parámetros más importantes para caracterizar el funcionamiento del acelerador, definida como el número de partículas (protones o iones pesados en el caso del **LHC**) por unidad de tiempo y unidad de área, y puede calcularse mediante la relación:

$$\mathcal{L} = f_{\mathbf{rev}} n_b \frac{\mathbf{N}_1 \mathbf{N}_2}{\mathbf{A}} \tag{2-2}$$

donde f_{rev} es la frecuencia de revolución, n_b es el número de bunches (paquetes de protones) por haz, N_i es el número de partículas en cada bunch y A es la sección efectiva del haz, que puede expresarse en término de los parámetros del acelerador como:

$$A = \frac{4\pi\epsilon_n\beta^*}{\gamma\mathbf{F}} \tag{2-3}$$

donde ϵ_n es la emitancia transversal normalizada (la dispersión transversal media de las partículas del haz en el espacio de coordenadas e impulsos), β^* es la función de amplitud en el punto de interacción, relacionada al poder de focalización de los cuadrupolos), γ es el factor relativista de Lorentz y F es un factor de reducción geométrico, debido al ángulo de cruce de los haces en el punto de interacción.

Después de 2019, la ganancia estadística al ejecutar el acelerador sin un aumento considerable de luminosidad más allá de su valor de diseño fue más de la prevista. El tiempo de ejecución necesario para reducir a la mitad el error estadístico en las mediciones. Por lo tanto, para mantener el progreso científico y explorar su capacidad total, el **LHC** necesitará un aumento decisivo de su luminosidad. Por eso, cuando el Consejo del **CERN** adoptó la Estrategia Europea para la Física de Partículas en Bruselas el 30 de mayo de 2013, se acordó que su primera prioridad sería: "La máxima prioridad de Europa debería ser la explotación de todo el potencial del *LHC*, incluido el actualización de alta luminosidad de la máquina y los detectores con el fin de recopilar diez veces más datos que en el diseño inicial, alrededor de 2030"

cita traducida de la referencia Wells [2015]

Además se reemplazarán los imanes triples internos (el responsable de exprimir el rayo en caso de colisión) y de todos los cambios de hardware necesarios para permitir una ambiciosa actualización de luminosidad. Con algunas de las modificaciones ya cumplidas en 2019 (LS2), esta nueva fase de la vida del LHC se ha denominado "LHC de alta luminosidad" (HL-LHC) y tiene la aspiración de alcanzar el sorprendente umbral de 3000 fb^{-1} en 10-12 años, entregarando hasta la actualización aproximadamente $\sim 300 fb^{-1}$ durante ese período (ver Fig. 2-2).

Figura 2-2: Plan de actualización del experimento LHC.²

Con la actualización del **LHC** se espera aumentar los conocimiento más allá del Modelo Estándar y su bosón de Higgs, siendo sus apuestas a la misteriosa materia oscura, con la teoría de la supersimetría. Pero para lograr actualizar una maquinaria tan compleja a tan gran escala se planifica una década en completarse. Esta extraordinaria empresa técnica dependerá de una combinación de imanes superconductores de vanguardia, cavidades de radiofrecuencia superconductoras compactas y ultraprecisas para la rotación del haz, así como enlaces superconductores de alta potencia de 100 m de largo con disipación de energía cero. Además, las altas luminosidades generarán nuevas demandas de vacío, criogenia y protección de la máquina, y requerirán nuevos conceptos para la colimación y el diagnóstico, modelado avanzado para el haz intenso y nuevos esquemas de cruce del haz para maximizar la salida física de las colisiones.

²Página de origen: https://hilumilhc.web.cern.ch/content/hl-lhc-project

2.2 Experimento CMS

El experimento Solenoide Compacto de Muones o **CMS**(Compact Muon Solenoid) tiene la capacidad de cubrir un amplio rango de procesos físicos, este experimento consiste de varios subsistemas los cuales están diseñados para la identificación de prácticamente todas las partículas del modelo estándar. Para su diseño se tomó en cuenta cómo cada partícula interacciona con la materia, por ejemplo las partículas cargadas son identificadas por medio de detectores a base de silicio y de gas noble, permitiendo determinar con precisión el tiempo y localización de las partículas. La variedad de interacciones por tipo de partícula se puede ver en la Fig. 2-3.

Figura 2-3: Detector de solenoide de muón compacto. El detector consta de varias capas, cada una responsable de medir diferentes tipos de partículas.³

El **CMS** es un detector de propósito general, capaz de estudiar múltiples aspectos de las colisiones de protones hasta 14 TeV, este contiene sistemas para medir la energía y la cantidad de movimiento de fotones, electrones, muones y otras partículas producto de las colisiones [Ressegotti, 2019]. Las divisiones de las capas detectoras (ver Fig. 2-3) serán tratadas en las secciones siguientes.

³Página de origen: http://ippog.web.cern.ch/resources/2011/cms-slice-july-2010-version

2.2.1 Detector de trazas de silicio

E1stá compuesto por un conjunto de capas que se sitúan inmediatamente sobre el tubo por donde circulan los haces de protones. Se compone de unos 17.000 sensores de silicio extremadamente finos que se distribuyen en varias capas y distintas orientaciones con el objeto de reconstruir la trayectoria y la determinación del momento de las partículas cargadas que los atraviesan. En la Fig. 2-4b se aprecia cómo se distribuyen esos elementos desde el PIXEL (primer elemento) hasta los elementos más externos (TOB y TEC). El eje horizontal (z) representa el eje del tubo del colisionador y el eje vertical (r) representa la distancia desde el tubo del colisionador. Cuando una partícula cargada atraviesa el detector, va dejando una traza de su trayectoria.

Figura 2-4: (a) Representación tridimensional del detector de trazas; (b) Diagrama del detector de traza.

Para calcular el momento de una partícula el rastreo de su camino a través de un campo magnético; cuanto más curvaba el camino, menos impulso tenía la partícula. El detector de trazas **CMS** registra los caminos tomados por las partículas cargadas al encontrar sus posiciones en varios puntos clave. De esta forma se reconstruyen los caminos de muones de alta energía, electrones y hadrones (partículas formadas por quarks), así como ver las huellas que provienen de la descomposición de partículas de vida muy corta.

El Detector de trazas es reemplazado antes del inicio de la Fase 2, ya que se esperan daños por radiación significativos al final de Run-3. Para mantener óptima la reconstrucción se disminuye el tamaño de píxel y se acorta el tiempo de respuesta. Además, será posible una medición de momento en unos pocos microsegundos, permitiendo mejoras en la resolución P_T .

2.2.2 Calorímetro electromagnético o ECAL

Este es un componente diseñado para medir con alta precisión las energías de electrones y fotones, está construido a partir de cristales de plomo tungstato $PbWO_4$, por ser un material extremadamente denso pero ópticamente transparente, de aquí que se utilize para detener partículas de alta energía, este material está hecho principalmente de metal y es más pesado que el acero inoxidable. Para mayor precisión espacial, el **ECAL** también contiene detectores de "*preshower*" que se encuentran frente a las tapas finales, permitiendo distinguir entre fotones individuales de alta energía (a menudo signos de física emocionante) y los pares cercanos menos interesantes de fotones de baja energía. Está calibrado para discriminar entre de piones y fotones.

2.2.3 El calorímetro de hadrones o HCAL

Este mide la energía de los hadrones, además, proporciona una medición indirecta de la presencia de partículas no cargadas que no interactúan, como los neutrinos. Consta de capas de material denso (latón o acero) intercaladas con baldosas de centelleadores de plástico, leídas a través de fibras que cambian la longitud de onda mediante fotodiodos híbridos, de esta forma se permite la máxima cantidad de material absorbente dentro de la bobina magnética.

2.2.4 Solenoide supercondutor

Este es el dispositivo central alrededor del cual se construye el experimento, con un campo magnético que permite determinar la relación carga/masa de partículas a partir de la pista curva que siguen en el campo magnético. Tiene 13 m de largo y 6 m de diámetro, y sus bobinas de niobio-titanio superconductoras refrigeradas estaban destinadas originalmente a producir un campo magnético . Es componente tiene la función de doblar los caminos de las partículas que emergen de colisiones, permitiendo determinar con la trayectoria curvada por el campo magnético el impulso, combinado con mediciones de posición de alta precisión en los detectores de muones, esto permite una alta medición en sus resultados.

2.2.5 Detector de muones

Siendo los muones partículas cargadas siendo 200 veces más masivas que los electrones y positrones, se espera que se produzcan en la descomposición de una serie de posibles partículas nuevas. Debido a que los muones pueden penetrar varios metros de hierro sin interactuar, ninguno de los calorímetros de **CMS** los detiene. Por lo tanto, las cámaras para detectar muones se colocan en el borde mismo del experimento, donde son las únicas partículas que pueden registrar una señal. Para identificar muones y medir sus momentos se hace uso del principio de ionización, CMS utiliza cuatro tipos de detectores; Tubos de deriva o DT (Drift Tubes), Cámaras de banda catódica o CSC (Cathode Strip Chambers), Cámaras de placas resistivas o RPC (Resistive Plate Chambers) y multiplicadores de gas de electrones o GEM.

Tubos de deriva o DT.

Figura 2-5: Sistema de los tubos de deriva o DT.

Este sistema mide las posiciones de los muones, este tiene forma de tubo de ~ 4 cm de ancho que contiene un alambre estirado dentro de un volumen con gas $Ar(85\%)/CO_2(15\%)$. Cuando un muón atraviesa el volumen ioniza el gas interno y como resultado este expulsa electrones de los átomos del gas, siguiendo la dirección del cable cargado positivamente. Se registran la posición de los choques de los electrones a lo largo del cable, bajo un campo uniforme de ~ $50\mu m/ns$ y conocida la velocidad (media) de estos y registrando el tiempo desde la generación se detecta la posición original de los mismos.

Cámaras de banda catódica o CSC

Estas consisten en un arreglo de alambres positivamente cargados(ánodo) cruzados por tiras de cobre negativemente cargadas(cátodo) dentro de un volumen gaseoso (ver Fig. 2-6a). Cuando los muones lo atraviezan, desprenden electrones de los átomos del gas, que transitan hacia los alambres del ánodo creando una avalancha. Los iones positivos, por el contrario se mueven hacia el cátodo de cobre, también induciendo un pulso de cargaen las tiras en un ángulo recto a la dirección de los alambres.

Puesto que tiras y alambres son perpendiculares se tienen dos coordenadas posicionales para el muon que las atravieza. Y consta de 6 capas para una identificación más certera y poder alinearse en coincidencia con la señal del tracker.

Figura 2-6: (a) Representación de la cámara de banda catódica; (b) Traza de la señal al registrar muones.

Cámaras de placas resistivas o RPC

Figura 2-7: Diagrama de las cámaras resistivas.

Son detectores de gases rápidos que proporcionan un sistema de activación de muones paralelo a los de los **DT** y **CSC**. Los **RPC** consisten en dos placas paralelas, un ánodo con carga positiva y un cátodo con carga negativa, ambos hechos de un material plástico de muy alta resistividad y separados por un volumen de gas (ver Figs. 2-7).

Cuando un muón atraviesa la cámara, los electrones se eliminan de los átomos de gas. Estos electrones a su vez golpean a otros átomos provocando una avalancha de electrones. Los electrodos son transparentes a la señal (los electrones), que en su lugar son recogidos por tiras metálicas externas después de un pequeño pero preciso retraso de tiempo. El patrón de las tiras de impacto da una medida rápida del impulso del muón, que luego es utilizado por el disparador para tomar decisiones inmediatas sobre si vale la pena conservar los datos. Los **RPC** combinan una buena resolución espacial con una resolución de tiempo de solo un nanosegundo (una mil millonésima de segundo).

Los detectores de multiplicador de gas de electrones o GEM

Estos representan un nuevo sistema de muones en **CMS**, con el fin de complementar los sistemas existentes en los extremos. La región delantera es la parte de **CMS** más afectada por las grandes dosis de radiación y las altas tasas de eventos, y se prevee que estos parámetros mejorarán durante la fase 2 del **LHC**. Las cámaras **GEM** proporcionarán puntos de medición adicionales permitiendo una mejor identificación de la pista de muones y también una cobertura más amplia en la región más avanzada.

Los detectores **GEM** están hechos de tres capas, cada una de las cuales es una lámina de poliimida revestida de cobre de 50 micrones de espesor. Estas cámaras se llenan con una mezcla de gas, donde se producirá la ionización primaria debida a los muones incidentes.

Actualización

Figura 2-8: Una sección transversal R-z de un cuadrante del detector CMS.⁴.

⁴Sacada de la referencia Collaboration [2017]

En la actualización realizada durante la Fase 1 resultó en la incorporación de nuevas cámaras **RPC** mejoradas se denominan **iRPC** (ver Fig. 2-8), que se instalarán junto a las cámaras **CSC** (Cathode Strip Chamber) **ME3/1** y **ME4/1**. Las marcas **RPC** en la Fig. 2-8 se refiere a las cámaras **RPC** ya presentes en el año 2017. Los nuevos detectores de muones que se instalarán como parte de las actualizaciones del detector (**GEM** y **iRPC**) están diseñados para mantener un rendimiento excelente durante toda la operación del **HL-LHC**. Para proyectar el deterioro a largo plazo de los actuales detectores de muones y componentes electrónicos durante los próximos 20 años, se ha desarrollado un modelo de envejecimiento, basado en tasas de falla medidas y estimadas en función de la dosis y el tiempo de radiación, estos se reportan en la referencia Collaboration [2017]. Los estudios demuestran claramente que las actualizaciones propuestas son necesarias para mantener el rendimiento actual del sistema de muones.

Detector	DT	CSC RPC iRPC G		GE1/1	GE2/1	ME0	
rango de η	0-1.2	0.9-2.4	0-1.9	1.8-2.4	1.6-2.15	1.6-2.4	2.0-2.8

Tabla 2-1: Rango de detección de la pseudorapidez para los componentes del detector CMS.

El objetivo del programa LHC de Alta Luminosidad o HL(High Luminosity) es recopilar una luminosidad integrada de 3000 fb^{-1} , opcionalmente hasta 4500 fb^{-1} , en aproximadamente ocho años de operaciones a partir de 2028 y con una luminosidad máxima de $7.5 \times 1034 \ cm^{-2}s^{-1}$. El aumento de la luminosidad instantánea dará como resultado hasta 200 colisiones inelásticas protón-protón por cruce de racimo (pileup) mientras que la luminosidad integrada conducirá a un entorno de radiación hostil sin precedentes.

El diseño esperado después de Fase 2 del detector de trazas se muestra en la Fig. 2-9, la región interna o Inner Tracker (IT), donde $r < 20 \ cm(r < 30 \ cm$ para $|z| > 120 \ cm$), se espera una instrumentaria con alta granularidad detectores de píxeles que garantizan un reconocimiento de patrones eficiente en el entorno de alta densidad de pistas para la de HL. Específicamente, las características principales del detector actualizado serán:

- Contribuir a que el disparador L1 mida a 40 MHz el momento de partículas cargadas y rechace aquellas con P_T < 2 GeV.
- Aumentar la eficiencia de detección para valores de $|\eta| < 4$ que previamente era de $|\eta| < 2.4$.

⁴Adaptada de la Fig. 1 de la referencia Migliore [2019]

 Garantizar una medición precisa del momento y mantener un bajo nivel de rastreos falsos mediante una óptimización de diseño y una reducción del "*material budget*".

Figura 2-9: Diagrama de una cuarta parte del diseño del detector de trazas **CMS** para HL-L**HC** en la dirección z del detector. Los módulos de chips de lectura internos o Inner Tracker 1x2 y 2x2 se muestran en verde y amarillo respectivamente, los módulos externos o Outer Tracker PS y 2S en azul y rojo.⁵.

2.2.6 Identificación y Reconstrucción de Muones

La identificación de partículas es parte del proceso de análisis y estudio en el **LHC**, para hacer eficiente el proceso de detección, algoritmos y nuevos conceptos tuvieron que definidos e implementados para un aprovechamiento del equipamiento, con la intención de maximizar las observaciones válidas de las partículas que se estudian, en especial la identificación de procesos en los que intervienen los muones sigue siendo uno de los objetivos del proyecto por lo que se hace necesario analizar parte del proceso de identificación y reconstrucción de muones.

Reconstrucción de muones.

La reconstrucción de muones es resultado de la implementación de un algoritmo sistémico que se ejecuta en un software de reconstrucción que utiliza información de impacto para rechazar objetos físicos, muones. La reconstrucción de muones se realiza en el detector de trazas y el sistema de muones, y se compone de tres pasos secuenciales: reconstrucción local, reconstrucción independiente y reconstrucción global.

En la Fig. 2-10 se puede observar como aumenta la capacidad del experimento **CMS** para diferentes condiciones del experimento, en esta se evidencia el aumento de la detección de

Figura 2-10: Eficiencia de reconstrucción de los muones en condiciones de Run-2 (izquierda) y HL (derecha).

Figura 2-11: Resolución en la medición del momento de los muones en condiciones de Run-2 (izquierda) y HL (derecha).

los muones con valores de $\eta > 2.4$, esto es parte del proceso de actualización a Alta Luminosidad. Además la resolución de los valores de momento reconstruidos de los muones en las condiciones actuales del experimento y en las previstas de alta luminosidad se puede ver en la Fig. 2-11, es clara la disminución del error para la región común ($0 < \eta < 2.4$).

La reconstrucción local utiliza la información del golpe recopilada por el sistema muon para construir pistas; entonces, la información de la pista, como entrada, se alimenta al algoritmo de reconstrucción independiente. La reconstrucción global utiliza no solo información de reconstrucción independiente, sino también golpes de seguimiento de silicio. La reconstrucción del muón coincide con el camino del muón desde el sistema de muones al detector de trazas de silicio. La reconstrucción independiente se llama reconstrucción de Level-2 y la reconstrucción global se llama reconstrucción de Level-3. Los muones reconstruidos por reconstrucción independiente y global se denominan, respectivamente, muones independientes y muones globales.

Identificación de muones.

La "D0 muon ID" es un algoritmo utilizado para seleccionar candidatos a muones y es un algoritmo complementario para la reconstrucción estándar. A diferencia de la reconstrucción estándar, utiliza información de energía adicional de ECAL y HCAL, y está al revés en términos de información del detector. Muon Identificación primero reconstruye las pistas de los detectores de trazas de silicio y luego utiliza la información de la ECAL y la HCAL.

También se consideran los detectores que no están asociados con ningún rastro de muones independiente, lo que le permite reconstruir algunos muones de p_T bajos sin suficiente energía para alcanzar el sistema muónico. Estos bajos p_T muones pueden no ser reconstruidos como muones globales, pero son identificados por el algoritmo de identificación de muones. Los muones reconstruidos por el algoritmo de identificación se denominan muones rastreados ("tracker muons").

Aislamiento de muones

Ya que se espera que los muones provenientes de la señal estén aislados sin depósitos sustanciales en el detector de trazas y en los calorímetros, entonces definiéndose un cono alrededor del muón como se muestra en la Fig. 2-12a y considerando las posiciones del detector de trazas y calorímetro dentro de él, se calcula la energía transversal total $E_{\rm T}$

El muón se considera aislado si estas deposiciones no exceden algunos umbrales. La aplicación del aislamiento en la selección de muones ayuda a reducir el fondo proveniente de

Figura 2-12: (a) Ilustración esquemática del cono de aislamiento. La dirección del muón en el vértice define el eje del cono; (b) Segmentación en el plano $\eta \times \phi$ en CMS sobre el que se muestran torres de energía definidas para coincidir con la segmentación o resolución del calorímetro, basada en la Fig. 1 de la referencia Pi *et al.* [2005].

muchas fuentes, especialmente **QCD**, pero también de objetos pesados como Z y W+jets En muchas investigaciones, se han estudiado y aplicado muchos criterios de aislamiento, utilizando información de los detectores. La elección más robusta y típica realizada es aquella que contemple a todos los detectores, para tener un análisis con un criterio de aislamiento híbrido, dependiente de p_T , basado en una combinación de información en el detector de trazas, **HCAL** y **ECAL**. Específicamente, la variable de aislamiento basada en el detector de trazas $SumP_T$ se define como la suma escalar del p_T en el plano $\eta \times \phi$ del detector de trazas dentro del cono correspondiente a $\Delta R < 0.3$ donde:

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \tag{2-4}$$

donde η es la pseudorapidez y ϕ el ángulo azimutal. Entonces, alrededor del muón (0.01 < $\Delta R < 0.3$ en el plano del detector) se define como:

$$SumP_T = \sum_{0.01 < \Delta R < 0.03}^{\text{tracking}} p_T^{\text{tracking}}$$
(2-5)

En los calorímetros, las variables $hadE_T$ y emE_T , correspondientes a la HCAL y ECAL respectivamente, se calculan como la suma escalar de la energía transversal depositada sobre

las torres de los calorímetros (ver Fig. 2-12b) en un cono de $\Delta R < 0.3$ alrededor del muón:

$$hadE_T = \sum_{0.01 < \Delta R < 0.03}^{\mathbf{HCAL}} E_T^{\mathbf{torres}} \quad y \quad emE_T = \sum_{0.01 < \Delta R < 0.03}^{\mathbf{ECAL}} E_T^{\mathbf{torres}}$$
(2-6)

El aislamiento del detector de trazas es más importante que el de los calorimétricos, pero una combinación de los posibles aislamiento unidos a **ECAL** y **HCAL** funciona mejor. Esta combinación se construye como:

$$Iso_{\mu} = hadE_T + emE_T + Sump_T \tag{2-7}$$

Para los propósitos de esta investigación se realiza un corte para partículas con valores de $Sump_T > 0.25$ para la configuración Run-2 y $Sump_T > 0.2$ para la configuración Alta Luminosidad del detector (su simulación sera tratada en secciones siguientes), siendo los criterios estándar utilizados e implementados por los investigadores.

Eficiencia Muon

Las secciones anteriores describen brevemente cada parte del experimento **CMS** desde la vía interna, más cercana a la línea del haz, hasta el sistema de muones más externo. Muchos análisis físicos requieren la probabilidad de que un muón se reconstruya como un objeto muón, dado que el muón se produce en un evento. En general, esa probabilidad se llama eficiencia, siendo la relación entre el número de muones que pasan los criterios deseados y el número total de muones producidos, se puede definir como:

$$\epsilon_{\mu} = \epsilon_{\text{track}} \times \epsilon_{\text{id}} \times \epsilon_{\text{iso}} \times \epsilon_{\text{trig}} \tag{2-8}$$

donde ϵ_{track} es la eficiencia del detector de trazas de muones (ver Figs. 2-10), es decir, la probabilidad de que un muón producido en un evento también se reconstruya; ϵ_{id} es la eficiencia de identificación del muón, o sea, la probabilidad de que un muón pase por un grupo de criterios de selección que permitan la coincidencia del rastreador de trazas con el identificado en la zona del detección de muones, esto dado que es un muón reconstruido; ϵ_{iso} es la eficiencia de aislamiento del muón, la probabilidad de que un muón reconstruido esté aislado bajo criterios de corte haciendo uso de la ec. 2-7, este se aplica en forma de un corte de los datos de entrada (ver sección anterior); ϵ_{trig} es la eficiencia del disparador, la probabilidad de que un muón reconstruido y aislado se dispare en términos de un umbral de p_T dado.

Figura 2-13: Eficiencia de reconstrucción de los muones en condiciones de Run-2 (izquierda) y HL (derecha).

La eficiencia de la reconstrucción muónica presentada en la Fig. 2-13 depende de dos factores principales: la configuración de los detectores **CMS** y el valor del momento transversal $p_{\rm T}$ de los muones. Toda esta información es resumida en archivos *.tcl característicos para uso del programa **Delphes**, aunque solo se describe de forma simplista y general el sistema.

2.3 Simulación en Altas Energías

Gracias a la infraestructura desarrollada dentro del experimento **CMS**, los equipos de análisis de física de altas energías ahora pueden preservar fácilmente su código de análisis en formatos de contenedores Linux, de modo que pueda usarse con fines de reinterpretación, con ellos viene incluido como una receta, el orden exacto en que las diversas tareas de un análisis deben llevarse a cabo y el conocimiento de cómo usarlo exactamente para poder extraer nueva ciencia.

Entre las herramientas más básicas y robusta de la biblioteca desarrollada por el **CERN** es el programa orientado a objetos **ROOT**, este fue originalmente fue diseñado para el análisis de datos de física de partículas y contiene varias características específicas de este campo. Es-

te proporciona todas las funcionalidades necesarias para manejar el procesamiento de grandes datos, el análisis estadístico, la visualización y el almacenamiento. Está escrito principalmente en C++ pero integrado con otros lenguajes como Python y R, es la base también de muchos de sus sistemas, conteniendo las librerías necesarias para su ejecución.

El proyecto **RECAST** (Request Efficiency Computation for Alternative Signal Theories) combina la motivación científica para un poderoso programa de reinterpretación en el LHC con las capacidades técnicas que ofrecen los lenguajes de flujo de trabajo y los entornos de software. Los principales grupos de búsqueda dentro de la colaboración LHC ahora requieren que se conserven nuevos análisis utilizando estas nuevas herramientas, de modo que cuando los teóricos proponen un nuevo modelo de física, la colaboración puede reutilizar estos análisis archivados para derivar una primera evaluación a través de la reinterpretación. También se espera que los análisis conservados se usen en una ola de estudios de resumen planificados una vez que se finalicen los análisis de datos de la segunda ejecución del LHC, entre ellos los modelos supersimétricos, de esta forma permitir una evaluación detallada del estado de la supersimetría más allá del alcance más estrecho de los modelos individuales.

2.3.1 Implementando ROOT

Como ya se trato anteriormente \mathbf{ROOT}^6 es un "*framework*" para el procesamiento de datos, nacido en el **CERN**, dedicado principalmente para la investigación sobre física de altas energías. Todos los días, miles de físicos utilizan aplicaciones **ROOT** para analizar sus datos o realizar simulaciones, entre sus utilidades encontramos:

- Guardar datos: compactación en forma binaria comprimida en un archivo de extensión *.root, siendo archivos autodescriptivos, por lo que facilita obtener información sobre los modelos utilizados para describirlos. Su característica principal es ser un contenedor de datos llamado árbol, con sus subestructuras ramas ("branch") y hojas ("leave"). Un árbol puede verse como una ventana deslizante a los datos sin procesar, tal como se almacenan en un archivo. Los datos de la siguiente entrada en el archivo se pueden recuperar avanzando el índice en el árbol. Esto evita los problemas de asignación de memoria asociados con la creación de objetos y permite que el árbol actúe como un contenedor liviano mientras se maneja el almacenamiento.
- Acceso a los datos: se accede a los datos guardados en uno o varios archivos ROOT desde la web o sistemas de entrega de archivos a gran escala. Los árboles ROOT distribuidos en varios archivos se pueden encadenar y acceder como un objeto único, lo que

⁶Página del Proyecto: https://root.cern.ch

permite bucles sobre grandes cantidades de datos.

- Mina de datos: posee potentes herramientas matemáticas y estadísticas para operar con sus datos, todo sobre C++, preparado para el procesamiento en paralelo cuando se requiera la manipulación de los mismos. Permite la generación de cualquier distribución estadística y modelados, logrando simular sistemas complejos.
- Gráfica resultados: los datos se pueden mostrar con histogramas, diagramas de dispersión, funciones de ajuste ya integradas como herramientas en su biblioteca.
- Ejecución interactiva o creación de aplicaciones: Puede usar el intérprete Cling C++ para sus sesiones interactivas y para escribir macros, o puede compilar su programa para que se ejecute a toda velocidad, siempre dando la posibilidad de crear una interfaz gráfica de usuario.

Hay muchas herramientas creadas a partir de **ROOT**, entre ellas se pueden destacar el generador **MC** (Monte Carlos) Madgraph, y entre las herramientas interactivas a **EVE**.

2.3.2 Generador Monte Carlos con Madgraph

Las colisiones de alta energía entre partículas elementales normalmente dan lugar a estados finales complejos, con grandes multiplicidades de hadrones, leptones, fotones y neutrinos. La relación entre estos estados finales y la descripción física subyacente no es simple, ya que no se posee una comprensión completa de la física a implementar y cualquier enfoque analítico se vuelve intratable por las grandes multiplicidades.

La forma de abordar este problemática es generando eventos completos por los métodos de **MC**, la complejidad se domina mediante una subdivisión del problema completo en un conjunto de tareas separadas más simples, simulando todos los aspectos principales de los eventos: selección de procesos duros, la radiación de estado inicial y final, los restos de haces, la fragmentación, las desintegraciones, el cálculo de secciones transversales y su coincidencia con generadores de eventos, etc. Esto resulta en eventos que deben ser directamente comparables con los observables experimentales y de esta forma programas pueden usarse para extraer la física de las comparaciones con los datos existentes, o para estudiar la física en experimentos futuristas.

Con el objetivo de reproducir un análisis LHC, y siendo una de sus herramientas mas importantes desarrollada por el proyecto y la solución a los problemas anteriormente planteado, tenemos a MadGraph5_aMC [Alwall *et al.*, 2014] siendo un *"framework"* que tiene como objetivo proporcionar todos los elementos necesarios para la fenomenología del SM y extensiones, permitiendo el uso de una variedad de herramientas relevantes para generación,

manipulación y análisis de eventos.

La salida del mismo son archivos .lhe o LHEF (Les Houches Event File), estos datos son los que obtenemos de un generador MC(Monte Carlos) como MadGraph5_aMC. Esta salida contiene varios parámetros cinemáticos de todas las partículas involucradas en los procesos junto con la descripción de procesos simulados, parámetros de modelo y condiciones de ejecución. El análisis con LHEF se realiza para comprender varias propiedades cinemáticas básicas de la muestra de MC producida. Las variables cinemáticas asociadas con diferentes partículas del evento se pueden obtener utilizando este método.

El principal conjunto de herramientas que componen la herramienta MadGraph5_aMC, o a las que puede ser integrada son: Delphes (de Favereau *et al.* [2014]), MadAnalysis4 y MadAnalysis5 [Conte *et al.*, 2013], ExRootAnalysis, Golem95 [Binoth *et al.*, 2008], QCDLoop, maddm, maddump, pythia8 [Sjostrand *et al.*, 2015], lhapdf5 y lhapdf6 [Buckley *et al.*, 2015], collier [Denner *et al.*, 2017], hepmc, mg5amc_py8_interface, ninja, oneloop. Su implementación se hace necesaria para estudios de partículas, dada su versatilidad, aunque sea una herramienta de altas exigencias en conocimiento de programación y trabajo en el sistema Linux.

