Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.12984/7553
Registro completo de metadatos
Metadado | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | HIGUERA CHAN, CARMEN GERALDI | - |
dc.creator | HIGUERA CHAN, CARMEN GERALDI; 334691 | - |
dc.date.issued | 40787 | - |
dc.identifier.isbn | 1403556 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12984/7553 | - |
dc.description | Tesis de maestría en ciencias matemáticas | - |
dc.description.abstract | El objetivo principal de este trabajo de tesis es establecer condiciones para la existencia de estrategias óptimas para los jugadores tanto para el criterio de optimalidad descontado como para el criterio de optimalidad promedio cuando los espacios de estados y de acciones de ambos jugadores son de Borel, y el pago es posiblemente no acotado. Además, en el contexto de los juegos del tipo (1) construiremos estrategias (casi) óptimas en el caso descontado y óptimas en el caso promedio cuando la densidad p es desconocida por los jugadores. Nuestra metodología para el estudio de estos problemas es la siguiente. Primeramente estudiamos el criterio descontado con horizonte finito N. Luego, a partir de estos resultados, analizamos el problema con horizonte infinito haciendo N --+ oo. Además, el criterio de optimalidad promedio se estudia aplicando el método de factor de descuento desvaneciente, es decir, como límite del caso descontado. Por otro lado, en el problema, tanto para el caso descontado como para el promedio, cuando la densidad p es desconocida, construimos para cada jugador un estimador estadístico de la densidad. Entonces la decisión de cada jugador es adaptada a la correspondiente estimación para determinar sus estrategias. La estrategias que combinan estimación y control se les conocen como estrategias adaptadas. | - |
dc.description.sponsorship | Universidad de Sonora. División de Ciencias Exactas y Naturales. Departamento de Matemáticas, 2011. | - |
dc.format | Acrobat PDF | - |
dc.language | Español | - |
dc.language.iso | spa | - |
dc.publisher | HIGUERA CHAN, CARMEN GERALDI | - |
dc.rights | openAccess | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | - |
dc.subject.classification | PROCESOS ESTOCÁSTICOS | - |
dc.subject.lcc | QA274.7 .H53 | - |
dc.subject.lcsh | Procesos de markov ||Teoría de los juegos | - |
dc.title | Estrategias adaptadas para juegos Markovianos de suma cero | - |
dc.type | Tesis de maestría | - |
dc.contributor.director | MINJAREZ SOSA, JESUS ADOLFO; 15176 | - |
dc.degree.department | Departamento de Matemáticas | - |
dc.degree.discipline | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | - |
dc.degree.grantor | Universidad de Sonora. Campus Hermosillo | - |
dc.degree.level | Maestria | - |
dc.degree.name | MAESTRÍA EN CIENCIAS MATEMÁTICAS | - |
dc.identificator | 120808 | - |
dc.type.cti | masterThesis | - |
Aparece en las colecciones: | Maestría |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
higuerachancarmengeraldim.pdf | 3.94 MB | Adobe PDF | ![]() Visualizar/Abrir |
Page view(s)
6
checked on 22-jun-2023
Download(s)
8
checked on 22-jun-2023
Google ScholarTM
Check
Altmetric
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons