## UNIVERSIDAD DE SONORA CENTRO DE INVESTIGACION EN FISICA

# "LUMINISCENCIA DE Yb<sup>2+</sup> EN CRISTALES DE HALOGENUROS ALCALINOS"

### TESIS

que para obtener el grado de Maestro en Ciencias (Física)

PRESENTA

RAUL PEREZ SALAS

1988

HERMOSILLO, SONORA.

15 - Mago

# Universidad de Sonora

Repositorio Institucional UNISON





Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess

A mis padres

A mi esposa

A mis hijos

A mis compañeros

Agradezco infinitamente la atención, entusiasmo y constante mición puesta por el Dr. José Manuel Hernández (UNAM), en la direc este trabajo y las atinadas observaciones del Dr. Julio Rubio MI) sobre el mismo.

#### INTRODUCCION.

- CAPITULO I. ANTECEDENTES.
  - I.1 Impurezas Divalentes en Halogenuros Alcalinos y Alcalino -Térreo.
  - I.2 Teoría de Campo Cristalino.
  - I.3 Absorción de Yb<sup>2+</sup> en Cristales con Simetría Cúbica.
  - I.4 Emisión de Iones de Yb Divalente en Cristales con Sime tría Cúbica.
- CAPITULO II. EXPERIMETACION.
  - II.1 Obtención de los Cristales.
  - II.2 Equipo de Absorción: Espectrofotómetro.
  - II.3 Técnica de Absorción.
  - II.4 Equipo de Luminiscencia Espectrofluorómetro.
  - II.5 La Técnica de Luminiscencia.
- CAPITULO III. RESULTADOS Y DISCUSION.
  - III.1 Absorción.
  - III.2 Emisión.
  - III.3 Conclusiones.

REFERENCIAS BIBLIOGRAFICAS.

#### INTRODUCCION

En años recientes las propiedades ópticas de los materiales han jugado un papel muy importante debido al desarrollo de los laseres de estado sólido con los cuales se pretende cubrir el espectro electromagnetico, pero además porque se encontró una amplia gama de aplicaciones entre las cuales se puede mencionar la fabricación de ventanas ópticas, convertidores de luz y detectores de radiacion.

Desde los años 60's se han venido estudiando los elemen tos de tierras raras y con mayor interés los lantánidos, en el interior de cristales porque presentan una gran actividad optica debida a transiciones desde una subcapa 4f incompleta a distintos niveles de subcapas inmediatas, e incluso transiciones 4f--> 4f [5-17]. Hoy en día existe una gran cantidad de estudios realizados sobre estos iones, pero aún el tema dista mucho de estar agotado.

Se ha descubierto que algunas propiedades de absorción y emisión de luz se deben principalmente a que contienen elementos activos ópticamente en forma disuelta. Estos elementos, denominados impurezas, constituyen uno de los defectos de los sólidos puros, en particular de los cristalinos. El desarrollo de este tipo de defecto no se ha restringido a descubrir mate riales naturales con impurezas sino más que nada a crearlos para producir las respuestas ópticas requeridas. Debido a la complejidad de algunos materiales en su estructura, se ha optado por producir y estudiar aquellos que posean la mayor sencillez y se puedan describir a través de un formalismo matemático simple, además de tener una amplia región de transparencia. Los Los compuestos de halogenuros alcalinos y alcalino-térreos están dentro de esta restricción.

La respuesta óptica de un cristal es explicada combinan do las simetrías locales de la red con las simetrías de las fun ciones de onda la impureza libre, dando como resultado un estado base y un conjunto de estados excitados cuyas diferencias predicen el espectro de absorción del cristal, comparables con los resultados experimentales.

A diferencia de los elementos o iones libres, los cuales absorben y emiten luz de la misma energia, en los cristales con defectos activos opticamente ocurren una diversidad de fenomenos en los cuales la luz absorbida es distinta de la luz emitida. Esto se debe al acoplamiento entre los electrones de la impureza y la red.

En este trabajo se reportan los resultados experimentales de absorción óptica y luminiscencia en los cristales de KCl, KEr y NaCl conteniendo iones de yterbio divalente, en una concentracion de 0.4% en peso del fundente, en el intervalo de 10-300°K de temperatura, para cristales recién templados. El objetivo de este trabajo es analizar el efecto que tiene el cam po cristalino sobre las transiciones del yterbio divalente desde el punto de vista experimental.

El trabajo esta dividido en tres capítulos. En el primero se describen en forma resumida los antecedentes teóricos Fri May 06 06:07:18 1988 /y/tesis.oy Page 3

que se han utilizado para describir el comportamiento óptico del yterbio, y los antecedentes experimentales encontrados sobre este material en cristales de halogenuros con estructura cúbica. El segundo contiene una descripción sobre las técnicas experimentales utilizadas. En el tercero se muestran los resul tados de absorción y luminiscencia y se hace una discusión de ellos en base a los antecedentes dados en el capitulo I. Al final de este capítulo, como una sección del mismo se establecen las conclusiones del trabajo.

Agradezco al personal que labora en este Centro por su colaboración entusiasta tanto en la parte de laboratorio como en la parte teórica; al IFUNAM por permitirme el uso de la Biblioteca y de sus instalaciones en Edo. Sólido y por la asesoria recibida.

#### CAPITULO I

## I.1 IMPUREZAS DIVALENTES EN HALOGENUROS ALCALINOS Y ALCALINO-TERREOS

Existe cierta facilidad para introducir iones divalentes en una red de halogenuros alcalinos o alcalino térreos debido a las vacancias de anión y de catión que en equilibrio térmico existen dentro de los cristales [2]. Esto se logra a través de un proceso de difusión o bien a través de la mezcla del fundente. La impureza se desplaza (en ambos casos) a través de la red via una serie de intercambios con la vacancia, lográndose a determinadas temperaturas una concentracion uniforme.