Para uso futuro como parte de esta investigación se profundizará en las herramientas pythia8 y Delphes, estás a pesar de poderse ejecutar de forma independiente pueden ser integradas con facilidad dentro del programa de Madgraph y de esta manera planificar la receta de nuestro proceso a reconstruir.

2.3.3 Hadronización con pythia8

El programa pythia8 [Sjostrand *et al.*, 2015] es una herramienta estándar para la generación de colisiones de alta energía con mas de 35 años de desarrollo y actualización, este comprende un conjunto coherente de modelos físicos para la evolución de un proceso difícil de pocos cuerpos a un estado final multihadrónico complejo. Contiene una biblioteca de procesos y modelos complejos para los estados inicial y final del "*parton showers*" [Nagy y Soper, 2018], múltiples interacciones de "*parton-parton*", "*beam remnants*", "*tring fragmentation*" y "*article decays*". También tiene un conjunto de utilidades e interfaces para programas externos.

Las versiones anteriores se escribieron en Fortran, aunque ha sido completamente reescritura C++. Su versión mas actual es una opción atractiva para los estudios de física del LHC pero el programa también se utiliza para una multitud de otros estudios fenomenológicos o experimentales. Las principales tareas realizadas por el programa incluyen la exploración de las consecuencias experimentales de los modelos teóricos, el desarrollo de estrategias de búsqueda, la interpretación de datos experimentales y el estudio del rendimiento del detector. De este modo, abarca toda la vida útil de un experimento, desde los primeros conceptos de diseño para el detector hasta la presentación final de los datos.

Limitaciones

Los modelos de física incorporados en Pythia8 se centran en colisiones de partículas de alta energía que tienen energías de Centro de Masa (CM) mayores de 10 GeV. Con energías inferiores a 10 GeV, ingresamos a la región de resonancia hadrónica, donde estas aproximaciones se rompen, y por lo tanto los resultados producidos por Pythia8 no serían confiables. Por otro lado, solo es conocido pruebas explícitas de la física de Pythia8 que modela hasta energías CM de aproximadamente 100 TeV.

El programa solo funciona con colisiones hadron-hadron o lepton-lepton, las instalaciones internas para manejar las colisiones protón-núcleo o núcleo-núcleo no están consideradas. Entre los hadrones incluidos se encuentra el antiprotón, antineutrón, el pión y, como caso especial, el Pomeron. Todavía no hay ninguna disposición para las colisiones de leptones-hadrones o para los haces de fotones entrantes.

La producción de partículas salientes es en vacío y la simulación de la interacción de las partículas producidas con el material detector no está incluida en Pythia8. Las interfaces con los códigos de simulación de detectores externos pueden ser escritas directamente por el usuario o realizadas a través de la interfaz HepMC.

Procesos incluidos

Una gran cantidad de procesos están disponibles internamente, y aún más a través de interfaces para programas externos. Las adiciones internas recientes incluyen varios escenarios para la física de Hidden Valley, procesos adicionales que involucran dimensiones adicionales, más procesos supersimétricos (**SUSY**), manejo extendido de R-hadrones y más estados de charmonium y bottomonium. En la correspondiente última versión 8.2, los siguientes procesos están disponibles internamente:

• Los procesos de Electrodébiles o EW (ElectroWeak): incluyen la producción rápida de fotones, la producción individual de γ/Z y $W\pm$, así como la producción de pares de bosones débiles con correlaciones de fermiones completas.

- Producción de fermiones de cuarta generación: a través de interacciones electrodébiles o fuertes.
- Los procesos de Higgs: incluyen la producción del bosón Higgs del SM, así como los múltiples bosones Higgs de un modelo genérico de dos dobletes de Higgs o 2HDM(Two-Higgs-Doublet Model). La implementación interna de SUSY también utiliza la implementación 2HDM para su sector Higgs.
- Los procesos SUSY: incluyen la producción de pares de partículas SUSY, así como la producción resonante de squarks a través de la paridad *R* que viola la interacción UDD. Las interferencias electro débil se han tenido en cuenta cuando sean relevantes. Se puede hacer que tanto los squarks como los gluinos formen R-hadrones de larga vida, que posteriormente se descomponen. En el medio, es posible cambiar el contenido de sabor ordinario de los hadrones R, mediante interacciones (implementadas por el usuario) con el material del detector.
- Los procesos de calibre de bosones : se incluyen la producción de un Z' (con interferencia completa de γ*/Z/Z'), un W'[±] y un bosón de calibre de acoplamiento horizontal (entre generaciones) R⁰.
- Otros Procesos : Los procesos QCD, procesos simétricos de izquierda a derecha, producción de leptoquark, procesos de composición, procesos de Hidden Valley, procesos extradimensionales, producción Top, Onia.

2.3.4 Simulando el detector con Delphes3

Este simula la respuesta de un detector compuesto por un rastreador interno (The silicon Tracker), calorímetros electromagnéticos y de hadrones (**ECAL** y **HCAL**) y un sistema detector de muones (ver referencia de Favereau *et al.* [2014]). Todos están organizados concéntricamente con una simetría cilíndrica alrededor del eje del haz.

En Delphes, la reconstrucción e identificación de objetos se basa en una serie de aproximaciones para acelerar sensiblemente el procedimiento y mantener una buena precisión.

Los muones que se origina en la interacción, tiene cierta probabilidad de ser reconstruido, según la parametrización de eficiencia definida por el usuario. Esta probabilidad se desvanece fuera de la aceptación del rastreador, y para momentos de muón por debajo de algún umbral para rechazar partículas en bucle. El momento final del muón se obtiene mediante una "gaussian smearing" del vector inicial de 4 momentos. La resolución es parametrizada en función de p_T y η .

⁷Adaptado del artículo de origen Alwall et al. [2014]

Figura 2-14: Perfil de diseño básico de la geometría del detector genérico asumido en Delphes.⁷

El "framework" Delphes permite el acceso a datos de diferentes formatos de archivo (ProMC, HEPMC, STDHEP y LHEF). Los archivos de eventos provenientes de generadores externos MC son procesados primero por un lector, este convierte partículas estables en una colección de objetos universales, para luego ser procesada por una serie de módulos que comienzan con el módulo de fusión acumulada y terminan con el módulo de buscador de objetos único. Finalmente, Delphes permite al usuario almacenar y analizar eventos en un formato de árbol raíz al ejecutar DelphesHepMC tomando un archivo de configuración *.tcl ("Delphes card") y realizando la simulación del detector en el archivo *.hepmc . La información sobre varios objetos MC (partículas) y objetos reconstruidos (jets, partículas reconstruidas), estas se guardan en un archivo *.root en forma de árboles ("trees") Delphes, el archivo de salida *.root se puede abrir usando el mismo programa ROOT.

Capítulo 3 – Herramientas de generación de datos y redes neuronales

En este capítulo se presenta la metología de la generación simulada correspondiente a la señal de decaimiento del higgs a dos di-muones fundamentada en la teoría **Dark-SUSY** (ver Fig. 1-7b), bajo las condiciones Run-2 y Alta Luminosidad de los detectores **CMS** descrita brevemente en la sección 2.2.

Este proyecto se organizó en cuatro etapas en como se observa en el diagrama de la Fig. 3-1. Primeramente, se genera la simulación de los decaimientos bajo diferentes condiciones iniciales, buscando que sea suficientemente flexible a distintas condiciones de trabajo sin perder la eficiencia en el proceso de implementación computacional. La información pertinente al estudio es extraída del gran conjunto de datos simulados y almacenada en archivos formato **HDF**. Posteriormente se ajustan modelos de regresión para generalizar la información haciendo uso de herramientas de regresión y tratamiento de datos con redes neuronales. Finalmente, se hace un estudio estadístico y análisis de los resultados.

La información recopilada debe ser debidamente procesada, dada las limitantes tecnológicas a las que se tiene acceso, de tal forma, que permita la reconstrucción de resultados en condiciones cercanas a las ya conocidas, existen en el ámbito científico varios métodos

Figura 3-1: Secuencia lógica del análisis del proyecto.

para abordar esta problemática uno de los más sencillo es el hacer uso de herramientas de regresión y tratamiento de datos con redes neuronales, este forma parte del tercer grupo de herramientas desarrolladas. Además se presenta un identificador con respuesta binaria de dimuones para una identificación de fotones oscuros como los esperados por la señal de la Fig. 1-7b.

Finalmente en el capítulo siguiente se procederá al análisis estadístico característico de la física del proceso al que se le está estudiando, su interpretación y discusión es la intencionalidad de los resultados obtenidos

3.1 Generación de los datos

Los procesos de simulación de física de altas energías poseen algunas desventajas, entre ellas están los altos conocimientos en programación requeridos para su utilizacion, los altos requerimientos computacionales para generar las simulaciones y para guardar los resultados. La configuración correcta de las herramientas computacionales a usar, la preparación del entorno o sistema sobre el que se ejecutarán y la optimización de los recursos a usar, deben ser objeto de planificación ante de la ejecución final.

3.1.1 Generalidades

Los programas principales requeridos para la simulación del proceso **Dark-SUSY**, para su uso en esta investigación son los siguientes:

- MadGraph5 : generador de eventos con método de Monte Carlos (sección 2.3.2).
- Pythia8 : hadronizador (sección 2.3.3).
- Delphes : simulador del detector con el "*card*" de CMS adecuado (sección 2.3.4).
- C++ y python : recursos para análisis e integración.

Los programas anteriores deben ser integradas correctamente para correr sobre python en su versión 2, el procedimiento de instalación y configuración se pueden encontrar en su página oficial¹. Además, para su funcionamiento, las dependencias **ROOT**(sección 2.3.1), hepmc, zlib, boost, gnuplot, MG5aMC_PY8_interface y lhapdf son necesarias, algunas referidas en la sección 2.3.2.

El generador de **MC** utilizado para la generación de eventos es MadGraph5, este es la herramienta que integra y proporciona todos los elementos necesarios para la fenomenología

¹Página del proyecto: https://twiki.cern.ch/twiki/bin/view/CMSPublic/MadgraphTutorial

SM y la inclusión del **SUSY**, como los cálculos de secciones transversales, la generación de eventos y su coincidencia con generadores de eventos, y el uso de una variedad de herramientas relevantes para la manipulación de eventos y análisis. Los procesos se pueden simular con precisión para cualquier Lagrangiano definido por el usuario. MadGraph5 toma entradas en forma de varios "*string*", algunos de estos mostrados a continuación:

- proc_card.dat : descripción del proceso.
- param_card.dat : masa, decaimiento y otros parámetros del modelo.
- run_card.dat : energía del emisor, pdfset and otras configuraciones de colisión.

3.1.2 Generando señal Dark-SUSY

Ante la necesidad de flexibilizar la generación de eventos de decaimiento característicos de la Fig. 1-7 se crea un proyecto de programación con la capacidad de generar eventos en Madgraph5 bajo la variación teórica de la masa del neutralino del sector visible m_{n_1} , el neutralino oscuro m_{n_D} , del fotón oscuro m_{γ_D} y del tiempo de vida de este último $c\tau_{\gamma_D}$, además de recrear la simulación bajo condiciones del detector en Run-2 (referenciada en el trabajo como R2) y Alta Luminosidad (referenciada como HL). La estructura del proyecto se puede observar en la Fig. 3-2.

PROYECTO DARKSUSY

Figura 3-2: Estructura del proyecto de generación de eventos **Dark-SUSY**².

²Página del proyecto https://github.com/franky8939/GeneradorDarkSUSY

Para hacer uso eficiente de los recursos puestos a disposición, el proyecto generador de muestras para uso de esta investigación creado en python, fue programado con la intencionalidad de automatizar las configuraciones necesarias para su correcta ejecución, basada en el procedimiento original de integración del modelo **Dark-SUSY** en Madgraph5 presentado en https://github.com/cms-tamu/DarkSUSY_MC_MG5. El programa automatiza el cambio de los parámetros de generación, inclusión del modelo **MSSMD** o **Dark-SUSY** dentro de Madgraph y guardado automático de los resultados en un archivo externo predefinido, el flujo general del programa se puede observar en la Fig. 3-3 y los parámetros de generación con sus valores en la Tabla 3-2. El programa consta de una serie de módulos y funciones que integran todas las necesidades para la generación de las muestras necesarias:

- Acarus_genera.sh : Gestor de los recursos de SLURM, paraleliza el generador genera_v5.py en la configuración requerida.
- genera_v5.py : Iniciador de proceso de generación; incluir configuración de entrada suministrada por el usuario o la predeterminada (variable_default.py); desfazar los procesos para evitar repeticiones; reconocimiento de la información no generada *.lhe y *.root o en proceso de simulación por otro nodo (si existe) y generar petición (ALL_genera.py); copia la información en la carpeta data y reacondiciona la información final (SelectDark3.C).
- ALL_genera.py : Copia programa Madgraph5 en carpeta temporal dentro de temp haciendo uso del módulo Madg_genera.py ; configura el programa mediante el módulo Madg_modification.py ; gestiona simulación de la muestra *.lhe y *.root según lo requiera haciendo uso de los módulos lhe_genera.py o root_genera.py respectivamente; copia información simulada en la carpeta de salida data con una estructura organizada mediante el módulo out_genera.py ; borra archivos temporales.
- Madg_genera.py : hace uso de la función Madg_create para gestionar la copia del programa Madgraph5 en la carpeta temporal; actualiza el bash haciendo uso del módulo bashrc_modification.py .
- Madg_modification.py : integra el modelo MSSMD_UFO dentro de Madgraph5 ; varía las masas de las partículas dentro de la "*card*" param_card.dat ; cambia la configuración del programa según los requerimientos solicitados para que la salida sea *.lhe o *.root con la cantidad de eventos N_e.
- Ihe_genera.py : desactiva pythia8 y Delphes ; corre línea de comando para generar archivo *.lhe .
- root_genera.py : copia archivo *.lhe dentro de Madgraph5 ; reemplaza tiempo de vida

del fotón oscuro dentro del archivo *.lhe con la función replace_lifetime_in_LHE.py ; activa pythia8 y Delphes ; copia card delphes_card_CMS y delphes_card_HL según corresponda; corre línea de comando para generar archivo *.root .

 out_genera.py : crea sistema de organización por carpeta donde se exportaran los archivos simulados.

La función generadora genera_v5.py en su versión 5, creada específicamente para esta investigación, incluye una descripción de los argumentos opcionales que permiten su adaptabilidad ante situaciones alternativas a su configuración original:

genera_v5.py	[-h] [-Event EVENT] [-MNeuL MNEUL] [-MNeuD MNEUD]						
	[-MPhoD MPHOD] [-TcPhoD TCPHOD] [-Mode MODE]						
	[-Card CARD] [-Name NAME] [-Dir_Madg DIR_MADG]						
	[-Dir_Source DIR_SOURCE]						
	[-Dir_Out DIR_OUT] [-Dir_temp_Madg DIR_TEMP_MADG]						

Tabla 3-1: Función generadora de muestras MSSMD y argumentos opcionales.

