Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12984/6726
Title: Análisis de bifurcaciones de sistemas cuadráticos con frontera
Authors: CASTRO ECHEVERRIA, JOCELYN ANAID
VERDUZCO GONZALEZ, FERNANDO; 20110
Issue Date: 44650
Publisher: CASTRO ECHEVERRIA, JOCELYN ANAID
Abstract: Dado un sistema cuadrático de ecuaciones diferenciales en el plano, delimitado por una línea recta como frontera, estamos interesados en estudiar los fenómenos de bifurcación que surgen en una vecindad de dicha frontera cuando se utilizan las posiciones de sus puntos de tangencia como parámetros de bifurcación. Recientemente en [3] se demostró que la colisión de dos puntos de tangencia de dos sistemas lineales distintos, con una recta como variedad de conmutación, puede generar la aparición de ciclos límite de cruce. Por otro lado, para sistemas Filippov (ver [7, 9]), se menciona en [17] que para una familia uni-paramétrica en el plano, dos puntos de tangencia cuadrática del mismo campo vectorial no pueden colisionar si ambos son de la misma naturaleza, es decir, si ambos son visibles o ambos son invisibles. Analizaremos bajo qué condiciones es posible realizar dicha colisión de puntos de tangencia del mismo tipo, esta vez en un sistema bi-paramétrico cuadrático con frontera, donde hemos encontrado que de hecho, estos colisionan de manera genérica, en un equilibrio hiperbólico. En contraste, cuando los puntos de tangencia tienen naturaleza distinta, uno visible y uno invisible, hemos encontrado que el manipular sus posiciones genera la aparición de las bifurcaciones estacionarias: silla-nodo, transcritica y horquilla. Por ´ultimo, al considerar la interacción y colisión entre un punto de tangencia y un equilibrio frontera estaremos generando lo que se conoce como la bifurcación Takens-Bogdanov Transcrítica, ver [5, 14, 18]).
Description: Tesis de doctorado en ciencias matemáticas
URI: http://hdl.handle.net/20.500.12984/6726
Appears in Collections:Doctorado

Files in This Item:
File Description SizeFormat 
castroecheverriajocelynanaidd.pdf13.34 MBAdobe PDFThumbnail
View/Open
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.