Dado que los cristales mantienen un equilibrio eléctrico hay acuerdo en que se crean vacancias de catión adicionales que com pensan la carga excedente de la impureza. Un ión de impureza se asocia a una vacancia de catión por medio de una fuerza coulombiana. Por ser esta de largo alcance, existe una distribución de sitios permitidos para la vacancia alrededor de la impureza. Tomando en cuenta posiciones de primeros y segundos vecinos en la subred de cationes, Crawford y Slifkin<sup>(2)</sup>hacen un analisis cuasiquimico de estos defectos aplicando la ley de acción de masas a ambos defectos como si fuesen especies distintas  $\propto$  y  $\beta$ , entre las cuales hay una reacción de la forma  $\alpha \cong \beta \cong 1 \pm \forall$ de tal forma que la ecuación de acción de masas queda como

 $x_{\alpha}/[x_{\alpha}(C_1-x_{\alpha}-x_{\beta})] = z_{\alpha}exp(\Delta g_{\alpha}/kT) = K_{\alpha}$ 

donde C<sub>J</sub> es la concentración total de impurezas,  $x_i$  es la concentración de la especie i,  $z_{\alpha}$  es el número de orientaciones de la especie  $\propto$  y  $\Delta g_{\alpha}$  es la energía libre de Gibbs de asociación de la misma especie. Para la especie  $\beta$  se dá una expresión análoga.

Por su naturaleza, la vacancia tiene la facilidad de mo verse dentro de la red en una serie de intercambios con los cationes de la red o con la impureza misma. Así, el complejo impureza-vacancia de catión constituye un dipolo eléctrico (I-V) que rota y se traslada dentro de la red. Se ha encontrado que la energía para la rotación de la mayoría de las impurezas se encuentra entre 0.5 y 0.7 ev [3], mientras que la energía de traslación es un poco mayor (0.9 ev) [4] y es más ó menos igual que la de difusión de la impureza dentro de la red.

En los cristales alcalino-térreos tipo fluorita  $(CaF_2)$ , la impureza conserva la simetría del ión sustituído (cúbica), mientras que en los halogenuros alcalinos, la presencia de la vacancia modifica la simetría local, reduciéndola en algunos casos a C2v, en otros a C4v y en otros más a tetragonal simple. Estos tipos de simetrías se pueden comprender basándose en la figura I.1. La simetrías estan orientadas en la dirección del dipolo, la C2v en la dirección (110) y la C4v en la (100) Debido a la movilidad de la vacancia, en un cristal pueden coexistir varios tipos de simetría, de las cuales la más probable es la que afectará mayormente las propiedades físicas del cristal en su conjunto. La movilidad de la vacancia se restringe a la vecindad de la impureza debido a la fuerza de atracción elec trostática entre ambos, pero depende fuertemente de la temperatura. Al respecto, los trabajos de Fong y Wong [5] por medio de efecto Zeeman luminiscente a 4.2K muestran que la simetría mayoritaria en KCI:Sm<sup>2+</sup> es la C2v, mientras que el estudio de Watkins [6] con Resonancia Paramagnetica Electronica (EPR) en NaCl:Mn<sup>2+</sup> encuentra una simetría mayoritaria C4v. El modelo de simetría C2v es utilizado por Bron y Wagner [7] para explicar las frecuencias del espectro vibrónico, de halogenuros alcalinos conteniendo impurezas de europio, samario e yterbio divalentes. Mediante el modelo, las frecuencias observadas se ajustan a los modos normales de vibración local del defecto.

- + - + - + - + - + - + - + - + - + - + - + - + + - + - V - + -+ - + - + - + -+ - + - + - + -- + - I - V - + - + - I - + - + - + - I - + - + + - + - + - + -+ - + - + - + -+ - + - + - + -- + - + - + - + - + - + - + - V - + - + - + - + Oh C4v C2v

Fig. I.1 Algunas de las posibles simetrías del dipolo I-V I=impureza divalente, V=vacancia de catión.

I.2 TEORIA DE CAMPO CRISTALINO

El espectro de absorción de los iones de Tierras Raras se describe bastante bien con ayuda de la aproximación de campo cristalino. Por esta razón se agregan en este reporte los aspec tos fundamentales de la Teoría de Campo Cristalino (CC).

En un cristal iónico, los electrones de la impureza se mueven dentro del campo eléctrico originado por las cargas positivas y negativas de los iones de la red. Más sin embargo, el efecto que causan las cargas distantes es mucho menor que el producido por los iones inmediatos. Particularmente la teoría de campo cristalino (CC) considera [8] que el efecto mas notorio se debe a los iones mas próximos tomados como cargas puntuales, las cuales ocupan posiciones fijas, sin tomar en cuenta efectos de traslape entre las funciones de onda de los electrones del ión central y las de los primeros vecinos. Si el radio de las funciones de onda no alcanza a los iones vecinos de tal forma que aún durante las transiciones este permanece sin mezclarse con los ligandos se denomina al modelo teoría de Campo Cristalino (TCC) y si los electrones se mezclan con los ligandos se le llama Teoría de Campo Ligando. Ambas están basadas en los mismos elementos de simetría. Para el caso que nos ocu pa solo nos referiremos a la primera.

Para el ión central el Hamiltoniano puede establecerse en en forma aproximada como

#### H= Ho + Hcc

en donde Ho es el hamiltoniano del ion libre y Hcc es la interaccion con el campo cristalino. A su vez Ho puede aproximarse por

#### Ho= T+ Vne+ Vee+ Hso

en donde T es el operador de energía cinética, Vne el de interaccion electrostática entre el núcleo y los electrones, Vee el de interaccion electrostática entre los electrones mismos y Hso el de acoplamiento spin-órbita. En la aproximación de Campo Cen tral, la solución a la ecuación de Schrödinger por el método de Hartree-Fock con los dos primeros términos de Ho dá como resultado funciones de onda hidrogenoide para cada electrón, y el producto de ellas tambien es una solución. La solución general estaría dada por el determinante de Slater, el cual obedece el principio de exclusión de Pauli, El hamiltoniano conmuta con lz(i) y sz(i) y por lo tanto conmuta con los momentos totales Lz y Sz. Las funciones de onda se pueden representar como lL S MI Ms ).