Notación python	Notación científica	Definición	Valor por defecto
EVENT	N_e	Numero de eventos	1000
MNEUL	m_{n_1}	Masa del neutralino ligero	1, 2, 3, 4, 5, 10
MNEUD	m_{n_D}	Masa del neutralino oscuro	1, 2, 3, 4, 5, 10
MPHOD	m_{γ_D}	Masa del fotón oscuro	1, 2, 3, 4, 5, 6, 7, 8
TCPHOD	$c au_{\gamma_D}$	Tiempo de vida del fotón oscuro	0, 0.5, 1, 2, 3, 4, 5, 10
			20, 30, 40, 50, 100
MODE	_	Condición de funcionamiento	"in", "out"
CARD	k	Selección de detector	R2, HL
NAME	_	Nombre del archivo root de salida	_
DIR_MADG	_	Directorio de acceso a Madgraph	—
DIR_TEMP_MADG	_	Directorio temporal de Madgraph	—
DIR_SOURCE	_	Directorio de recursos	—
DIR_OUT	_	Directorio de salida	—

Tabla 3-2: Argumentos de la función generación de muestras **MSSMD**, notación, definición y valores de los mismos.

Es importante tener en cuenta que los archivos generados por MadGraph5 con extensión *.lhe se generan para diferentes condiciones de masas $(m_{n_1}, m_{n_D} \text{ y } m_{\gamma_D})$, cuando es

Figura 3-3: Diagrama de flujo de programación del proyecto de generación.

requerido, en estos se adaptada el tiempo de vida del fotón oscuro $c\tau_{\gamma_D}$ con la función replace_lifetime_in_LHE.py . En esta investigación, las diferentes condiciones de generación de la señal, son referenciadas haciendo uso del vector:

$$\vec{\alpha} = (m_{n_1}, m_{n_D}, m_{\gamma_D}, c\tau_{\gamma_D}) \tag{3-1}$$

Una vez definida los valores del vector $\vec{\alpha}$ se continua con la implementación de la herramienta de hadronización Pythia8 y por el simulador del detector Delphes, este último bajo las dos condiciones de configuración requeridas (Run-2 y Alta Luminosidad), de esta forma la estadística de comparación en la investigación se puede enfocar en las variaciones de las reconstrucciones del detector desechando el error por cambios de las condiciones iniciales. Por una cuestión de operatividad, se definen variables inicializadoras por defecto en el archivo variable_default.py, estas se corresponden con las mostradas en la Tabla 3-3, siendo las muestras utilizadas en esta investigación.

Como se puede observar el valor predeterminado de generación N_e es relativamente bajo para los requerimientos de una investigación riburosa, pero será suficiente por cuando es por motivo de exploración, el tamaño de los archivos de muestras es de $\sim 800 \text{ MB}$, además por una cuestión de espacio la información de los eventos para valores de $m_{n_1} > 10 \text{ GeV/c}^2$ se reduce para aquellos poseedores de mínimo 4 muones. La base de datos generada para propósitos de esta investigación es de ~ 2 Terasbyte.

3.1.3 Configuración e implementación de recursos en ACARUS

El recurso usado para realizar las simulaciones es el cluster ocotillo.acarus.uson.mx, este es debidamente configurado con las herramientas necesarias para la ejecución del generador

#SBATCH nodes=4	# Max numero de nodos
#SBATCH ntasks-per-node=8	# Max numero de tareas por nodo
#SBATCH ntasks=40	# Max numero de tareas totales
#SBATCH distribution=cyclic:cyclic	# Modo de distribucion de tareas
#SBATCH mem-per-tasks=1000	# Memoria asignada por tarea
#SBATCH mail-type=END	# Momento de notificacion
#SBATCH mail-user=xxx@gmail.com	# Correo a notificar
#SBATCH job-name=DarkSUSY	# Nombre del trabajo
#SBATCH time=168:0:0	# Tiempo maximo de ejecucion
#SBATCH partition=general	# Nombre de la particion
#SBATCH constraint=broadwell	
srun python genera_v5.py	

Tabla 3-3: Configuración utilizada para gestionar el uso en paralelo del generador de muestras **Dark-SUSY**.

de muestras genera _v5.py . Se hace necesario una sección autorizada en el servidor, y seguir los pasos de conexión especificados en el portal del proyecto³, todo el trabajo se realiza por medio de una terminal, cuestión que imposibilita el uso del recurso sin conocimientos previos de Linux.

Este sistema gestiona el uso de los recursos entre sus usuarios mediante un sistema de gestión de tareas y de clústeres **SLURM** (Simple Linux Utility for **R**esources **M**anagement)⁴. Esta herramienta posibilita asignar a los usuarios acceso a nodos de cómputo durante un tiempo determinado, proporciona un framework que permite iniciar, ejecutar y supervisar el trabajo y además se encarga de arbitrar la necesidad de recursos, administrando una cola de tareas pendiente.

Para el caso que nos ocupa en nuestra investigación, para poder paralelizar el proyecto de generación desarrollado en python8 se prepara un fichero "*script*" con los datos del trabajo a ejecutar y el modo de utilizar de los recursos requeridos, el usado en este proyecto posee la configuración mostrada en la Tabla 3-3. El código anterior gestiona los recursos del crúster para que se ejecute en paralelo el programa generador genera_v5.py siento este el desarrollado para generar las muestras que se precisan para la investigación.

³Página del proyecto: http://acarus.uson.mx/clusters/guia.htm

⁴La documentación relativa al uso de esta herramienta se puede encontrar en el enlace de sus desarrolladores https://slurm.schedmd.com/documentation.html

3.2 Procesamiento y conversión de los datos

Para poder realizar los estudios requeridos se hace necesario acceder a la información contenida en los archivos *.root de forma eficiente⁵. Se programa la clase classDarkSUSY.py como interpretador externo al entorno predeterminado de **ROOT** para poder acceder a la información pertinente a la investigación, está es creada en python y permite fácilmente extraer información del archivo original *.root (se hace uso de las paqueterías pyroot).

Figura 3-4: Estructura del proyecto interpretador de la información contenida en los archivos *.root ⁶.

Dada la gran cantidad de información y archivos a procesar para el análisis estadístico incluso ante un acceso eficiente, la gran dispersión de la información hace que los procesos de recolección de datos sea lento y con altos requerimientos de memoria, la forma en que se abordo esta dificultad fue incorporar la información solicitada en un mismo archivo de tipo **HDF5** (Hierarchical Data Format) la cual posee una librería de propósito general con un formato de ficheros para el almacenamiento de datos científicos, ver Fig. 3-4. Algunas de las propiedades que serán guardadas como motivos de esta investigación se encuentran las definidas en la Tabla 3-4, donde x_j hace referencia a la propiedad de interés, estás se pueden ver en la Tabla 3-4.

⁵La descripción del contenido del árbol de datos de nuestros archivos se puede observar en el enlace https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook/RootTreeDescription

⁶Página del proyecto: https://github.com/franky8939/DarkSUSY/blob/master/modules/darkSUSY/class-DarkSUSY.py

Notación	Notación	Partícula	Definición
python	x_j		
MassInv	m	$n_1, n_D,$	Masa invariante
		$\gamma_D,~\mu$	
PT	P_T	μ, γ_D	Momento en dirección transversal de la partícula.
Eta	η	μ, γ_D	Pseudoapidez, esta representa la coordenada espacial que
			describe el ángulo de una partícula en relación con el eje del
			haz.
Phi	ϕ	μ , γ_D	Ángulo azimutal.
T	c au	μ, γ_D	Tiempo de vida media, esta describe la descomposición de
			las partículas, se expresa comúnmente en términos de vida
			media, constante de descomposición o vida media.
D0	D_0	μ,γ_D	Parámetro de impacto transversal, se define como la distan-
			cia transversal al eje del haz en el punto de máxima apro-
			ximación, donde su signo esta dado de acuerdo al momento
			angular de la traza alrededor de eje.
Dz	D_Z	μ, γ_D	Parámetro de impacto longitudinal, definido como la posi-
			ción de la coordenada z de la traza en el punto de máximo
			acercamiento.
SumPt	$SumP_T$	μ	Variable de aislamiento basada en el rastreador de partículas,
			se define como la suma escalar del P_T de las partículas en el
			plano $\eta \times \phi$ dentro de un cono Ω (ver Fig. 2-12a). Solo existen
			para $k = CMS, HL.$
IsolationVar	Iso	μ	Combinación del aislamiento de ECAL, HCAL (ver sección
			2.2) y Sum P_T . Solo existen para $k = CMS$, HL.

Tabla 3-4: Algunas propiedades con sus definiciones de las partículas usadas en la investigación.

3.3 Métodos de regresión de datos

Ante la necesidad de investigar las relaciones entre diferentes variables cuantitativas los análisis de regresión son una herramienta de frecuente uso en estadística, dado que simula un proceso o modelo que analiza este vínculo entre una variable dependiente y una o varias variables independientes.

Una de las principales aplicaciones del análisis de regresión es la proyección con diferentes escenarios, teniendo en cuenta el grado de correlación sobre la variable dependiente y de esta manera construir una función que permita estimar el valor la variable de estudio⁷.

⁷Ejemplos de implementación en python se pueden visualizar en el enlace https://www.aprendemachine-learning.com/regresion-lineal-en-espanol-con-python/.

3.3.1 Modelo

La foma general analítica de una regresión no lineal tiene la forma matemática:

$$\mathbf{Y}_i == f(\mathbf{X}_i) + \varepsilon_i \tag{3-2}$$

donde Y_i y X_i son los valores de salida y entrada multidimensionales, ε_i es un parámetro multidimensional correspondiente a los residuos y f es una función de correlación.

Dado que los valores de Y_i a los que se hará referencia en esta investigación son referidos a frecuencias resultado de la aplicación de métodos estadísticos sobre alguna propiedad de nuestro conjunto de datos, entonces, $Y_i \ge 0$. La presencia de valores positivos en el rango del codominio genera un problema de continuidad, una transformación se hace necesaria para ampliar este a todos los valores reales \mathbb{R} , la solución implementada es haciendo uso de una transformación logarítmica, quedando entonces:

$$\mathbf{Y}_{i} \equiv \ln \mathbf{y}_{i} , \quad \mathbf{X}_{i} \equiv \mathbf{x}_{i}, \quad \Rightarrow \quad \ln \mathbf{y}_{i} = f(\mathbf{x}_{i}) + \varepsilon_{i}$$
(3-3)

Si hacemos supuesto que la forma de la función de f sea polinomial, entonces:

$$\ln \mathbf{y}_i = \sum_{j=0}^{\mathsf{n}} \sum_{k=1}^{\mathsf{m}} \alpha_{jk} \cdot \mathbf{x}_{ij}^k + \varepsilon_i$$
(3-4)

donde α_{jk} son las constantes del polinomio, el orden de la regresión está dado por m y los valores x_{ij} serán las variables independientes de nuestro modelo, estas son integrados en una función en python implementando la paqueteria sklearn con la flexibilidad de cambiar los valores k y n. La optimización se realiza con el algoritmo para la optimización de Adam[Kingma y Ba, 2015], siendo este basado en gradiente de primer orden de funciones objetivas estocásticas y en estimaciones adaptativas de momentos de orden inferior.

Parámetros de confianza.

Con el fin de determinar si el modelo es adecuado, se hace necesario utilizar conceptos de inferencia estadística tales como intervalos de confianza para los parámetros así como pruebas de bondad de ajuste.

El parámetro **RMSE** (**R**oot **M**ean **S**quare Error) es el error cuadrático medio o raíz de la desviación cuadrática media. Este mide la cantidad de error que hay entre dos conjuntos de datos, comparando un valor predicho y un valor observado o conocido, la ecuación que la

describe es:

$$\mathbf{RMSE} = \sqrt{\frac{\sum_{i=1}^{N} |\mathbf{Y}_{i}^{(\mathsf{sm})} - \mathbf{Y}_{i}^{(\mathsf{real})}|^{2}}{\mathsf{N}}}$$
(3-5)

donde $Y_i^{(sm)}$ es conjunto de datos predichos o simulados y $Y_i^{(real)}$ se corresponde con el conjunto de datos experimentales o observados.

El parámetro **RMSE** es siempre no negativa, y un valor de 0 indicaría un ajuste perfecto a los datos. Dado que es una raíz cuadrada del promedio de errores cuadrados, este parámetro es proporcional al tamaño del error cuadrado; por lo tanto, los errores mayores tienen un efecto desproporcionadamente mas grande, de aquí que sea sensible a los valores atípicos.

Otra prueba ampliamente utilizada es la prueba de correlación de Pearson o coeficiente de determinación \mathbb{R}^2 , esta se considera una prueba no paramétrica que mide la discrepancia entre una distribución observada y otra teórica, indicando en qué medida las diferencias existentes entre ambas, una de sus bondades es que es independiente de la escala de medida de las variables. La fórmula que da el estadístico es:

$$\mathbf{R}^{2} = \frac{\sum_{i=1}^{N} \mathbf{Y}_{i}^{(\mathrm{sm})} \mathbf{Y}_{i}^{(\mathrm{real})}}{\sqrt{\left[\sum_{i=0}^{N} \mathbf{Y}_{i}^{(\mathrm{sm})}\right]^{2} \cdot \left[\sum_{i=0}^{N} \mathbf{Y}_{i}^{(\mathrm{real})}\right]^{2}}}$$
(3-6)

El valor de este índice de correlación varía en el intervalo [-1, 1], indicando el signo el sentido de la relación, si $\mathbf{R}^2 = 1(-1)$, existe una correlación positiva(negativa) perfecta. Si $\mathbf{R}^2 = 0$, no existe relación lineal.

3.4 Redes neuronales

Las **RNA** son una estructura compuesta de un número de unidades interconectadas (neuronas artificiales), cada unidad posee una característica entrada/salida e implementa una computación local o función, la salida de cualquier unidad esta determinada, su interconexión con otras unidades, y posiblemente de sus unidades internas. La red desarrolla usualmente una funcionalidad por lo general a través de una o mas formas, por lo tanto es un arreglo masivo de elementos de procesamiento simple llamados neuronas, los cuales poseen un alto grado de interconectividad entre sus elementos, en los que la información puede fluir en cascada potenciando su capacidad para aproximar funciones, clasificar patrones y aumenta su inmunidad

Figura 3-5: Modelo genérico de una neurona artificial.⁸

frente al ruido.

El modelo genérico de neurona artificial se puede ver en la Fig. 3-5, en este se puede visualizar el funcionamiento simple de una neurona en forma de un procesador elemental, que a partir de un vector de entrada procedente del exterior o de otras neuronas, proporcionando una única respuesta o salida.

Los elementos que constituyen neurona genérica se pueden observar en la Fig. 3-5, siendo $x_j(t)$ las variables de entrada y salida, los pesos sinápticos w_{ij} representan la intensidad de interacción entre cada neurona presináptica j y la neurona postsináptica i. Las reglas de propagación $\sigma(w_{ij}, x_j(t))$ proporcionan el valor del potencial postsináptico, $h_i(t)$, de la neurona i en función de sus pesos w_{ij} y entradas $x_i(t)$, la usada en esta investigación es $h_i(t) = \sum_j w_{ij}x_j$. La función de activación o de transferencia $a_i(t) = f_i(h_i(t))$ proporciona el estado de activación de la neurona en función del estado anterior y del valor postsináptico. Además, $y_i(t) = F(h_i(t))$ representa la simultáneamente la salida de la neurona y su estado de activación.

Para la optimización de la redes implementadas es resultado de la utilización del algoritmo de optimización de Adam, siendo este una extensión del descenso de gradiente estocástico[Kingma y Ba, 2015]. Dado que es un conjunto de nodos interconectados, estás realizan al menos una de las siguientes funciones: aprendizaje, memorización, generalización o abstracción de características a partir de un conjunto de datos, adaptación y tolerancia a fallos, este será utilizado para identificar di-muones característicos del decaimiento **Dark-SUSY**(ver Fig. 1-7) y como método alternativo regresión al mostrado en la sección 3.3.

