Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12984/6727
Title: Tensores de Poisson Compatibles con Estructuras Fibradas
Authors: RUIZ PANTALEON, JOSE CRISPIN
VOROBEV, YURY; 20047
FLORES ESPINOZA, RUBEN; 1631
Issue Date: 43371
Publisher: RUIZ PANTALEON, JOSE CRISPIN
Abstract: El presente trabajo está dedicado al estudio de algunos problemas abiertos de la geometría de las estructuras Poisson que constituyen un campo de investigación actual. En términos algebraicos, una estructura de Poisson en una variedad diferencial M se define como una estructura de ´algebra de Lie {, } en el anillo de funciones de clase C ∞ la cual es compatible con el producto puntual de funciones por medio de la regla de Leibniz. Estos objetos se relacionan con otras estructuras importantes en geometría moderna como es el caso de los algebroides y grupoides de Lie. En 1977, A. Lichnerowicz en [42] introdujo una definición “geométrica contravariante” de estructura de Poisson en términos del cálculo de Schouten para campos tensoriales contravariantes antisimétricos, dando lugar a un estudio sistemático de la geometría de Poisson estrechamente relacionado con la teoría de foliaciones singulares en el sentido de Stefan-Sussman. Concretamente, cada estructura de Poisson {, } está definida por un campo bivectorial Π en M, llamado tensor de Poisson, que satisface una versión diferencial de la identidad de Jacobi que implica la integrabilidad de su distribución característica. En general, esta distribución integrable resulta singular y su foliación consiste de hojas de dimensión variable las cuales tienen asociada una estructura simpléctica natural inducida por Π. Así, geométricamente, una variedad de Poisson se puede pensar como una unión de variedades simplecitas (hojas simplécticas), usualmente de dimensiones variables, dispuestas de una manera suave en la variedad. Un ejemplo importante de este tipo de foliaciones se presenta como el espacio de ´orbitas de la acción coadjunta de un grupo de Lie sobre su co´algebra. En este caso la estructura simpléctica viene dada por la llamada forma de Kirillov-Kostant-Souriau. A este tipo de estructuras se les denomina de Lie-Poisson. La interpretación geométrica de las variedades de Poisson provee una generalización a la categoría de estructuras de Dirac [26]: una variedad de Dirac es una foliación presimpléctica singular. En esta tesis desarrollamos un enfoque uniforme para el estudio de una clase natural de estructuras de Poisson y Dirac que son compatibles con estructuras fibradas. Este tipo de variedades (fibradas) aparecen frecuentemente como espacios fase para sistemas dinámicos en diversas aplicaciones f´ısicas [58, 52, 33, 51, 47]. Además, el problema de formas normales alrededor de subvariedades de Poisson lleva de manera natural al estudio de las estructuras de Poisson en haces fibrados vectoriales (haces normales) [72, 73, 14, 15, 46
Description: Tesis de doctorado en ciencias matemáticas
URI: http://hdl.handle.net/20.500.12984/6727
Appears in Collections:Doctorado

Files in This Item:
File Description SizeFormat 
ruizpantaleonjosecrispind.pdf1.02 MBAdobe PDFThumbnail
View/Open
Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.