Segun Bethe [9] se pueden hacer tres aproximaciones al comparar la interacción electrostática y la interacción spin-órbita con Hcc: campo cristalino debil,medio y fuerte; establecidos de la siguiente forma:

Débil: Hcr < Hso < Hee

Medio: Hso < Hcr < Hee

Fuerte: Hso < Hee < Hcr.

En principio se considera que los campos cristalinos que apar<u>e</u> cen sobre iones de Tierras Raras son de tipo débil porque sus capas 4f son comprimidas y apantalladas por las capas externas 5s.

En el caso de acoplamiento normal de electrones, la interacción electrostática entre los electrones crea terms que se ca racterizan por un cierto momento orbital L y un espinorial S. La interaccion Spin-Orbita reduce parcialmente la degeneracion múltiple (2L+1)(2S+1) y forma una estructura de multipletes para el ión libre. Al considerar los desdoblamientos en un campo cristalino debil se usan las eigenfunciones del momento angular J=L+S IL S J Jz> como una base de la aproximación de orden cero. Los desdoblamientos por el campo cristalino son mas pequeños que las diferencias de energía entre los terms de la aproximación Russell-Saunders de la misma multiplicidad, pero mayores que el desdoblamiento de estructura fina en un ión libre tal que se puede distinguir entre ellos.

En el esquema de campo cristalino débil, el Hamiltoniano del ión se puede escribir como

#### H=Ho + Hso + Hcr

donde Ho incluye la interaccion electrón-electrón. Los eigenestados de Ho quedan caracterizados por los números cuánticos L, S, MI, Ms en la aproximacion Russell-Saunders. Debido a la interaccion spin-órbita se obtienen estados representados por los números cuánticos L, S, J, Mj, con los cuales se calcula la perturbación del campo cristalino a primer orden. La perturbación se expresa como

$$Hcr = \sum_{i} eV(r_{i})$$

para un cierto número de ligandos.

Diversos autores [12,15] han tratado este problema para el caso de tierras raras y coinciden en afirmar que es conv<u>e</u> niente usar un esquema de tipo J-j para los estados excitados f(n-1)I (I=s,p,d). La razón es que se ha probado que en iones tierras raras la interacción spin-órbita tiene un orden de magnitud equivalente a la interacción electrónica, por lo que el esquema R-S no es apropiado. I.3 ABSORCION DE Y6<sup>2+</sup> EN CRISTALES CON SIMETRIA CUBICA

El espectro de absorción óptica de cristales con simetría cúbica conteniendo iones divalentes de Yb como activadores en forma sustitucional esta formado por 4 grupos en el intervalo de longitudes de onda de 180 a 400 nm, los cuales se etiquetan como A, B, C y D en orden de menor a mayor energia en la no menclatura usada por Bland y Smith.

El orígen de este espectro se ha atribuido a las transi ciones 4f14(1SO)-->4f13 5d (2FJ)5d perturbadas por su interacción con el campo cristalino. Empleando teoría de perturbaciones a primer orden, Bryant [11] calculo los niveles de energía del ión libre de yterbio divalente. Tomó como nivel cero de energía el correspondiente al estado base 150. La matriz de energía total la obtuvo sumando las contribuciones de la interacción electrostática y la de spin-órbita. No consideró otras interacciones tales como la de spín-spín, spín con otras órbiorbitas, etc. Propuso un esquema de acoplamiento J-j equivalenlente a un agujero positivo moviéndose en la capa 4f y un electron en la capa 5d. Con este esquema supone que es mas fuerte la interacción spin-orbita del electron 5d que su interacción electrostática con la coraza. El momento angular L del hueco po sitivo en la capa 4f es 3 y el del electron d es 2, por tanto los niveles Russell-Saunders son (P, D, F, G, H) como singuletes y tripletes sumando un total de 20 niveles con una degenera ción de 140. Los mismos 20 niveles de energía se obtienen para J=0,1,...,6, y se ajustaron bien a los niveles de absorción observados experimentalmente, los cuales fueron encontrados en la region ultravioleta de 180 a 400 nm.

Para el análisis de los espectros de absorción y emisión de luz en cristales que contienen impurezas activas ópticamente se toma como base el comportamiento del ión libre, el cual se considera sumergido en un campo eléctrico producido por los iones del cristal vecinos al ión libre produciéndose asi un efecto Stark que desdobla los niveles de ión libre. Para el Yb divalen te en cristales de tipo fluorita con simetria cubica (Oh), Piper et al. [12] calcularon el efecto de la aproximación de campo cristalino utilizando funciones de onda IL S J Mj>. Propuso un hamiltoniano de la forma

H= Ho + Hcr(f) + Hcr(d)

donde Ho incluye las interacciones electrostáticas y de spin-ór bita de los electrones f13 y d. La matriz de energía se encuen tra que es la suma directa de representaciones del grupo Oh:

6A1u (+) 5A2u (+) 12Eu (+) 18T1u (+) 17T2u

resultando un total de 58 niveles de diferente degeneración. Dado que en esta simetría el momento dipolar eléctrico se transforma como la representación Tiu, solamente las transicio nes 1SO --> 18Tiu son permitidas. Si se aplican las reglas de selección  $\Delta S=0,\pm1$ ;  $\Delta J=\pm1$ ;  $\Delta L=\pm1$ , la intensidad de las 18 transi ciones debe ser proporcional al cuadrado del coeficiente del term 1Pi en cada nivel. Las transiciones contienen como parámetro el Dq, el cual es función de la variable r en la integración de los elementos de matriz calculados para el campo crista lino a primer orden. La figura I.2 muestra el comportamiento de los niveles de energía de la matriz respecto al parámetro Dq. El Dq es la respuesta del electrón d al campo producido por los iones vecinos por lo que es una característica fija para un cierto cristal que tiene determinada constante de red r. De esta forma el resultado de Piper et al es aplicable a toda una familia de cristales con Dq entre -1600 y +1600. Los menores que cero corresponden a cristales tipo fluorita y los mayores que cero a los del tipo NaCl. En la misma grafica se presentan las intensidades relativas de los niveles y re presentan la contribucion del estado 1F1 al nivel correspondien te. En la gráfica se observa que con Dq entre 800 y 1200 hay 3 grupos de absorcion y arriba de 1200 el medio se separa en 2 formándose un total de 4, 2 que se corren a mayores energías y 2 que se corren a menores energías.