3.4.1 Identificando y reconstruyendo el fotón oscuro

Es de gran interés en esta investigación la creación de una metodología de identificación de di-muones, que pueda discernir entre los muones provenientes de la señal **MSSMD**, emparejarlos y reconstruir correctamente el fotón oscuro del cual teóricamente se espera que hayan decaído según el diagrama de la Fig. 1-7b. Esta herramienta de identificación, puede crearse, haciendo uso de las redes artificiales neuronales, ya que ella puede ser una herramienta robusta en el reconocimiento de patrones y objetos.

Figura 3-6: Diagrama de la estructura de la red neuronal dedicada a la identificación de di-muones provenientes del fotón oscuro γ_D (Izquierda); Método de acondicionamiento de los datos de entrada y salida para el entrenamiento de la red (Derecha).

Se crea una red artificial que dadas las propiedades de los di-muones, pueda informar si esta selección proviene o no de un fotón oscuro del decaimiento **Dark-SUSY** (ver Fig. 3-6). La creación de datos de entrada que son usados para entrenamiento de la red es resultado de generar todos los posibles emparejamientos por eventos dentro de la clase **GenParticle** en el árbol de los archivos *.root y generar una salida binaria correspondiente a las partículas que declara la correcta o incorrecta selección de muones según sus propiedades x_{ij} , una forma más intuitiva de entenderlo lo podemos observar en la Fig. 3-6 a la derecha, para tener generalidad se hace uso de datos con variaciones en los parámetros de generación $\vec{\alpha}$. Esto permitirá generar un identificador adaptable que incluso ante su utilización a un conjunto de datos con errores instrumentales y sistemáticos incluidos estos reportarán una mayor probabilidad que los casos de emparejamiento incorrecto.

Este problema, es equivalente al perceptrón simple, siendo una de las caracterizaciones más básicas en el área de redes neuronales artificiales. Para implementar este identificador se

hace uso de las paqueterías o herramientas de keras programando en el entorno de python. Se hace necesario funciones de activación específicas que incluyan las entradas x_{ij} y las salidas x_i , las primeras ante la necesidad de reacondicionamiento ante la gran diferencia de rango de los dominios de las variables x_{ij} , las salidas deben ser dadas en forma de probabilidades de tal manera que el sumatoria de las salidas sea normalizada y de esta manera poder imponer criterios de binarización. Dado lo cual, se utilizó la tangente hiperbólica Tanh para la que conexión entre las capas de entrada con las primeras capas ocultas $x_{ij} \longrightarrow m_1$:

$$f(x) = \frac{2}{1 + e^{-2x}} - 1 \tag{3-7}$$

Para las capas de salida $m_k \longrightarrow y_i$ se utiliza la función Softmax:

$$f(x)_j = \frac{e^{Z_j}}{\sum_{k=1}^K e^{Z_k}}$$
(3-8)

La función de activación utilizada para relacionar todas las capas ocultas es una lineal rectificada ReLU ⁹ dada por:

$$\mathbf{f}(\mathbf{x}) = \max(\mathbf{0}, \mathbf{x}) = \begin{cases} 0 & \text{para } x < 0 \\ x & \text{para } x \ge 0 \end{cases}$$
(3-9)

Para poder caracterizar la precisión del modelo clasificatorio implementado, la relación entre el número de predicciones correctas y el número total de muestras de entrada nos permitirá conocer la eficiencia del clasificador:

$$acc = \frac{N \acute{u}mero \ de \ predicciones \ correctas}{Numero \ total \ de \ predicciones}$$
(3-10)

Se implementa una caracterización para diferentes combinación de parámetros x_j como entradas, manteniendo constante la cantidad de épocas y donde se consideraron k = 1, ..., 6capas ocultas con una cantidad de neuronas dadas por $m_k = 128, 64, 32, 16, 8, 4$, los resultados se muestran en la Tabla 3-5.

De la interpretación de los resultados de la Tabla 3-5 se concluye que las propiedades P_T , $c\tau$, D_0 , D_Z no son determinantes en la identificación de los di-muones, el origen de estos resultados puede estar dado por la inclusión de casos para tiempos teóricos de vida 0, cuestión no valorada en esta investigación. Por el contrario las propiedades η y ϕ muestran

⁹Las funciones https://www.diegocalvo.es/funcion-de-activacion-redes-neuronales/

X_j consideradas					x_j consideradas								
P_T	ϕ	η	$c\tau$	D_0	D_Z	accy	$ P_T$	ϕ	η	$c\tau$	D_0	D_Z	accy
SI NO NO	NO SI NO	NO NO SI	NO NO NO	NO NO NO	NO NO NO	$\begin{array}{c} 0.61 \pm 0.16 \\ 0.82 \pm 0.04 \\ 0.90 \pm 0.03 \end{array}$	NO NO NO	NO NO NO	NO NO NO	SI NO NO	NO SI NO	NO NO SI	$ \begin{vmatrix} 0.63 \pm 0.05 \\ 0.62 \pm 0.07 \\ 0.64 \pm 0.04 \end{vmatrix} $
SI	SI	SI	NO	NO	NO	0.93 ± 0.01	NO	SI	SI	NO	NO	NO	0.95 ± 0.02

Tabla 3-5: Capacidad del identificador fotónico con variaciones en los parámetros de entrada.

Figura 3-7: Variación de la precisión del identificador durante el proceso de entrenamiento con el tiempo para una configuración de entrada dada por los $x_i = (\eta, \phi)$.

potencial válidado en el accy $\gtrsim 0.80$ razón por la cual son elegidos para formar parte de las entradas del entrenamiento final.

De concluyó que la creación de una herramienta identificadora de di-muones con las entradas consideradas para $x_j = (\eta, \phi)$ es la más adecuada encontrada, con un accy = 0.95 ± 0.02 (ver Fig. 3-7) se presenta con bajos errores que la hacen una herramienta suficientemente robusta para una investigación en la que se esperan resultados fiables. La implementación de un entrenamiento de está índole disminuiría el tiempo de cómputo, manteniendo una alta fiabilidad en los resultados obtenidos.

3.4.2 Regresión de datos

Los modelos de redes neuronales pueden ser considerados como nuevos paradigmas para el análisis estadístico de regresión lineal. Una de las razones del uso de las redes neuronales es que no necesitan el cumplimiento de supuestos teóricos como en los modelos estadísticos clásicos. El modelo del Perceptrón multicapa es equivalente a un modelo de regresión lineal, debido a la similitud de la variable de salida que se relaciona aplicando la función de activación sobre una combinación lineal de pesos con las variables de entrada.

Figura 3-8: Diagrama de la estructura general de la red neuronal para regresión.

Para la implementación de la regresión mediante **RNA**, se hizo uso de una estructura como la mostrada en la Fig. 3-8, esta posee como entrada los elementos del vector de generación $\vec{\alpha}$ y en caso de que sea necesario un elemento independiente en el caso de que se desee utilizar para reconstruir una distribución de una propiedad x_j arbitraria. La función de activación utilizada para relacionar todas las capas es una lineal rectificada ReLU como la presentada en la ec. 3-9. Por lo demás, la configuración de capas internas y nodos es semejante al identificador de la sección 3.4.1.

Capítulo 4 – Análisis y resultados

Para entender la señal del proceso **Dark-SUSY**(estos procesos corresponden con la descomposición según lo muestra el diagrama de la Fig. 1-7b), siendo el objetivo de estudio en esta investigación, se hace necesario su caracterización antes y después de simular su paso por las diferentes configuraciones del detector. Conocer la morfología de la señal real y la reconstruida por el detector nos permitirá comprender la teoría y como está es reconstruida por el experimento **CMS**.

4.1 Análisis de la señal sin detectores

Se hace necesario investigar el contenido muónico de la señal **Dark-SUSY** bajo las diferentes condiciones de generación, para hacer referencia a estas condiciones iniciales con las que se generó la señal, se hará uso del vector:

$$\vec{\alpha} = (m_{n_1}, m_{n_D}, m_{\gamma_D}, c\tau_{\gamma_D}) \tag{4-1}$$

además el número de partículas p en el i-ésimo evento generado está definido por:

$$n_i^{(p,k)} \equiv n_i^{(p,k)}(\vec{\alpha}) \tag{4-2}$$

donde k = R2, HL declara la presencia del detector y su configuración en las condiciones Run-2 o Alta Luminosidad respectivamente, estos datos se obtienen al acceder a la rama Muon resultados de la clase de mismo nombre. Además, para los casos en los que k = Trueestos hacen referencia a las propiedades de las partículas del evento resultado de la aplicación del método de MC sobre la teoría sin la implementación del detector, esta información se encuentra en la rama Particle del archivo *.root y es el resultado de la aplicación de la clase GenParticle . También, $i = 1, ..., N_e$ hace referencia al evento y $p = \mu^{\pm}$, γ_D , n_D , n_1 a la partícula caracterizada.

Definiendo a $f_{e}^{(p,k)}(x) \equiv f_{e}^{(p,k)}(x; \vec{\alpha})$ como la fracción del total de eventos poseedores de

un número x de partículas tipo p de la señal generada bajo las condiciones iniciales $\vec{\alpha}$, se tiene entonces:

$$f_{\mathbf{e}}^{(p,k)}(x) = \frac{\sum_{i=1}^{N_e} \delta_{x,n_i^{(p,k)}}}{\sum_{i=1}^{N_e} \sum_{x=0}^{\infty} \delta_{x,n_i^{(p,k)}}} = \frac{1}{N_e} \sum_{i=1}^{N_e} \delta_{x,n_i^{(p,k)}}$$
(4-3)

donde $x \in \mathbb{N}$ pertenece al grupo de lo números naturales, $\delta_{x,n_i^{(p,k)}}$ es la función delta de Kronecker. Finalmente, $f_n^{(p,k)}(x; \vec{\alpha}) \equiv f_n^{(p,k)}(x)$ es la fracción de partículas tipo p que se encuentran en eventos con x de estás partículas:

$$f_{n}^{(p,k)}(x) = \frac{\sum_{i=1}^{N_{e}} n_{i}^{(p,k)} \delta_{x,n_{i}^{(p,k)}}}{\sum_{i=1}^{N_{e}} \sum_{n=0}^{\infty} n_{i}^{(p,\text{True})} \delta_{n,n_{i}^{(p,\text{True})}}} = \frac{\sum_{i=1}^{N_{e}} n_{i}^{(p,k)} \delta_{x,n_{i}^{(p,k)}}}{\sum_{i=1}^{N_{e}} n_{i}^{(p,\text{True})}}$$
(4-4)

Algunos ejemplos del contenido muónico de los eventos se muestran en la Fig. 4-1, donde se pueden visualizar los cambios con la masa del fotón oscuro m_{γ_D} y la masa del neutralino oscuro m_{n_D} . La caracterización solo se realiza para $m_{n_1} = 10$ GeV. Del conjunto de muestras simuladas con **MC** sin la reconstrucción del detector (k = True), se constató la invarianza de la distribución del contenido muónico $f_n^{(\mu,\text{True})}(x; \vec{\alpha})$ ante los cambios de los parámetros de generación $\vec{\alpha}$, cuestión esperada por la teoría, ya que los muones de procesos de ruido son elementos que no se esperan estar relacionados con el proceso **Dark-SUSY** determinado por el decaimiento de la Fig. 1-7b.

Figura 4-1: (a) Variación del número de muones por evento sin detector; (b) Variación del porciento de la fracción de muones de ruido con los parámetros de generación m_{γ_D} y m_{n_D} .

De la Fig. 4-1a se conoce que el contenido mínimo de muones por evento para k =True es de 4 muones, estos son el resultado de la recreación de la señal MC proveniente de Dark-SUSY relacionada con el decaimiento de la Fig. 1-7b. Los valores de $f_n^{(\mu,\text{True})}(x; \vec{\alpha})$ con sus respectivos errores se pueden ver en la Tabla 4-1, además, se hace supuesto de la caracterización de las Figs. 4-1b, que la fracción de los muones provenientes de señales de ruido se presenta alrededor de un valor constante, el mismo está dado por:

$$1 - \frac{4N_e}{\sum n_i^{(\mu, \text{True})}} = 0.0337 \pm 0.0014$$
(4-5)

Variable	x = 4	x = 5	x = 6	x = 7	x = 8
$f_{\rm n}^{(\mu,{\rm True})}(x)$	0.8892 ± 0.0086	0.0942 ± 0.0090	0.0161 ± 0.0016	0.0022 ± 0.0006	0.0002 ± 0.0002

Tabla 4-1: Fracción de eventos dependiente del contenido muónico.

Al analizar los resultados obtenidos, se pudo concluir, que el ruido muónico en la reconstrucción de la señal **MSSMD** se encuentra en una fracción del total de eventos dada por $1 - f_n^{(\mu,\text{True})}(4; \vec{\alpha}) = 0.113 \pm 0.004$, fracción no despreciable de nuestro conjunto. Los datos que se poseen no son adecuados para estudiar. Todos los resultados obtenidos la correspondencia con la masa del neutralino del sector visible m_{n_1} , de aquí que las conclusiones dadas en la sección no la incluyen.

4.1.1 Variación de las propiedades de los muones

Analizar la señal **Dark-SUSY** o **MSSMD** mediante las propiedades de los muones sin la reconstrucción del detector dará una base de comparación y un mayor entendimiento de la teoría. Además, separar la información según los muones que provienen del decaimiento $h \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D \rightarrow 2n_D + 4\mu$ del resto de los procesos se hace necesario para una mejor interpretación de la reconstrucción conjunta de las señales. Se introduce la notación de las propiedades de una partícula $p = n_1, n_D, \gamma_D, \mu$, siendo la distribución de frecuencia dada por:

$$\mathbf{W}^{(p,k)}(\mathbf{x}_j) \equiv \mathbf{W}^{(p,k)}(\chi;\vec{\alpha}) \longrightarrow \mathbf{W}_N^{(p,k)}(\mathbf{x}_j) = \frac{\mathbf{W}^{(p,k)}(\mathbf{x}_j)}{\sum\limits_{\mathbf{x}_j} \mathbf{W}^{(p,k)}(\mathbf{x}_j)}$$
(4-6)

donde x_i hace referencia a la propiedad de interés, estás se pueden ver en la Tabla 3-4.

Las distribuciones correspondientes a las propiedades de los muones $W_N^{(\mu,\text{True})}(x_j)$ proveniente de procesos alternos al decaimiento **MSSMD** se consideran ruido en esta investigación, sus propiedades se pueden visualizar en la Fig. 4-2. Como resultado de su caracterización, se concluyó que la morfología de las distribuciones de ruido se mantiene con la variación de los parámetros de generación $\vec{\alpha}$. Además, el dominio para los valores del momento transversal

Figura 4-2: Variación de las distribuciones de los muones de procesos de ruido.

Figura 4-3: Variación de las distribuciones de los muones característicos de la señal MSSMD.

 P_T se extiende hasta ~ 80 GeV, pero el 98 % de los datos se agrupan para valores < 10 GeV como se visualiza en su respectiva distribución de la Fig. 4-2.