Fiper et al también calcularon las energías de los nive les prohibidos Eu y T2u las cuales quedaron por debajo del nivel minimo de T1u aproximadamente 2000 cm<sup>-1</sup>.

Eremin [13] hizo un calculo semejante obteniendo el esquema de niveles y los cuatro grupos A, B, C y D usando la teoria de representaciones de la teoría de grupos. Estos grupos co rresponden a un esquema simple propuesto por Loh [14] para la ab sorción en cristales de SrCl<sub>2</sub>:Yb<sup>2†</sup>, el orbital 5d es desdoblado por la interacción con el campo cristalino en un nivel eg(5d<sub>3/2</sub>) y otro t2g (5d<sub>5/2</sub>) el cual interactúa con un estado <sup>2</sup>F<sub>y</sub> desdoblado por interaccion spin-órbita como <sup>2</sup>F<sub>11/2</sub> y <sup>2</sup>F<sub>51/2</sub> (5d<sub>31/2</sub>) en orden decre ciente de energía. En el caso de fluoritas, que ya se habían estudiado experimentalmente, el ajuste del análisis teórico de Eremín resul tó bastante bueno.

En 1985 Bland y Smith [15] obtuvieron los espectros de absorción de la familia de sodios y de potasios en los halogenu ros alcalinos (fig I.3) encontrando 4 grupos de picos, y ajusta ron sus resultados a un esquema de acoplamiento J-j como el em pleado por Bryant para el ión libre. Sus resultados de energía contra el Dq son similares a los de Eremín (fig I.4). Los grupos son etiquetados como A, B, C, y D en orden creciente de energía. Entre 800 y 1200 cm<sup>-1</sup> del Dq hay una mezcla de niveles de los grupos E y C. Tomando en cuenta las diferencias entre las posiciones de los picos hicieron un ajuste de los parámetros teóricos cuyos resultados se muestran en la TABLA I.1.

TABLA I.1 Valores óptimos de los parámetros que se han obtenido usando un procedimiento iterativo por Bland y Smith.

| Cristal | Dq(cm <sup>'</sup> ) | ∆(cm <sup>-1</sup> ) | F(cm <sup>-i</sup> ) | G(cm <sup>'</sup> ) | \$(cm <sup>-1</sup> ) | d(Å)  |
|---------|----------------------|----------------------|----------------------|---------------------|-----------------------|-------|
| KI      | 900                  | 34341                | .104.4               | 111.5               | 2802.7                | 3.533 |
| NaI     | 1030                 | 34256                | 105.7                | 101.4               | 2861.7                | 3.238 |
| KBr     | 1080                 | 35915                | 117.7                | 116.9               | 2861.7                | 3.300 |
| NaBr    | 1180                 | 35815                | 121.0                | 119.6               | 2905.9                | 2:987 |
| KCI     | 1240                 | 36676                | 116.4                | 110.3               | 2920.7                | 3.146 |
| NaCI    | 1360                 | 36856                | 127.0                | 117.9*              | 2950.2                | 2.820 |
| KF      | 1635                 | 39661                | 170.5                | 165.0               | 2950.2                | 2.672 |
|         |                      |                      |                      |                     |                       |       |



Fri May 06 03:32:52 1988 /y/tesisA.oy Page 5

en donde F y G son los parámetros electrostáticos de las int<u>e</u> grales de Slater, 5 es el parámetro de la interaccion spin-órbj ta. A pesar de todo, el ajuste a los valores experimentales no puede ser total. Las bandas E1 y E2 que aparecen en los espec tros de absorción (fig I.4) se salen del espectro de energías calculadas. A estas bandas les atribuyen un efecto de traslape de las funciones de onda del electron d con los orbitales de los aniones vecinos o ligandos. Volviendo a la figura vemos que al incrementarse el campo cristalino los grupos se separan notablemente. Las bandas C y D se corren a mayores energías y las bandas A y B a menores a energías.

I.4 EMISION DE IONES DE YE DIVALENTE EN CRISTALES DE SIMETRIA CUEICA.

La emisión de Yb divalente se ha estudiado mas en cristales tipo fluorita que en los halogenuros alcalinos. Como ya se ha dicho, el ión se encuentra en forma sustitucional. Su es tado excitado de mínima energía es de la forma 4f13 5d desde el cual decae en forma radiativa al estado base 4f14. Este meca nismo debería de tener un espectro de una sola banda de emisión. Sin embargo Witzke [16] encontró en  $SrCl_2:Yb^{2+}$  varias bandas de emisión cuya intensidad es afectada por la temperatura en forma muy especial.

Se conoce que la emision de algunos defectos en cristales tales como el europio divalente es afectada por la temperatura en forma tal que el ancho de banda como la altura cambian [17]. Este efecto proviene de la dependencia del estado vibra-



Fig. I.4 Niveles de energía para cristales con simetría octahédnica H<sub>h</sub> calculados por Bland y Smith.

cional del cristal con la temperatura. Por medio del modelo de coordenadas de configuración se encuentra que el ancho de banda H varía con la temperatura como

$$H(T) = H(0) [coth(\hbar w/2kT)]^{2}$$
(5)

donde hw es la energía del modo vibracional del cristal que interactúa con el electrón de la transición.

Lo observado por Witzke et al difiere de este tipo de comportamiento. Dos de las bandas, etiquetadas como I y II en orden decreciente de energia, muestran un cambio en la intensidad. Al bajar la temperatura la banda I crece y la II disminuye. La vida media de la I varia de 50 a 250 microsegundos y de la II de 520 a 1300 µs. Con estos datos propusieron que lo mas probable es que a temperaturas altas se esten poblando los estados prohibidos Eu y T2u encontrados por Piper et al y aseguran que la débil absorción mostrada por un cristal grueso de alta concentracion corresponde a estos estados.

Tsuboi et al encontraron resultados de emisión similares en NaCl:Yb<sup>2†</sup>. Este material emite dos bandas, una en ~400 (banda I) y la otra en ~435 nm (banda II). Encontraron que la vida media de la segunda variaba entre ~200 microsegundos a temperatura am biente hasta ~1000 microsegundos a temperatura de helio líquido.

#### CAPITULO II

#### EXPERIMENTACION

En este capítulo se describen los aspectos importantes del trabajo experimental realizado como son la obtencion de los cristales, la descripción del equipo y las técnicas de absorción y luminiscencia.

II.1 OBTENCION DE LOS CRISTALES.

En un principio nos propusimos el estudio de la familia completa de halogenuros alcalinos conteniendo Yterbio divalente a excepción de los compuestos de Cesio. Sin embargo, el proce so de difusión de  $YB^{2+}$  en estos materiales resultó un poco complicada. Primeramente encontramos que el yterbio se encuen tra en los compuestos de haluros en forma trivalente  $YbX_3$  en donde X es el haluro, lo cual hacía necesario pasar el compuesto de haluro de  $YbX_3$  a  $YbX_2$ . Entonces se utilizó la técnica emplea da para reducir las sales de europio. Esta técnica consiste en: primero, hacer un secado de la sal  $MX_3$ , en donde M es el metal trivalente, dentro de un tubo al vacío, para luego hacer pasar hidrógeno gaseoso  $H_2$  a traves del polvo previamente secado tal que la reacción entre la sal y el gas resulte en la reducción requerida:

$$MX_3 + \frac{1}{2}H_2 --- MX_2 + HX$$

hasta el momento en que por el extremo opuesto del tubo apa-

rezca hidrógeno gaseoso. Esto último se prueba haciendo un del gado mechero en el extremo de salida del tubo como se ve en la figura II.1



Fig II.1 Sistema para reduccion de Yb

Los cristales se crecieron por la técnica de Czochralsky En este método de crecimiento, la sal debe fundirse y llevarse a temperaturas ligeramente mayores que su temperatura de fusión. Una vez que la sal ha sido completamente fundida se inicia el proceso de crecimiento. Una semilla del mismo material se baja hasta hacer contacto con la superficie libre del fundente. Luego se sube lentamente buscando mantener un suave contacto entre el material enfriado y el líquido con un gradiente de temperatu ra constante en la interfase. Al final se obtiene un lingote de Cristal. Para nuestros propósitos es deseable que el cristal crecido sea un monocristal sin dislocaciones. Los cristales fue ron crecidos en el Laboratorio de Crecimiento de Cristales del IFUNAM y han resultado de buena calidad en ese sentido.

Cuando se mezclan dos sales en polvo que tienen temperaturas de fusion diferentes, no es fácil mantener la proporción de la mezcla en el sólido porque existe una segregación de una Fri May 06 05:57:07 1988 /y/tesis1.oy Page 3

de las sales. La solubilidad de una sal en otra, estara limitada por las propiedades fisicas de cada una. Este fue uno de los problemas presentados en el crecimiento de los cristales con Yb.

Se logró la difusión de  $Yb^{2^+}$  en los cristales NaCI: $Yb^{2^+}$ , KCI: $Yb^{2^+}$ , KI: $Yb^{2^+}$  en muy baja concentracion como se podrá ver en los espectros de absorción correspondientes, y un poco más de concentración en KBr: $Yb^{2^+}$  para condiciones similares de preparación de la mezcla en polvo: 0.4% en peso de  $YbX_2$  en M X. Debido a esto no fue posible establecer con seguridad el número nominal de impurezas en cada una de las muestras. Tampoco fue posible hacer una medicion de concentración por absorción atómica ya que el Yb metálico no es muy común en los laboratorios debido a su alto precio.

Las muestras analizadas fueron clivadas del lingote en placas de "1 x 6 x 6 mm sobre los planos equivalentes (100). Previo al análisis óptico se les recoció a 500°C durante 30 minutos y se les enfrió súbitamente poniéndolos sobre una placa de cobre con el fin de "congelar" la distribucion de las impurezas y evitar las fases precipitadas [6].

II.2 EQUIPO DE ABSORCION: ESPECTROFOTOMETRO.

Las medidas de absorción se hicieron en un espectrofot<u>o</u> metro de doble haz Lambda 9 de PERKIN-ELMER, el cual se describe a grandes rasgos. Las partes fundamentales de un espectrofotómetro son: Fri May 06 05:57:07 1988 /y/tesis1.oy Page 4

- a) la fuente de luz
- b) el monocromador
- c) el divisor de haz
- d) el detector

En la fig II.2 puede verse el arreglo esquemático de la parte óptica del espectrofotómetro Lambda 9. En La región marca da con R1 se encuentra la fuente de luz visible y Ultravioleta en forma separada en dos lámparas, una de halógeno(vis), y otra de Deuterio (UV) para cubrir el intervalo de longitudes de onda entre 185 y 3000 nm. En la region R2 se tiene el monocromador, el cuál utiliza un par de monocromadores en serie que le permiten tener mayor selectividad o un ancho de banda mas angosto. Saliendo de R2 el haz monocromado, es separado en dos por un "choper". Ambos haces pasan por el compartimiento de la muestra en donde son reunidos sobre el detector. Uno de los haces, pasa por la referencia R y el otro por la muestra bajo estudio S.

El ancho de banda promedio mínimo en el intervalo de longitudes de onda de 200 a 400 nm es de .05 nm.

El sistema tiene un bajo nivel de ruido y grafica con <u>u</u> na repetibilidad de .05 nm en el intervalo de UV/VIS. En cuanto a la intensidad esta linealizado respecto de los espectros de las lámparas, del detector y de la óptica.