Las distribuciones de las propiedades de los muones $W_N^{(\mu,\text{True})}(P_T)$ proveniente del decaimiento **Dark-SUSY** (**MSSMD**) se pueden visualizar en la Fig. 4-3. Con la comparación de las distribuciones con la variación de los elementos del parámetro de generación $\vec{\alpha}$, se comprobó la invarianza de la morfología de las distribuciones para los parámetros $\eta y \phi$. Las distribuciones del momento transversal P_T muestran variaciones con el parámetro de generación masa del fotón oscuro m_{γ_D} y del neutralino oscuro m_{n_D} . Se concluye al comparar con las eficiencias de los detectores $k = \mathbb{R}2$, HL mostradas en las Figs. 2-10, 2-11 y 2-13, que el aumento de la masa teórica del fotón oscuro permite un aumento de la probabilidad de detección de los muones que decaen de ellos, por el contrario el aumento teórico de la masa del neutralino oscuro dificultará la detección de muones de **MSSMD** ya que estos estadísticamente tenderán a menores valores del momento. Los datos que se poseen no son adecuados para estudiar la correspondencia con la masa del neutralino del sector visible m_{n_1} , de aquí que las conclusiones dadas en la sección no la incluyen.

4.1.2 Características del fotón oscuro

La reconstrucción del fotón oscuro γ_D predicho por el decaimiento **MSSMD** es el motivo principal de estudio de esta investigación. La caracterización de sus propiedades y el cambio de la morfología de los gráficos de frecuencias $W_N^{(\gamma_D, \text{True})}(x_j)$ con el cambio de los parámetros de generación $\vec{\alpha}$, permitirá una comprensión mas completa de los resultados obtenidos con la reconstrucción realizada por los detectores en la configuración Run-2 (R2) y Alta Luminosidad (HL).

Los gráficos de la Fig. 4-4 muestra la clara dependencia del momento angular P_T y con los parámetros de masa de $\vec{\alpha}$, ya que son la masa del fotón m_{γ_D} y su tiempo de vida $c\tau_{\gamma_D}$ son tratados por la teoría como parámetros libres, no hay dependencia directa entre ellas. Hay una correspondencia clara entre los parámetros de impacto D_0 y D_Z como se esperaría con el parámetro de generación $c\tau_{\gamma_D}$.

4.2 Análisis de la señal con detector

Una vez entendida la señal de la teoría **MSSMD**, correspondiente a la descomposición según lo muestra el diagrama de la Fig. 1-7b, se intenta comprender como los detectores del **CMS** en las configuraciones Run-2 y Alta Luminosidad reconstruyen experimentalmente

Figura 4-4: Variación de las propiedades del fotón oscuro γ_D con los parámetros de generación m_{γ_D} , m_{n_D} y τc_{γ_D} .

este decaimiento. Las muestras generadas son caracterizadas por el parámetro $\vec{\alpha}$ y simuladas simultáneamente su paso por detector en las condiciones Run-2 y Alta Luminosidad (ver Tabla 3-2). Analizar los resultados de la señal al paso por el detector, es elemento importante en la identificación de la teoría **MSSMD** en el experimento **CMS**.

Se hace necesario comenzar con la identificación de las variaciones de las distribuciones de frecuencia del número total de muones $(p = \mu)$ por evento $f_{e}^{(\mu,k)}(x) \equiv f_{e}^{(\mu,k)}(x; \vec{\alpha})$, según la notación de la ec. 4-3 se obtiene:

$$f_{\mathsf{e}}^{(\mu,k)}(x) = \frac{1}{N_e} \sum_{i=1}^{N_e} \delta_{x,n_i^{(\mu,k)}}$$
(4-7)

donde $\vec{\alpha}$ es el vector de parámetros que especifica las condiciones de generación de la señal **MSSMD**, k es la configuración del detector requerida y χ es el número de muones característico.

Para entender el sesgo o varianza de un estadístico genérico resultado de su aplicación sobre una población finita, se aplica el "*Bootstrapping*"¹. Este método es el resultado de la

¹Más información en el enlace https://es.wikipedia.org/wiki/Bootstrapping_(estad%C3%ADstica)

Figura 4-5: Distribuciones de frecuencias resultado de aplicar "bootstrap" sobre los valores $f_{e}^{(\mu,k)}(x)$ ante cambios de los parámetros $\vec{\alpha}$.

selección aleatoria de subconjuntos, seguida de la aplicación del estadístico sobre esta. La aplicación continua de "bootstrap" sobre el estadístico $f_{e}^{(\mu,k)}(x)$ y el graficar los histogramas normalizados resultantes (ver Fig. 4-5) permitirán entender la correspondencia de los términos $\vec{\alpha}$ con las distribuciones.

En las distribuciones de la Fig. 4-5 se visualiza la alta dependencia con los parámetros de generación $\vec{\alpha}$, además se evidenciaron únicamente $f_{e}^{(\mu,k)}(5) \lesssim 3 \cdot 10^{-5}$ para los cambios considerados en la Tabla 3-2, razón por la cual son descartados de este estudio eventos con más de 4 muones. Si consideramos que la forma de estas distribuciones corresponde con una gaussiana, el error en la frecuencia $\Delta f_{e}^{(\mu,k)}(x) \equiv \Delta f_{e}^{(\mu,k)}(x;\vec{\alpha})$ de la ec. 4-3 es calculable siguiendo la referencia Jacobo [2010] como:

$$\Delta f_{\mathsf{e}}^{(\mu,k)}(x) = f_{\mathsf{e}}^{(\mu,k)}(x) \cdot Z_{\frac{\beta}{2}} \sqrt{\frac{\rho(1-\rho)}{f_{\mathsf{e}}^{(\mu,k)}(x) \cdot N_e}}$$
(4-8)

$$=\frac{Z_{\frac{\beta}{2}}}{100}\sqrt{\rho(1-\rho)\cdot f_{e}^{(\mu,k)}(x)}$$
(4-9)

donde $Z_{\frac{\beta}{2}}$ es un parámetro que depende del nivel de confianza $(1 - \beta)$, con posibles valores dados por $Z_{\frac{0.1}{2}} = 1.65$, $Z_{\frac{0.05}{2}} = 1.96$ y $Z_{\frac{0.01}{2}} = 2.58$ y ρ es la probabilidad ocurrencia.

Otro elemento importante a tener en cuenta, es la variación de la fracción de muones reconstruidos por los detectores del total **MC**, entonces:

$$A_{\mathsf{n}}^{\mu}(k) = \sum_{i=1}^{N_e} n_i^{(\mu,k)} / \sum_{i=1}^{N_e} n_i^{(\mu,\mathsf{True})}$$
(4-10)

ejemplos de la variación de este estadístico con el parámetro de generación $\vec{\alpha}$ se encuentran en la Tabla 4-2.

Correspondencia entre los eventos de interés y los parámetros de generación.

Algunos ejemplos de los valores de $f_{e}^{(\mu,k)}(x)$ los podremos observar en la Tabla 4-2 y en los gráficos de la Fig. 4-6. En estos se puede observar una clara tendencia con los parámetros de generación $\vec{\alpha}$. Se pudo constatar la disminución de eventos de interés $f_{e}^{(\mu,k)}(4)$ con el aumento del tiempo de vida del fotón oscuro $c\tau_{\gamma_D}$ y de la masa del neutralino oscuro m_{n_D} , en contraste se registra aumento de los eventos de interés con la masa del fotón oscuro m_{γ_D} . En el caso de cambios de la masa del neutralino ligero m_{n_1} , los datos muestran variaciones pequeñas en el rango definido (ver Tabla 3-2), los datos adquiridos no dan una conclusión clara de su comportamiento.

Figura 4-6: Ejemplo de variaciones del parámetro $f_{\rm e}^{(\mu,k)}(\vec{\alpha};x)$.

Dado que se intenta reconstruir el decaimiento de la Fig. 1-7b, el estadístico $f_{e}^{(\mu,k)}(x)$ para $x \ge 4$ es el de mayor interés para esta investigación, el mismo muestra como la configuración del detector en Alta Luminosidad (k = HL) reconstruye entre 2.2 a 9 veces más de eventos con 4 muones reconstruidos por el detector **CMS** en la configuración Run-2 (k = R2) para las muestras simuladas (ver Tabla 3-2).

Regresión de datos de frecuencia

Con la intención de realizar una caracterización eficiente de la cantidad de eventos de interés y de su dependencia con los parámetros de generación, se intenta utilizar métodos simples de regresión para valorar la posibilidad de inferir información pertinente a la frecuencia de los eventos. Para esto se utilizan los métodos presentados ya en la sección 3.3 mediante una aproximación lineal como la propuesta en la ec. 3-4 y con una red neuronal como la presentada en la Fig. 3-8.

Al implementar el método de regresión polinomial sobre los datos $f_{e}^{(\mu,k)}(4)$ hasta el orden n = 9 visualizada en la Fig. 4-7, se puede observar una mejora en los parámetros progresiva con el aumento del orden n. La correspondencia entre los valores simulados y los predichos

	(π		Estadístico					
m_{n_1}	m_{n_D}	m_{γ_D}	$c \tau_{\gamma_D}$	$A_n^\mu({ m R2})$	$A_n^{\mu}({\rm HL})$	$f_{e}^{(\mu,\mathtt{R2})}(4)$	$f_{e}^{(\mu, \text{HL})}(4)$		
10	1	1	0.5	0.2908	0.4261	0.0504 ± 0.0029	0.1153 ± 0.0044		
			2	0.2909	0.4250	0.0497 ± 0.0029	0.1158 ± 0.0044		
			4	0.2861	0.4139	0.0468 ± 0.0028	0.1152 ± 0.0044		
			10	0.2628	0.3783	0.0380 ± 0.0025	0.0939 ± 0.0039		
			50	0.1330	0.2022	0.0086 ± 0.0012	0.0212 ± 0.0019		
			100	0.0815	0.1311	0.0017 ± 0.0005	0.0075 ± 0.0012		
10	1	2	0	0.3567	0.5167	0.0509 ± 0.0029	0.1102 ± 0.0043		
		4		0.3893	0.5492	0.0491 ± 0.0029	0.1166 ± 0.0044		
		6		0.4451	0.5991	0.0597 ± 0.0032	0.1451 ± 0.0049		
		8		0.4857	0.6348	0.0854 ± 0.0038	0.1882 ± 0.0056		
10	2	1	0	0.3382	0.5020	0.0464 ± 0.0028	0.1110 ± 0.0043		
	4			0.3072	0.4732	0.0348 ± 0.0024	0.0891 ± 0.0039		
	6			0.2414	0.4142	0.0139 ± 0.0015	0.0548 ± 0.0030		
	8			0.0993	0.2732	$0.0012 {\pm}~ 0.0004$	0.0108 ± 0.0013		
20	1	1	0	_	_	0.0560 ± 0.0030	0.1176 ± 0.0044		
30				-	_	0.0480 ± 0.0028	0.1224 ± 0.0045		
40				_	_	0.0524 ± 0.0030	0.1319 ± 0.0047		
50				-	_	0.0583 ± 0.0031	0.1391 ± 0.0048		

Tabla 4-2: Variación de la fracción de muones reconstruidos y frecuencia de eventos con 4 muones para combinaciones de los términos del parámetro generación $\vec{\alpha}$ y los detectores k.

Figura 4-7: Resultados de la regresión polinomial de los valores de frecuencia $f_{e}^{(\mu,k)}(4; \vec{\alpha})$.

es corroborada por los parámetros de confianza **RMSE** y \mathbb{R}^2 .

Haciendo uso del método **RNA** según una configuración semejante a la Fig. 3-4 con 6 capas ocultas con cantidad de nodos dada por $m_k = 128, 64, 32, 16, 8, 4$, se obtuvo un modelo con valores de **RMSE** y \mathbf{R}^2 comparables con los del método de regresión lineal explicado con anterioridad.

En la Fig. 4-8 también se puede observar una comparación de los resultados de los dos métodos al intentar reconstruir la información de los valores de frecuencia $f_{e}^{(4\mu, k)}$ mostrando una alta linealidad en los resultados obtenidos validando su implementación como método

Figura 4-8: Comparación de los resultados de regresión utilizando RNA y regresión polinomial para predecir las frecuencias $f_{e}^{(\mu,k)}(4;\vec{\alpha})$.

de análisis. Los resultados dan claridad de como el método de predicción de la fracción de eventos con 4 muones del total puede ser utilizado para optimizar la selección del parámetro N_e en el proceso de generación (ver Tabla 3-2).

4.2.1 Variación de las propiedades de los muones

La caracterización de las propiedades de los muones $W^{(\mu,k)}(x_j)$, es parte importante de este estudio, por ello, se analizan las variaciones en la morfología de las distribuciones para las diferentes configuraciones $k = \mathbf{R2}$, HL comparadas con la teoría k = True.

En las distribuciones correspondientes al momento transversal (Fig. 4-9) se encontraron cambios en la morfología con los parámetros m_{γ_D} y m_{n_D} , mientras que, una variación de la amplitud en la escala de frecuencias con el parámetro de tiempo de vida del fotón oscuro $c\tau_{\gamma_D}$. Al comparar las distribuciones correspondientes a las diferentes configuraciones de los detectores se comprobó correctamente el aumento en la eficiencia de detección entre $\approx 6 \% - 14 \%$ en la configuración de Alta Luminosidad para valores del momento de $P_T > 10 \text{ GeV}$. Además, a diferencia de la configuración Run-2, la configuración en Alta Luminosidad permitirá detectar muones de baja energía, información que será determinante con el aumento teórico del parámetro de masa del neutralino oscuro m_{n_D} , estos resultados con congruentes con los presentados en la Tabla 4-2.

En la configuración Run-2 existe un corte para valores de pseudorapidez de $|\eta| \leq 2.4$, correspondiéndose al espectro donde se ubican el $\sim 68\%$ de los muones, por otro lado, en la configuración de Alta Luminosidad se tiene $|\eta| \leq 4$, correspondiente al $\sim 96\%$ de las partículas generadas por la señal MC. De lo anterior queda claro que la mejora esperada en el experimento CMS, será determinante en la localización de las partículas provenientes de la teoría MSSMD.

Figura 4-9: Variación de las propiedades momento transversal y de la pseudorapidez de los muones en diferentes configuraciones del detector k y ante variaciones del parámetro de generación $\vec{\alpha}$.

4.2.2 Reconstruyendo el fotón oscuro

Se está investigando el decaimiento $h \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D \rightarrow 2n_D + 4\mu$ correspondiente al proceso **Dark-SUSY** o **MSSMD** como se muestra en el diagrama de la Fig. 1-7b. Se aplicaron 3 métodos diferentes para calcular la masa del fotón oscuro γ_D correspondiente a este decaimiento. Estos métodos son comparados y caracterizados, se analizan sus ventajas y limitaciones.