#### II.3 TECNICA DE ABSORCION.

Cuando se hace pasar radiación electromagnética a través de una muestra de espesor x, la cual absorbe dI fotones en un espesor dx, entonces la cantidad absorbida 🗙 por unidad de longitud es proporcional a la disminución de intensidad e inver samente proporcional a la intensidad I,

$$\propto = - dI/Idx$$

de donde  $\propto =(2.303\log(Io/I))/x$  (1) La cantidad log(Io/I) se denomina densidad óptica (O.D.) es la cantidad medida por el espectrofotómetro.

Por otra parte, para una determinada concentración de impurezas dentro del cristal, la cantidad & sera función de la concentracion N y de la probabilidad de absorcion que tengan. Esta probabilidad, conocida como intensidad de oscilador f, depende de los estados inicial y final de la transición electróni ca. Para la transición dipolar eléctrica de un oscilador el tra tamiento matemático da como resultado la relación

$$Nf = (9mc/2 \pi^2 e^{2}\hbar) (n/(n^2+2)^2) \int_{-\infty}^{\infty} \alpha(E) dE$$
 (2)

donde m es la masa del electrón, e su carga eléctrica, n es el indice de refracción del cristal que se supone no cambiar debido a las impurezas. E es el valor de la energía y  $\propto$  ahora es la distribución de energía para un determinado estado. Para distri buciones gausianas de energía, la integral en la ecuación (2) resulta  $\sqrt{L(\pi/ln2)}/2J \propto (max)H$ . Sustituyendo las constantes y calculando se llega a la expresión

Nf=0.87 x10<sup>77</sup> (n/(n<sup>2</sup>+2)<sup>7</sup>)  $\propto$ (max).H (3) donde  $\alpha$  se expresa en cm<sup>-1</sup> y H en electronvolts. La relación (3) es conocida como la ecuacion de Smákula [17]. Fri May 06 05:57:07 1988 /y/tesis1.oy Page 6

II.3 EQUIPO DE LUMINISCENCIA: ESPECTROFLUOROMETRO.

La emisión de las muestras se midió en un equipo integrado MPF-66 interfaceado a una computadora que utiliza el sistema Unix. a través del software CLS Rev. D de PERKIN-ELMER.

Un espectrofluorómetro es un arreglo óptico con el que se puede medir la intensidad de la luz monocromática emitida por la muestra analizada. La diferencia con el espectrofotómetro es el uso de un monocromador que recibe la luz emitida por la muestra cuando es excitada por luz. El arreglo óptico del MPF-66 se puede ver en la figura II.3.

El espectrofluorómetro esta equipado con una lámpara de Xenón libre de ozono de 150W sellada. Contiene dos monocromado res tipo Czerny-Turner de un ancho de banda minimo de 0.30 nm. utiliza un fotomultiplicador como detector. Su intervalo de tr<u>a</u> bajo es 200 a 900 nm más un orden cero para cada monocromador. Del haz de excitacion, una porción es llevada a un contador cuántico (el cuál usa Rhodamina 101) y a un fotomultiplicador de referencia. Este sistema de referencia compensa los cambios en la energía del haz de excitación por cambios en la longitud de onda y dependientes del tiempo mediante un ajuste de la ganancia del fotomultiplicador.

Las señales del fotomultiplicador de la muestra son digitalizadas y enviadas a la computadora para su análisis y procesamiento. El número de lecturas que se pueden hacer al máximo es de 5 por cada nm.



Fig. II.3 Arreglo experimental del espectrofluorómetro del MPF-66.

Fri May 06 05:57:07 1988 /y/tesis1.oy Page 7

#### II.5 LA TECNICA DE LUMINISCENCIA

La luz monocromatica de energía ñw que es emitida por el monocromador de excitacion como se ve en la fig. II.3, es absorbida por la muestra y en particular es empleada por el ión impureza cuando esta energía es la requerida para pasar de un nivel a otro permitido por las reglas de selección y la paridad del operador de transición. En la aproximación Born-Openheimer la rapidez de transición es tan grande que el ion en su conjunto mantiene la configuracion al principio, luego se relaja utilizando parte de la energía absorbida. Mas tarde el ión vuelve a su estado base emitiendo un fotón de energía menor que la absorbida. Esto es mejor explicado por el modelo de coordenadas de configuración:

21



#### CAPITULO III

#### **RESULTADOS Y DISCUSION**

#### III.1 ABSORCION.

Se crecieron los cristales de NaCl:Yb, KCl:Yb, RbCl:Yb, KBr:Yb, KI:Yb, de los cuales se obtuvieron los espectros de absorcion, un análisis de estos nos permite afirmar que por el me todo de crecimiento usado, segrego muy poca cantidad de yterbio en estos cristales. En KI:Yb y RbCl:Yb el contenido fue prac ticamente nulo. El KBr fue el material que acepto mayor concen tracion de Yb y su espectro de absorción (figura III.1) muestra varias bandas; su forma y la posición de sus máximos son justa mente los reportados por Bland y Smith. Una de las razones de no tener un espectro suficientemente claro del yterbio divalente en los materiales crecidos es su baja intensidad de oscilador. Como hemos visto en el capitulo II, la intensidad de oscilador puede calcularse por medio de la ecuacion de Smakula. Para SrCI:Yb , la intensidad de oscilador del conjunto de picos fue calculada por Piper de aproximadamente 0.1. Los cálculos que hemos hecho para la banda C en SrCl : Yb resultan de aproximadamente 0.001, lo cual indica que se requiere una fuerte concentración que permita detectar por absorción las bandas de Yb. La concentracion utilizada en los cristales de SrCl fue 0.05% molar, y la utilizada en NaCl por Tsuboi esta entre 0.02% a 0.05% molar. Aunque la cantidad disuelta en el fundente de nues tros cristales fue de 0.4% molar, es evidente que en el creci-



Fig. III.1 Espectro de absorción de KBr: Yb<sup>2+</sup> a T.A. 1) Quenchado, 2) Sin tratamiento.

miento solo se disolvió un porcentaje muy pequeno de esta cantidad.