Método N_{True}

Hace referencia a la comparación directa por eventos de la información contenida en la rama Particle y la rama Muon del archivo *.root. La primera, se obtiene de la clase GenParticle la cual contiene la información de las partículas generadas con MC (k = True); mientras que la segunda, obtenida por la clase Muon, proporciona las propiedades de los muones detectados mediante el proceso de simulación del detector en la configuración elegida. k = HL, R2. Para detectar el origen de las partículas que son reconstruidas por el detector se implementa un proceso iterativo de comparación entre los muones del detector y los generados. Se considera que es el mismo muon μ_i simulado por MC y el reconstruido por el detector μ_j aquel que cumple con alta probabilidad con lo siguiente:

• La diferencia en el momento transversal sea menor al 10 % de la media:

$$f(P_T^{(\mu_i)}, P_T^{(\mu_j)}) \equiv 2 \cdot \frac{\left| P_T^{(\mu_i)} - P_T^{(\mu_j)} \right|}{P_T^{(\mu_i)} + P_T^{(\mu_j)}} < 0.1$$
(4-11)

• La distancia entre las partículas en el plano $\eta \times \phi$ sea mínima:

$$\min(\Delta R) = \min\left(\sqrt{\left(\eta^{(\mu_i)} - \eta^{(\mu_j)}\right)^2 + \left(\phi^{(\mu_i)} - \phi^{(\mu_j)}\right)^2}\right)$$
(4-12)

estos criterios permitirán conocer el origen de los muones reconstruidos por el detector (dentro de la rama Muon) mediante un procedimiento semejante al mostrado en el ejemplo de la Fig. 4-10.

Figura 4-10: Ejemplo aplicado sobre un evento para la identificación del etiquetado de los muones reconstruidos por Delphes con la aplicación del método \mathbb{N}_{True} .

Para cuantificar la eficiencia de este método se procede con la utilización de los datos **MC** (k = True). Las incertidumbres $\Delta \eta^{(\mu)}/\eta^{(\mu)}$ y $\Delta \phi^{(\mu)}/\phi^{(\mu)}$ están por debajo del 5%, como se reporta en la referencia Collaboration [2018], se realiza un proceso iterativo sobre pares de muones μ_i de diferentes etiquetados (M1 y M2 para el primer y segundo di-muon respectivamente, Ru para los muones de ruido) calculándose la distancia relativa ΔR en el plano $\eta \times \phi$ entre muones y comprobar si esta es menor que la región de incertidumbre

acotada (ver Fig. 4-11). Como resultando de este análisis se comprobó que la probabilidad de que muones de diferentes grupos etiquetados cumplan con el requisito de la ec. 4-11 y se encuentren en la región de incertidumbre uno del otro (ver Fig. 4-11) es menor del $\sim 0.5 \%$, válidando este método de identificación de los muones reconstruidos por Delphes .

Figura 4-11: Diagrama del mecanimo de cálculo de la eficiencia del método N_{True}.

Aplicando el método N_{True}

Se hace una caracterización general que reúne en grupos todas las muestras simuladas para diferentes valores arbitrarios del parámetro de masa del fotón oscuro específico m_{γ_D} . A estos grupos se les aplica el proceso de comparación siguiendo el método \mathbb{N}_{True} , y una vez identificados los di-muones reconstruidos se calcula masa invariante m. Algunos ejemplos son graficados en la Fig. 4-12 y los valores de percentiles $p_{2.5}(m)$ y $p_{97.5}(m)$ de las distribuciones de masa invariante se muestran en la Tabla 4-3. Además, para diferentes k se calcula el valor correspondiente a la diferencia de las masas invariantes de los di-muones $\Delta m \equiv |m_1 - m_2|$ siempre que sea posible reconstruir completamente el decaimiento en el evento, y con el percentil $p_{95}(\Delta m)$ dando una cota superior, reportado en la Tabla 4-3.

Las distribuciones $W_N^{(\gamma_D,k)}$ para la masa invariante m de los di-muones son en general asimétricas. Además, basado en los resultados de la Tabla 4-3 se pudo comprobar una disminución de los errores y por lo tanto una mejor reconstrucción de la teoría, con el aumento de la masa teórica del fotón oscuro γ_D . También, la actualización del detector en la configuración $\mathbf{k} = \mathbf{HL}$ muestra una disminución entre un $\sim 21 \% - 28 \%$ en los errores de los valores

Figura 4-12: Valores de masa invariante reconstruida de di-muones identificados con el método N_{True}.

Parámetro	Rango para el 95 % de los valores de $W_N^{(\gamma_D, k)}$								
m_{γ_D}	$\mathbf{k} = \mathbf{T}$	rue	$\mathbf{k} = \mathbf{F}$	IL	$\mathbf{k} = \mathbf{R2}$				
(GeV)	$\widetilde{m}_{p_{2.5}(m)}^{p_{97.5}(m)}$	$p_{95}(\Delta m)$	$\widetilde{m}_{p_{2.5}(m)}^{p_{97.5}(m)}$	$p_{95}(\Delta m)$	$\widetilde{m} {p_{97.5}(m) \atop p_{2.5}(m)}$	$p_{95}(\Delta m)$			
1	$1.0070 {}^{1.1640}_{0.9348}$	0.0649	$0.9788 {}^{1.9138}_{0.6466}$	1.2084	$0.9972 {}^{2.3029}_{0.6101}$	1.5625			
2	$1.9982 {}^{2.1223}_{1.9065}$	0.1691	$1.9884 {}^{2.7434}_{1.5316}$	1.3099	$1.9922_{1.4182}^{3.0688}$	1.6612			
3	$2.9952 {}^{3.2272}_{2.8510}$	0.3650	$2.9905 \ {}^{3.6505}_{2.5030}$	1.2725	$2.9931 {}^{3.9416}_{2.3468}$	1.6937			
4	$4.0082 {}^{4.3908}_{3.7929}$	0.5377	$3.9909 {}^{4.5739}_{3.4980}$	1.2403	$3.9922 {}^{4.8446}_{3.3280}$	1.6519			
5	$5.0256 \stackrel{5.4876}{4.7461}$	0.6704	$4.9916 {}^{5.5281}_{4.5122}$	1.2048	$4.9918 {}^{5.7624}_{4.3372}$	1.5825			
6	$6.0373_{5.6921}^{6.5383}$	0.8072	$5.9906_{5.4170}^{6.5903}$	1.3376	$5.9897 {}^{6.8303}_{5.2344}$	1.7378			
7	$7.0193 {}^{7.6389}_{6.6202}$	0.9784	$6.9896 \stackrel{7.5784}{_{6.3953}}$	1.3150	$6.9897 {}^{7.7884}_{6.2239}$	1.6676			
8	$8.0253 {}^{8.7370}_{7.5903}$	1.0795	$7.9887 {}^{8.5680}_{7.3765}$	1.3426	$7.9858 {}^{8.7652}_{7.2176}$	1.6717			

Tabla 4-3: Estadísticos característicos para combinaciones de los términos del parámetro generación $\vec{\alpha}$ y los detectores k. Los valores de masa se dan en GeV.

de masa para el 95 % de los datos.

Método N_{RNA}

Una vez entrenado el identificador de di-muones (sección 3.4.1), se aplica un proceso iterativo a todo emparejamiento posible entre los muones reconstruidos por el detector. El emparejamiento se realiza sobre los mejores candidatos determinados bajo una mayor probabilidad. La precisión acc_{RNA} dada por la ecuación 3-10, es obtenida al comparar los emparejamientos realizados con los obtenidos con el método \mathbb{N}_{True} .

Este es un método general que permite su aplicación sobre todos los eventos siempre que se tenga al menos dos muones de cargas opuestas. Entre sus desventajas se encuentra que solo puede discernir sobre la pertenencia de los di-muones de un decaimiento **Dark-SUSY**, es decir, la caracterización individual de los muones no es posible.

Método Nite

Se aplica un proceso iterativo sobre los eventos con un mínimo de 2 muones con carga positiva y 2 de carga negativa. Se emparejan todos los di-muones sin elemento en común de tal forma que la diferencia entre las masas invariantes m resultantes sea mínima:

$$\Delta m_{\min} \equiv \min\left(\Delta m\right) = \min\left(|m_1 - m_2|\right) \tag{4-13}$$

A este método se le puede anexar un corte que haga coherente la hipótesis de que los dimuones provienen de la misma partícula teórica, su aplicación implica que $\mathbb{N}_{ite} \to \mathbb{N}_{ite}(\delta m)$, donde $\delta m > \Delta m_{mín}$ hace referencia al valor máximo admisible para la diferencia de masas invariantes. Como resultado del método \mathbb{N}_{True} (ver Tabla 4-3) se hace supuesto que un mínimo de 95 % de los pares de di-muones cumplen con $\delta m \approx 2$ GeV para todas las muestras utilizadas en esta investigación. La precisión del método esta dada por \mathbf{acc}_{ite} definida por la ecuación 3-10, es obtenida al comparar los emparejamientos realizados con los obtenidos con el método \mathbb{N}_{True} . Este es un método general, fácilmente reproducible. Una desventaja es que solo puede implementarse a la fracción de muones dada por $f_e^{(\mu,k)}(4)$.

Comparando los métodos \mathbb{N}_{True} , \mathbb{N}_{RNA} y \mathbb{N}_{ite}

Se implementa los métodos de análisis especificados en las secciones anteriores sobre el conjunto de datos simulados (ver Tabla 3-2). Estos, en general, están dirigidos a reconstruir la mayor cantidad de fotones oscuros posibles. La fracción del total generado de fotones oscuros reconstruidos está dada por:

$$A_{\mathbf{n}}^{\gamma_{D}}(k) = \frac{\sum_{i=1}^{N_{e}} n_{i}^{(\gamma_{D},k)}}{\sum_{i=1}^{N_{e}} n_{i}^{(\gamma_{D},\mathsf{True})}} = \frac{1}{2N_{e}} \sum_{i=1}^{N_{e}} n_{i}^{(\gamma_{D},k)}$$
(4-14)

donde *i* hace referencia al evento, n = True, RNA, ite es el método, y *k* a la configuración del detector implementado.

La cantidad de fotones reconstruidos dependerá del método utilizado para identificarlos y reconstruirlos. Además, con alta fiabilidad se puede considerar que los obtenidos como resultados de implementar \mathbb{N}_{True} será el tope máximo de fotones oscuros que podrán reconstruirse correctamente. Algunos ejemplos se muestran en la Tabla 4-4, donde se puede observar las variaciones de los resultados obtenidos con los parámetros de generación $\vec{\alpha}$.

Para poder comprender correctamente el aumento teórico posible de una reconstrucción completa de los di-muones con la actualización del experimento, la razón $A_{\text{True}}^{\gamma_D}(\text{HL})/A_{\text{True}}^{\gamma_D}(\text{R2})$ es usada, esta muestra como aumenta con los parámetros de generación $c\tau_{\gamma_D}$ y m_{n_D} hasta ~ 2.2 y ~ 4.2 para 100 mm y 8 GeV respectivamente. La superposición de ambas condiciones resultará en un aumento aún mayor de la razón reportada de forma individual, dado que las causas que las originan son independientes entre sí. De aquí que se ve la importancia en la actualización del experimento **CMS** ante la posibilidad de que estas condiciones sean las correctas experimentalmente, permitiendo un claro y necesario aumento de probabilidad de reconstrucción completa de la información requerida. Las muestras para $m_{n_1} > 10$ GeV al tener solo eventos con 4 muones muestran resultados en los valores de A_n semejantes para los dos métodos con diferencias menores del 3 % para la mayoría de los casos.

La eficiencia acc_n para los métodos $\mathbb{N}_{\mathsf{RNA}}$ y $\mathbb{N}_{\mathsf{ite}}$ (ver Tabla 4-4) es mayormente alta > 95 %, para los casos donde las eficiencias se salen de este rango, estás son influenciadas por la carencia de datos simulados. La correcta identificación de los di-muones emparejados por los diferentes métodos está dada por:

$$\epsilon_{n} = \frac{A_{n}^{\gamma_{D}}(\mathbf{k}) \cdot \operatorname{acc}_{n}}{A_{\text{True}}^{\gamma_{D}}(\mathbf{k})}$$
(4-15)

donde n = RNA, ite. Haciendo uso de la información reportada en la Tabla 4-4 se pudo obtener que el método \mathbb{N}_{RNA} logra identificar correctamente entre el 92 % $\lesssim \epsilon_{\text{RNA}} \lesssim 99$ % del total de fotones oscuros que son posibles reconstruir. Por su parte, el método \mathbb{N}_{ite} del total de reconstrucción posible por la teoría, logra detectar entre $3.5 \% \lesssim \epsilon_{\text{ite}} \lesssim 30 \%$ en la configuración Run-2 y $8 \% \lesssim \epsilon_{\text{ite}} \lesssim 44 \%$ en la configuración Alta Luminosidad, siendo esta dependiente de las condiciones iniciales de generación $\vec{\alpha}$ que rigen la probabilidad de reconstruir correctamente eventos $f_{e}^{(\mu,k)}(4)$ (ver Tabla 4-2).

Los errores de las masas invariantes de los emparejamientos resultantes son semejantes a los obtenidos en la Tabla 4-3, además, no varían de forma importante con los cambios de los parámetros de generación m_{n_D} , m_{n_1} y $c\tau_{\gamma_D}$.

Parámetro de generación $\vec{\alpha}$			Configuración Run-2					Configuración Alta Luminosidad					
m_{n_1}	m_{n_D}	m_{γ_D}	$c \tau_{\gamma_D}$	N _{True}	NRN	IA	ℕ _{ite}		N _{True}	\mathbb{N}_{RNA}		Nite	
(GeV)	(GeV)	(GeV)	(mm)	$A_{True}^{\gamma_D}(R2)$	$A_{RNA}^{\gamma_D}(R2)$	acc _{RNA}	$A_{\mathrm{ite}}^{\gamma_D}(R2)$	acc _{ite}	$A_{True}^{\gamma_D}(HL)$	$A_{RNA}^{\gamma_D}(HL)$	acc _{RNA}	$A_{ite}^{\gamma_D}(HL)$	acc _{ite}
10	1	1	0	0.2179	0.2171	0.9901	0.0512	0.9980	0.3376	0.3364	0.9894	0.1174	0.9983
			0.5	0.2178	0.2068	0.9859	0.0504	0.9940	0.3401	0.3388	0.9876	0.1152	0.9974
			1	0.2138	0.2136	0.9867	0.0478	0.9937	0.3362	0.3346	0.9891	0.1168	0.9983
			2	0.2171	0.2169	0.9871	0.0498	0.9939	0.3390	0.3382	0.9867	0.1158	0.9965
			3	0.2147	0.2143	0.9865	0.0492	0.9918	0.3276	0.3270	0.9877	0.1100	0.9890
			4	0.2107	0.2100	0.9857	0.0468	0.9936	0.3269	0.3256	0.9872	0.1152	0.9852
			5	0.2119	0.2116	0.9861	0.0478	0.9811	0.3256	0.3242	0.9895	0.1078	0.9786
			10	0.1891	0.1883	0.9886	0.0380	0.9736	0.2923	0.2904	0.9912	0.0936	0.9765
			50	0.0838	0.0836	0.9910	0.0086	0.9418	0.1424	0.1422	0.9894	0.0212	0.9811
			100	0.0502	0.0497	0.9990	0.0018	0.8824	0.0912	0.0901	0.9894	0.0074	0.9766
10	1	2	0	0.2138	0.2129	0.9904	0.0508	0.9961	0.3292	0.3254	0.9932	0.1100	0.9973
		3		0.2130	0.2113	0.9886	0.0478	0.9937	0.3342	0.3290	0.9898	0.1139	0.9974
		4		0.2096	0.2070	0.9869	0.0490	1.0000	0.3345	0.3279	0.9888	0.1164	0.9982
		5		0.2208	0.2175	0.9843	0.0512	0.9961	0.3520	0.3424	0.9896	0.1238	0.9943
		6		0.2372	0.2316	0.9859	0.0598	0.9899	0.3795	0.3667	0.9908	0.1450	0.9973
		7		0.2641	0.2569	0.9889	0.0732	0.9983	0.4072	0.3924	0.9912	0.1641	0.9951
		8		0.2866	0.2796	0.9851	0.0854	0.9953	0.4260	0.4107	0.9906	0.1879	0.9957
10	2	1	0	0.2085	0.2085	0.9889	0.0464	0.9957	0.3310	0.3303	0.9912	0.1108	0.9990
	3			0.1972	0.1971	0.9895	0.0440	1.0000	0.3166	0.3159	0.9913	0.1020	0.9990
	4			0.1757	0.1757	0.9880	0.0348	0.9971	0.2959	0.2954	0.9903	0.0889	0.9988
	5			0.1474	0.1475	0.9891	0.0232	0.9957	0.2702	0.2694	0.9909	0.0734	1.0000
	6			0.1165	0.1170	0.9850	0.0140	1.0000	0.2310	0.2304	0.9883	0.0547	0.9982
	7			0.0652	0.0656	0.9756	0.0048	1.0000	0.1776	0.1773	0.9853	0.0347	1.0000
	8			0.0238	0.0247	0.9272	0.0012	1.0000	0.1010	0.1013	0.9758	0.0108	1.0000
20	1	1	0	0.0550	0.0545	0.9509	0.0540	0.9880	0.1136	0.1126	0.9804	0.1101	0.9931
30				0.0443	0.0440	0.9903	0.0439	0.9901	0.1220	0.1220	0.9790	0.1102	0.9895
40				0.0509	0.0506	0.9781	0.0499	0.9712	0.1311	0.1305	0.9527	0.1300	0.9970
50				0.0541	0.0506	0.9870	0.0521	0.9877	0.1309	0.1295	0.9790	0.1259	0.9742

Tabla 4-4: Resultados de la aplicación de los métodos \mathbb{N}_{True} , \mathbb{N}_{RNA} y \mathbb{N}_{ite} para la reconstrucción del fotón oscuro γ_D bajo diferentes condiciones de generación.