Sin embargo encontramos que el ion yterbio divalente es muy eficiente emitiendo y gracias a ello pudimos obtener los es pectros de luminiscencia de 3 de los materiales: NaCl, KCl y KBr. Se detectaron dos bandas de emisión en cada material de las cuales se obtuvieron sus espectros de excitación (fig III.2). La comparación de estos espectros con los de absorción de Bland y Smith muestran bastante coincidencia lo que hace afirmar que la emisión observada corresponde a los iones de Yb divalente y que hay muy poca interacción con otros defectos.

En la Tabla I se enlista la posición de los máximos de las bandas de excitación y absorción. En el listado se agregan las bandas E omitidas por Bland y Smith. En adelante nos referiremos indistintamente a las bandas de excitación como a las de absorción.

|         | N                  | aCI                     | KB                   | r                     | KC                   | I                     |
|---------|--------------------|-------------------------|----------------------|-----------------------|----------------------|-----------------------|
| Banda   | E(cm <sup>-1</sup> | ) E(cm <sup>-1</sup> )* | E(cm <sup>-1</sup> ) | E(cm <sup>-1</sup> )* | E(cm <sup>-1</sup> ) | E(cm <sup>-1</sup> )* |
| A 1     | 26001              | 26219                   | 26595                | 26596                 | 26581                | 26624                 |
| A 2     | 29223              | 29394                   | 29621                | 26621                 | 29744                | 29656                 |
| E 1     | -                  | -                       | 32573                | -                     | 33445                | -                     |
| B 1     | 35336              | 35778                   | 35486                | 35562                 | 35971                | 35971                 |
| B2      | 36684              | 36832                   | 36576                | 36630                 | 37037                | 36969                 |
| B 3     | 38790              | 38910                   | 39216                | -                     | -                    | 39062                 |
| C 1     | 42230              | 42017                   | 40193                | 40274                 | 41322                | 41322                 |
| E 2     | 45331              | -                       | 42626                | -                     | 43478                | -                     |
| *Valore | s de Bla           | nd y Smith.             |                      |                       |                      |                       |

TABLA I. Energías de los máximos de los espectros de excitación.



\$

Fig. III.2 Espectros de Excitación a 10K de; 1) NaCl:Yb<sup>2+</sup>, 2) KCL:Yb<sup>2+</sup>, 3) KBr:Yb<sup>2+</sup>

Fig. III.2 Espectros de

Reordenando los valores de energía de los picos de absorción en la Tabla II para las familias de potasios y sodios puede verse el efecto del anión y el catión sobre el electrón 5d.

| T | ABLA  | II. Valo<br>sodi | ores de al<br>os. Todo: | bsorción<br>s estan | de las<br>en cm <sup>-1</sup> . | familias | de pota | sios y de |
|---|-------|------------------|-------------------------|---------------------|---------------------------------|----------|---------|-----------|
| - |       | E 2              | C1                      | B2                  | B1                              | E1       | A2      | A1        |
|   |       |                  |                         | POTAS               | IOS                             |          |         |           |
|   | C I - | 43478            | 41322                   | 36969               | 35971                           | 33445    | 29656   | 26624     |
|   | Br-   | 42626            | 40274                   | 36630               | 35562                           | 32573    | 29621   | 26596     |
|   | I -   | 42312            | 38462                   | 35587               | 34435                           | 32436    | 28736   | 25873     |
|   |       |                  |                         | SOD                 | IOS                             |          |         |           |
|   | C I - |                  | 42017                   | 36832               | 35778                           |          | 29394   | 26219     |
|   | Br-   |                  | 40486                   | 36311               | 35298                           |          | 29112   | 26028     |
|   | I -   |                  | 38168                   | 35026               | 34188                           |          | 28050   | 25157     |

En la gráfica de la figura III.3 podemos ver como al pa sar de C1- a I-, la energía de absorción para cada banda disminuye, pero el corrimiento es más fuerte para la Banda C1 tanto en sodios como en potasios. La variacion energética de las ban das A y E es muy similar y difieren en comportamiento de las bandas E. En el esquema simple que propone Loh [13] podemos con siderar las bandas A y E como niveles t<sub>29</sub> y a las bandas C y D





como niveles  $e_{g}$ , de las cuales las A y las C corresponden al term  ${}^{2}F_{7/2}$  y las B y D al  ${}^{2}F_{5/2}$ . El efecto que tiene el cambio de cation es mínimo sobre las bandas B y C, pero es marcado sobre las bandas A, mientras que el cambio de anión afecta princi palmente las bandas C. Es por esto que las bandas A pueden, en un esquema simple corresponder a un estado  $t_{29}$  del electrón 5d. En general el catión no afecta fuertemente las transiciones del electrón 5d y de ahi que la presencia de la vacancia no se deje sentir y responda más a una simetría Oh que a una C2v.

Hemos observado que la intensidad de las bandas E aumen ta y de las bandas E disminuye cuando la constante de red aumen ta (tabla III) o el anión es mayor.

| TABLA | III. | Relacio | on e | ntre  | el anion y | y las inte | ensidades | de las |
|-------|------|---------|------|-------|------------|------------|-----------|--------|
|       |      | bandas  | Ву   | E1 r  | especto a  | la banda   | A1.       |        |
|       |      | CRISTAL | <br> | I(B1) | I(B2)      | I(E1)      | I(A1)     |        |
|       |      | KI:Yb   | I    | 21    | 5          | 60         | 100       |        |
|       |      | KBr:Yb  | 1    | 35    | 28         | 37         | 100       |        |

KCI:Yb ! 54 83

En el esquema utilizado por Eremin para las funciones de onda las intensidades tienen este comportamiento para la banda B1 pe ro no para la B2, y probablemente las bandas E1 y E2 formen par te de los grupos B y C respectivamente.