Conclusiones

Con el objetivo general de estudiar el decaimiento $h \rightarrow 2n_1 \rightarrow 2n_D + 2\gamma_D \rightarrow 2n_D + 4\mu$ correspondiente al modelo **Dark-SUSY**, se creo un grupo de herramientas que facilitan el trabajo de simulación y análisis, entre estas están:

- Un generador programado en python que automatiza la simulación del decaimiento Dark-SUSY utilizando Madgraph5+pythia8+Delphes3 con alta adaptabilidad a los requerimientos del usuario.
- Una clase basada en pyroot para acceder a la información contenida en los archivos
 *.root, permitiendo estos ser exportados en un formato HDF5.
- Un método de selección de máximo de eventos N_e basado en regresión polinomial y en RNA, permitiendo optimizar el proceso de generación para obtener la cantidad de eventos de interés con un mínimo de 4 muones que sea requerida por el estudio
- Un identificador de di-muones basado en redes neuronales utilizando la paquetería keras en python.

La probabilidad de reconstrucción del decaimiento a dos muones del fotón oscuro por el modelo **Dark-SUSY** mejora como resultado de la actualización del detector **CMS** fundamentado en aumentos de:

- El dominio de los valores de la pseudorapidez desde |η| ≤ 2.4 hasta |η| ≤ 4 permitiendo acceder desde un 68 % a un 98 % de total el espectro de la teoría.
- El espectro del momento transversal desde un $P_T > 10$ GeV a $P_T > 2$ GeV.
- La cantidad de eventos con potencial de reconstrucción total del decaimiento entre un $2.1 \lesssim f_{e}^{(\mu,\text{HL})}(4)/f_{e}^{(\mu,\text{R2})}(4) \lesssim 9$ veces.
- La cantidad de muones provenientes de la teoría y reconstruidos por los detectores entre un 1.3 ≤ A^µ_n(HL)/A^µ_n(R2) ≤ 2.8 veces.

Resultado de obtener las reconstrucciones de los fotones oscuros γ_D se obtiene:

- Valores entre un $0.024 \lesssim A_{\text{True}}^{\gamma_D}(\text{R2}) \lesssim 0.287$ del total de fotones predicho por la teoría en la configuración Run-2, mientras que, la configuración Alta Luminosidad reconstruye entre un $0.094 \lesssim A_{\text{True}}^{\gamma_D}(\text{HL}) \lesssim 0.426$.
- Una disminución en la dispersión de masas obtenidas entre un $\sim 21 \% 28 \%$ para el 95 % de las masas obtenidas.

Se validan dos métodos de identificación de di-muones sobre el conjunto de datos reconstruidos por el detector. El primero, implementando un identificador basado en redes neuronales $\mathbb{N}_{\mathsf{RNA}}$ y permite la reconstrucción entre $92\% \lesssim \epsilon_{\mathsf{RNA}} \lesssim 99\%$ del total de fotones oscuros que son posibles reconstruir con una precisión de $\mathbf{acc}_{\mathsf{RNA}} > 0.93$. El segundo, se basa en un proceso de comparación de masas por eventos $\mathbb{N}_{\mathsf{ite}}$, permitiendo reconstruir entre $3.5\% \lesssim \epsilon_{\mathsf{ite}} \lesssim 44\%$ de la capacidad total de reconstrucción con una precisión de $\mathbf{acc}_{\mathsf{ite}} > 0.94$.

Bibliografía

- ALONSO, F. Búsqueda de Supersimetría en eventos con un fotón, jets y energía faltante con el detector ATLAS. Universidad Nacional de la Plata (2016). cern: CERN-THESIS-2016-023
- ALWALL, J., FREDERIX, R., FRIXIONE, S., HIRSCHI, V., MALTONI, F., MATTELAER, O., SHAO, H.S., STELZER, T., TORRIELLI, P., Y ZARO, M. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. *J. High Energ. Phys.* (2014). arXiv: 1405.0301
- ARKANI-HAMED, N., FINKBEINER, D.P., SLATYER, T.R., Y WEINER, N. A Theory of Dark Matter. *High Energy Physics - Phenomenology* (2009). doi: 10.1103/Phys-RevD.79.015014
- ATLAS COLLABORATION. Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector. *Journal of High Energy Physics* (2014). arXiv: 1409.0746
- ATLAS COLLABORATION. Search for new phenomena in events with at least three photons collected in *pp* collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector. *The European Physical Journal C* (4) (2016a). arXiv: 1509.05051
- ATLAS COLLABORATION. Search for the Higgs boson produced in association with a W boson and decaying to four *b*-quarks via two spin-zero particles in pp collisions at 13 TeV with the ATLAS detector. *The European Physical Journal C* (2016b). arXiv: 1606.08391
- ATLAS COLLABORATION. Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at $\sqrt{s} = 13$ TeV. Journal of High Energy Physics pág. 166 (2018a). arXiv: 1802.03388
- ATLAS COLLABORATION. Search for the Higgs boson produced in association with a vector boson and decaying into two spin-zero particles in the $H \rightarrow aa \rightarrow 4b$ channel in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. Journal of High Energy Physics (2018b). arXiv: 1806.07355

- BATELL, B., POSPELOV, M., Y RITZ, A. Probing a Secluded U(1) at B-factories. *Physical Review D* (2009). doi: 10.1103/PhysRevD.79.115008
- BERGH, S.V.D. The Early History of Dark Matter. *PUBL ASTRON SOC PAC* (1999). arXiv: 9904251
- BINOTH, T., GUFFANTI, A., GUILLET, J.P., HEINRICH, G., KARG, S., KAUER, N., MER-TSCH, P., REITER, T., REUTER, J., Y SANGUINETTI, G. Precise predictions for LHC using a GOLEM. *Nuclear Physics B - Proceedings Supplements* (2008). arXiv: 0807.0605
- BUCHMÜLLER, W. Y LÜDELING, C. *Field Theory and Standard Model* (2006). arXiv: 0609174
- BUCKLEY, A., FERRANDO, J., LLOYD, S., NORDSTROM, K., PAGE, B., RUEFENACHT, M., SCHOENHERR, M., Y WATT, G. LHAPDF6: parton density access in the LHC precision era. *Eur. Phys. J. C* (2015). arXiv: 1412.7420
- CMS COLLABORATION. Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states. *Physics Letters B* (2013). doi: 2013.09.009, arXiv: 1210.7619
- CMS COLLABORATION. Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into tau leptons in pp collisions at $\sqrt{s} = 8TeV$. J. High Energ. Phys. (2016). arXiv: 1510.06534
- CMS COLLABORATION. Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two τ leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV. Journal of High Energy Physics (11) (2018). arXiv: 1805.04865
- CMS COLLABORATION. Search for a narrow resonance lighter than 200 GeV decaying to a pair of muons in proton-proton collisions at 13 TeV. *hep-ex* (2019a). arXiv: 1912.04776
- CMS COLLABORATION. A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV. *Physics Letters B* (2019b). doi: 10.1016/j.physletb.2019.07.013
- CMS COLLABORATION. Search for supersymmetry in pp collisions at $\sqrt{s} = 13$ TeV with 137 fb^{-1} in final states with a single lepton using the sum of masses of large-radius jets (2020). arXiv: 1911.07558

- CMS COLLABORATION. Search for top squark production in fully-hadronic final states in proton-proton collisions at \sqrt{s} = 13 TeV (2021). arXiv: 2103.01290
- COLLABORATION, A. Search for new light gauge bosons in Higgs boson decays to fourlepton final states in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector at the LHC. *Physical Review D* (2015). doi: 10.1103/PhysRevD.92.092001
- COLLABORATION, C. The Phase-2 Upgrade of the CMS Muon Detectors. *Technical Design Report* (2017). Code: CMS-TDR-016
- COLLABORATION, T.C. Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 3$ TeV. *Budker Institute of Nuclear Physics* (2018). Doi: 10.1088/1748-0221/13/06/P06015
- COLLESS, M. Y DUNN, A.M. Structure and Dynamics of the Coma Cluster. *ApJ* (1996). arXiv: 9508070
- CONTE, E., FUKS, B., Y SERRET, G. MadAnalysis 5, a user-friendly framework for collider phenomenology. *Computer Physics Communications* (2013). arXiv: 1206.1599
- CURTIN, D., ESSIG, R., GORI, S., JAISWAL, P., KATZ, A., LIU, T., LIU, Z., MCKEEN, D., SHELTON, J., STRASSLER, M., ZE'EV SURUJON, B.T., Y ZHONG, Y.M. Exotic Decays of the 125 GeV Higgs Boson. *Phys. Rev. D* (2017). Doi: 10.1103/Phys-RevD.90.075004
- DALTON, JOHN. John Dalton Biography (1803). Web: https://www.biography.com/scientist/john-dalton
- DE FAVEREAU, J., DELAERE, C., DEMIN, P., GIAMMANCO, A., LEMAÎTRE, V., MER-TENS, A., Y SELVAGGI, M. DELPHES 3, A modular framework for fast simulation of a generic collider experiment. *J. High Energ. Phys.* (2014). arXiv: 1307.6346
- DENNER, A., DITTMAIER, S., Y HOFER, L. Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations. *Computer Physics Communications* (2017). arXiv: 1604.06792
- DEUR, A. Relativistic corrections to the rotation curves of disk galaxies. *astro-ph* (2020). arXiv: 2004.05905

- DRIS BOUBAA, GABER FAISEL, S.K. Beyond SM Physics and searches for SUSY at the LHC. *High Energy Physics Phenomenology* (2020). arXiv: 2005.08069
- GIANFRANCO BERTONE, N.B. Identifying WIMP dark matter from particle and astroparticle data. *High Energy Physics* (2018). arXiv: 1712.04793
- JACOBO, L. Probabilidad (2010). Página: https://probabilidadestadistic.blogspot.com/
- KINGMA, D.P. Y BA, J. Adam: A Method for Stochastic Optimization. *Published as a conference paper at the 3rd International Conference for Learning Representations* (2015). arXiv: 1412.6980
- KURODA, M. Complete Lagrangian of MSSM (2005). arXiv: 9902340
- LHCB COLLABORATION. Search for Higgs-like bosons decaying into long-lived exotic particles. *The European Physical Journal C* (2016). arXiv: 1609.03124
- MANIATIS, M. The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed. *High Energy Physics - Phenomenology* (2009). doi: 10.1142/S0217751X10049827
- MARSH, G.E. Strings, Topological Change and Dark Matter. *gr-qc* (2019). arXiv: 1909.01077
- MAXIM LALETIN, J.R.C. Strongly interacting dark matter and the DAMA signal. *Cosmology and Nongalactic Astrophysics* (2019). arXiv: 1903.04637
- MIELKE, E.W., FUCHS, B., Y SCHUNCK, F.E. Dark Matter Halos as Bose-Einstein Condensates. *The Tenth Marcel Grossmann Meeting* (2006). arXiv: 0608526
- MIGLIORE, E. The CMS Tracker Upgrade for theHigh-Luminosity LHC. *High Energy Physics-Experiment* (2019). arXiv: 1911.02438
- MITSOU, V.A. SUSY searches in ATLAS and CMS. *Instituto de Física Corpuscular* (2019). Doi: 10.22323/1.376.0050
- NAGY, Z. Y SOPER, D.E. What is a parton shower. Phys. Rev. D (2018). arXiv: 1705.08093
- NIEMEYER, J.C. Small-scale structure of fuzzy and axion-like dark matter. *Cosmology and Nongalactic Astrophysics* (2019). arXiv: 1912.07064

- PEREZ, L.A.D. Fenomenología de modelos supersimétricos: partículas y materia oscura. *Universidad de Buenos Aires en el área Ciencias Físicas* (2020). arXiv: 2004.01021v1
- PI, H., ACOSTA, D., AVERYA, P., GREENB, D., ROHLF, J., Y TULLY, C. Measurement of missing transverse energy with the CMS detector at the LHC. *European Physical Journal* C (2005). doi: 10.1140/epjcd/s2006-02-004-8
- RESSEGOTTI, M. Overview of the CMS Detector Performance at LHC Run-2. *Physical Review D* (2019). doi: 10.3390/universe5010018
- ROMAO, J.C. Y SILVA, J.P. A resource for signs and Feynman diagrams of the Standard Model. *Int. J. Mod. Phys. A* (2012). arXiv: 1209.6213
- SANTAMARIA, A. Masses, Mixings, Yukawa Couplings and their Symmetries. *Physics Letters B* (1993). arXiv: 9302301
- SERVANT, G. Y TAIT, T.M.P. Is the Lightest Kaluza-Klein Particle a Viable Dark Matter Candidate? *Nuclear Physics B* (2003). arXiv: 0206071
- SJOSTRAND, T., ASK, S., CHRISTIANSEN, J.R., CORKE, R., DESAI, N., ILTEN, P., MRENNA, S., PRESTEL, S., RASMUSSEN, C.O., Y SKANDS, P.Z. An Introduction to PYTHIA 8.2. Computer Physics Communications (2015). arXiv: 1410.3012
- TOFIGHI A., P.F. Extended Higgs sector of supersymmetric models. *Physica Scripta* (2009). doi: 0.1088/0031-8949/80/01/015101
- WELLS, P.S. The upgraded ATLAS and CMS detectors and their physics capabilities. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* pág. 20140046 (2015). doi: 10.1098/rsta.2014.0046
- WU, X. Y KROUPA, P. Galactic rotation curves, the baryon-to-dark-halo-mass relation and space-time scale invariance. *Monthly Notices of the Royal Astronomical Society* (2015). arXiv: 1410.2256