32

100

En la tabla IV se muestran las diferencias en energía de las parejas de A-C y E1-E2. Resalta el hecho de que las primeras son proporcionales al Dq, pero los valores son mayores a los obtenidos por Bland y Smith (cap. II) En cambio la diferencia entre las E permanece aproximadamente constante.

|   |                                            | A1-C1<br>(cm <sup>1</sup> ) | A2 - C1<br>(cm <sup>-1</sup> ) | E 2 - E 1<br>(cm <sup>-1</sup> ) |
|---|--------------------------------------------|-----------------------------|--------------------------------|----------------------------------|
|   | ΚI                                         | 12589                       | 9726                           | 9876                             |
|   | KBr                                        | 13598                       | 10572                          | 10033                            |
|   | KCI                                        | 14741                       | 11578                          | 10053                            |
|   | NaCl                                       | 16230                       | 13007                          | -                                |
| _ | THE REPORT OF THE PARTY OF THE CASE OF THE |                             |                                |                                  |

TABLA IV. Cálculos del esquema simple.

#### III.2 EMISION.

A temperatura ambiente encontramos en cada material una banda de emisión bastante clara por su intensidad con máximos entre 420 y 440 nm (tabla V) y otra banda muy poco intensa comparada con la primera con máximo entre 390 y 410 nm. Al disminuír la temperatura hemos visto aumentar la intensidad de la segunda y disminuír la de la primera. No se ha detectado corrimiento en la posicion del máximo con la variación de la tempera tura. Siguiendo la identificacion de Tsuboi Ilamamos banda I a la de alta energía y II a la de baja energía.

A temperatura de ~10K, la intensidad de la banda II es casi nula. En la tabla V se anotan los valores de la posición

del máximo, para cada material, de ambas bandas. Se verificó que se obtienen estas dos emisiones con la misma proporción excitan do con cualquiera de las energías de los picos de absorcion. Se ha supuesto que la emisión se da para la transicion del nivel más bajo de absorción al nivel base 150, pero como se puede ver en la misma tabla V, la energía de emisión es menor que la de absorción mínima, lo cual acusa una relajación que da el corrimiento de Stokes haciendose mas fuerte en el KBr. Según este esquema habría un solo pico de emisión. Como propone Piper(cap. II) debe existir otro nivel de desexcitación que no es observado en el espectro de absorción, Ilamados Eu y T2u, los cuales están por debajo del mínimo del grupo T1u. Estos parecen poblarse desde el nivel mínimo de T1u (Tsuboi) y desde ahi se emite con menor energía (banda II). El diagrama de niveles sería



En las figuras III.4 y 5 pueden verse las bandas de emisión para los tres materiales a temperatura ambiente y a baja temperatura respectivamente. La diferencia de energías entre las bandas I y II es de aproximadamente 1900 cm<sup>-1</sup> y debe corresponder a la diferencia entre los niveles Tiu y T2u. En la grafica de la





figura III.6 puede verse el comportamiento de la emisión con la constante de red. Hemos hecho un seguimiento de la intensidad de estas bandas en función de la temperatura y hemos obtenido los resultados que se muestran en las figuras III.7,8 y 9 donde hemos graficado intensidad contra temperatura. Al enfriar se el cristal se inhibe la transición no radiativa, evitando la poblacion del nivel prohibido Eu y T2u.

#### III.3 CONCLUSIONES.

Hemos visto como los espectros de absorcion y excitacion coinciden entre sí en posiciones e intensidades, por lo cual podemos tener la certeza de que las bandas de absorción observadas corresponden a transiciones 4f14 --> 4f13 5d a las cuales tambien pertenecen las bandas E. Esto nos lleva a pensar que los esquemas utilizados siguen siendo esquemas burdos para para predecir los niveles y las intensidades de las transiciones.

For otra parte, podemos afirmar que la emisión de la banda de baja energía (II) es un decaimiento desde los niveles prohibidos Eu y T2u poblados desde el nivel mínimo del grupo T1u (A1) a traves de su acoplamiento con las vibraciones de la red. Cuando este acoplamiento se hace menor por disminución de la temperatura, la probabilidad de poblar los niveles prohibidos tambien disminuye y la intensidad de la emisión del nivel A1 al estado base es incrementada. Se sigue de esto que la emisión del Yb divalente es explicada por un esquema de 3 niveles.



٦

Fig. III.6 Valores de energía de emisión, contra distancia anión-catión.





#### REFERENCIAS BIBLIOGRAFICAS

- A. A. Kaminskii, Laser Crystals. Springer-Verlag. Optical Sciences. New York (1975).
- J. H. Crawford Jr. and L. M. Slifkin. Point Defects in Solids, Vol. I. General and Ionic Crystals(Plenum Press New York) (1972).
- 3. R. Capelletti and E. DeBenedetti. Phys. Rev. 165, 981(1968).
- J. S. Cook and J. S. Dryden. Proc. Phys. Soc.(London) 80, 479 (1962).
- F. K. Fong and E. Y. Wong. Optical Properties of Ions in Crystals (editado por H. M. Crosswhite and H. W. Moos) pag. 137 (1966).
- 6. G. D. Watkins, Phys. Rev. 113, 91 (1959).
- 7. M. Wagner and W. E. Bron, Phys. Rev. 139, 223 (1965).
- C. J. Ballhausen, Introduction to Ligand Field Theory, McGraw-Hill, New York (1962).
- 9. H. A. Bethe, Ann. Phys. 3, 133 (1929).
- T. Tsuboi, H. Witzke and D. S. McClure, J. Luminiscence 24/25, 305 (1981).
- 11. B. W. Bryant, J. Opt. Soc. Am. 55, 771 (1965).
- 12. T. S. Piper, J. F. Brown and D. S. McClure, J. Chem. Phys. 16, 1353 (1967).
- 13. M. V. Eremin, Opt. Espectrosc. 29, 53 (1970).
- 14. E. Loh, Phys. Rev. 7, 1846 (1973).
- 15. S. W. Bland and M. J. A. Smith, J. Phys. C Solid State

Phys. 18, 1528 (1985).

16. H. Witzke, D. S. McClure and B. Mitchell, Luminiscence of Cryst. Molec. and Solut. Proceed. of The Int. Conf. on Luminisc. Leningrado USSR. Edit. F. Williams (Plenum Press New York) (1973).

R. 777

140191

17. J. M. Hernández. Tesis Doctoral (1980), UNAM.



